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Patterns of beta-diversity or distance decay at oceanic scales are completely unknown for deep-sea commu-

nities. Even when appropriate data exist, methodological problems have made it difficult to discern the

relative roles of environmental filtering and dispersal limitation for generating faunal turnover patterns.

Here, we combine a spatially extensive dataset on deep-sea bivalves with a model incorporating ecological

dynamics and shared evolutionary history to quantify the effects of environmental filtering and dispersal

limitation. Both the model and empirical data are used to relate functional, taxonomic and phylogenetic

similarity between communities to environmental and spatial distances separating them for 270 sites

across the Atlantic Ocean. This study represents the first ocean-wide analysis examining distance decay as

a function of a broad suite of explanatory variables. We find that both strong environmental filtering and dis-

persal limitation drive turnover in taxonomic, functional and phylogenetic composition in deep-sea bivalves,

explaining 26 per cent, 34 per cent and 9 per cent of the variation, respectively. This contrasts with previous

suggestions that dispersal is not limiting in broad-scale biogeographic and biodiversity patterning in marine

systems. However, rates of decay in similarity with environmental distance were eightfold to 44-fold steeper

than with spatial distance. Energy availability is the most influential environmental variable evaluated,

accounting for 3.9 per cent, 9.4 per cent and 22.3 per cent of the variation in functional, phylogenetic

and taxonomic similarity, respectively. Comparing empirical patterns with process-based theoretical predic-

tions provided quantitative estimates of dispersal limitation and niche breadth, indicating that 95 per cent of

deep-sea bivalve propagules will be able to persist in environments that deviate from their optimum by up to

2.1 g m22 yr21 and typically disperse 749 km from their natal site.

Keywords: distance decay; beta-diversity; niche; dispersal; approximate Bayesian computation;

pattern-oriented modelling
1. INTRODUCTION
Multiple interacting processes limit, sustain and augment

global biodiversity, and these processes influence biodiver-

sity, in part, by regulating turnover in species composition

among sites. Numerous studies have related the degree of

turnover (beta-diversity) or its converse (similarity) between

pairs of communities to either the spatial or environmental

differences between them [1–4]. Strong relationships

between community similarity and geographical distance

are interpreted as evidence for the primacy of spatial

processes such as dispersal limitation. Conversely, strong

relationships between similarity and environmental dis-

tance imply a role for niche-based processes such as

environmental filtering. A recent review of 158 datasets

demonstrated that spatial and niche-based processes

contribute relatively equally, but that most variation in

community structure remained unexplained [5].

Although spatial and niche-based processes both influ-

ence community composition, their relative importance

varies across systems [6–8]. For example, temperate forests

appear to be more influenced by niche-based processes
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than by spatial processes [9]. In contrast, spatial effects over-

whelm any environmental signal in the species composition

of boreal stream diatoms [10]. Despite recent attention, the

debate about the relative importance of spatial and niche-

based processes for patterns of diversity is as vigorous and

unsettled now [11–13] as it was 85 years ago [14,15].

This debate persists, in part, owing to methodological

limitations. Most studies that consider both spatial and

niche-based processes infer relative importance by

comparing the variance in similarity of community

composition explained by differences in spatial position

with that explained by differences in environmental con-

ditions [4,8,10,16]. While a useful starting point, three

obstacles limit this approach. First, because variance in

similarity explained by space or by environmental factors

is not a monotonic function of their respective influences

[17,18], the importance of underlying processes cannot

be directly inferred from explained variance. Second,

even if a high level of explained variance were interpret-

able, traditional approaches do not provide quantitative

descriptions of how dispersal limitation or environmental

filtering operate. Third, most analyses of beta-diversity

focus exclusively on turnover in taxonomic composition.

Recent analyses do, however, build from this classic

approach by including phylogenetic and functional trait

information [19–23]. This additional information
This journal is q 2011 The Royal Society
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Figure 1. Spatial distribution of sampling locations indicated by red circles on a map of (a) bathymetry and (b) carbon flux.
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estimates relative differences in ecological roles among

species, potentially allowing greater insight into under-

lying processes.

Here, we work to overcome these limitations and, in

turn, describe the relative degree and quantitative manner

in which dispersal limitation and environmental filtering

influence deep-sea bivalve communities. We focus on the

deep sea because it is the largest and least-studied biome

on the Earth. At large geographical scales, the deep sea

exhibits considerable variation in species diversity over lati-

tude and depth [24]. However, patterns of turnover in

species composition, phylogenetic relatedness and func-

tional traits are virtually unknown [24]. The modest work

conducted on beta-diversity concentrates on the remark-

ably high level of faunal turnover at local scales [25–29].

Only recently has deep-sea biodiversity been linked to

environment characteristics at large scales [30–33], but

these studies primarily focus on explaining alpha-diversity.

Given the long-distance larval-dispersal phases and large

species ranges that characterize many deep-sea organisms

[34], the environment, especially energy availability

[24,35,36], is hypothesized to be the primary cause for

determining deep-sea biodiversity patterns. However, no

study has attempted to assess the relative contributions

of dispersal limitation and environmental filtering to

beta-diversity patterning in the deep sea.

Here, we characterize the relative contributions of

dispersal limitation and environmental filtering for explain-

ing differences in community composition of deep-sea

bivalves across the Atlantic Ocean. Our approach uses a

pattern-oriented simulation model [18,37,38] to couple

dispersal limitation and environmental filtering to empiri-

cal descriptions of how between-community taxonomic,

functional trait and phylogenetic similarity decays with

spatial and environmental distance (distance decay). In

addition, to compare deep-sea patterns with other systems,

we use empirical distance-decay patterns to partition

explained variance in similarity measures into a pure spatial
Proc. R. Soc. B (2012)
component, a pure environmental component and a

spatially structured environmental component [39].
2. METHODS
(a) Datasets

From 1962 to 1979, several expeditions sampled the deep-sea

benthos across the Atlantic Ocean. Allen [40] compiled and

taxonomically standardized bivalve data, collected during

these research cruises stemming from the research of Allen &

Sanders [41]. Samples were taken with an epibenthic sledge

[42]. As discussed by Allen [40], the dataset is restricted to

those samples taken by epibenthic sledge as they provide a suf-

ficient number of specimens per sample for quantifying and

assessing dominance and biogeographic distributions. The

epibenthic sledge is a semiquantitative sampling device and

sampling area is likely to differ among samples. However, the

variation in area sampled during individual sledge tows is prob-

ably well below an order of magnitude and is unlikely to be

systematically biased. This is likely to add noise to our findings,

but unlikely to alter our results. We define a bivalve community

as all individuals from a sample. Our dataset includes 204 068

individuals and 527 bivalve species from 11 basins and 270

sites ranging in depth from 518 to 5875 m (figure 1).

Species-level maximum body size (biovolume) was the trait

used to estimate functional similarity between communities.

Body size is perhaps the most fundamental trait of an organ-

ism, influencing energetic requirements, demographic rates,

life history and ecological niche [43–45]. Data were collected

from the literature and biovolume was calculated as length �
width2 (details can be found in McClain et al. [46]). Intra-

specific variation in biovolume is much less than interspecific

variation and the choice of using median or maximum body

size in molluscs is unlikely to mask ecological patterns [47].

It was not possible to construct a fully resolved molecular

phylogeny for the species in our dataset. As a proxy, we con-

structed a taxonomic tree in which branching points coincide

with different levels of taxonomic hierarchy. We used order,
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family and genus as our taxonomic levels, and all species

within a genus were represented as a polytomy. Each level

of the taxonomic tree was assigned a branch length of one.

For simplicity, the taxonomic tree is referred to throughout

as the empirical phylogeny.

Environmental data for each station were taken from the

National Oceanographic Data Centre (NODC) World

Ocean Atlas 2009 [48]. This provides (18 grid) climatological

fields of in situ temperature (degree Celsius), salinity (ppm),

dissolved oxygen (ml l21), percentage oxygen saturation,

phosphate (mmol l21), silicate (mmol l21) and nitrate

(mmol l21) at 33 depth layers. Annual means of the NODC

data were taken from the depth layer closest to the empirical

depth. Particulate organic carbon flux (POC; g m22 d21) to

the seafloor was estimated from the Lutz et al. model [49],

as in previous deep-sea biodiversity studies [33].

(b) Empirical analyses

Similarity was quantified between all community pairwise

combinations with metrics that weight by species relative

abundances. We use Bray–Curtis as our measure of taxo-

nomic similarity, and the complement of mean pairwise

distance to characterize similarity in phylogenetic and func-

tional trait composition. Mean pairwise distance measures

calculate the sum, over all individuals in a focal community,

of the phylogenetic or functional differences between each

individual and all individuals in a second community [50].

For each pairwise comparison, we quantified environmental

distance using the normalized Euclidean distance for each

environmental variable, and great circle spatial distance

(accounting for the Earth’s curvature) between the two

sample locations.

We characterized relationships between each type of

similarity and spatial and environmental distances by fitting

exponential decay models. Exponential models were used as

they provided better fits to the data than linear models and

are standard in studies of distance decay [51]. We used maxi-

mum likelihood with normally distributed error to estimate

multiple regression parameters for the exponential models.

This approach allows exponential ‘slope’ parameters to be

compared among the three types of similarity. In addition to

estimating slope parameters, we partitioned variation in simi-

larity to components explained by space, the environment

and the spatially structured environment [52]. Variance parti-

tioning on distance matrices has been criticized because it

explains less variation than other approaches [39] (but see

[17]), so we also conducted variance partitioning using

distance-based redundancy analysis [53].

(c) Model

To understand the processes underlying empirical distance-

decay patterns, we used a recently described simulation

model [18] with empirical constraints specific to our dataset.

The primary goal of the simulation model was to produce taxo-

nomic, functional and phylogenetic distance-decay patterns

across different regions of ‘process space’. This process space

has two orthogonal axes: the strength of dispersal limitation

and the strength of environmental filtering. Dispersal limit-

ation was varied by changing the variance of a Gaussian

dispersal kernel, whereas environmental filtering was varied

by changing the variance of a Gaussian niche function.

Increasing the variance of the dispersal curve or the niche

curve causes weaker dispersal limitation or weaker environ-

mental filtering, respectively. Eleven logarithmically spaced
Proc. R. Soc. B (2012)
values on each axis were used (from 0.0001 to 10), and

simulations were run across all 121 unique combinations of

process strengths.

The empirical constraints placed on the model included

the spatial positions of sampled bivalve communities, the

carbon flux at each site, the number of individuals at each

site and the topology of the bivalve taxonomic tree. Other

environmental data were not used because the model is cur-

rently limited to dealing with a single environmental variable,

and carbon flux explained the most variation in turnover.

A full account of the model is provided by Stegen & Hurlbert

[18], so only a brief description is provided here. For a given

combination of dispersal limitation and environmental filter-

ing, the following steps were taken:

1. Species’ environmental optima (traits) were evolved along

the taxonomic tree under a model of Brownian evolution.

We also assumed that a species’ geographical centre of

abundance (its ‘range centroid’) would be similar to that

of its most recent ancestor, but that it might change

over evolutionary time. Thus, we allowed the geographical

range centroids of species to change through evolutionary

time along the taxonomic tree in a similar manner to trait

evolution. Simultaneously modelling the evolution of

traits and range centroids requires specifying the covariance

between them. As explained more fully by Stegen &

Hurlbert [18], the extent to which trait values and range

positions covary through evolutionary time will necessarily

depend upon the strength of environmental filtering

and dispersal limitation, as well as the degree of spatial

structure in environmental variables. For example, if the

environment is spatially structured, and both dispersal

limitation and environmental filtering are strong, then

range centroids should be tightly coupled to trait values

(high covariance) because closely related species would

have similar geographical distributions and would have

experienced selection for similar environments. Conversely,

if there is little spatial structure in the environment and

both processes are weak, then we would expect range cen-

troids and traits to be largely independent of each other

(low covariance).

2. Each species was then assigned a global relative abun-

dance by drawing randomly, without replacement, from

a lognormal species abundance distribution. The distri-

bution contained 527 species, the same number across

all sampled bivalve communities.

3. Next, we defined a probability of occurrence of each

species in each local site as the product of the species’

global relative abundance, a term based on the spatial

proximity of a species’ range centroid to the focal site,

and a term based on how closely the environment of the

focal site matched the species’ environmental optimum

(its evolved trait value). The probability of dispersal was

maximized at distance zero and declined following a

Gaussian function characterized by the assumed degree

of dispersal limitation. Similarly, the term based on the

degree of fit to the environment was determined via

the assumed Gaussian niche function.

4. Local community assembly was then simulated by drawing

individuals into each local site until the empirically

observed number of individuals was reached. For each

site, the species pool was sampled with replacement,

where the probability of occurrence defined the probability

of each species being drawn. The taxonomic, functional
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and phylogenetic composition of each simulated commu-

nity was therefore an emergent property influenced by

trait evolution, geographical distribution, species global

relative abundances, and the strengths of both dispersal

limitation and environmental filtering.

5. Taxonomic, functional trait and phylogenetic similarity

were quantified for all pairwise comparisons between

communities. Exponential distance-decay functions relat-

ing similarity measures to spatial and environmental

distances were fitted using maximum likelihood with nor-

mally distributed error. Maximum likelihood provides

estimates for regression parameters and for the error

around the regression line, which is crucial for comparing

empirical and simulated data.

6. We repeated the above procedure 50 times for a given

combination of dispersal limitation and environmental fil-

tering, and calculated the mean of estimated regression

parameters and error terms. Using maximum likelihood,

we found the probability of the empirical data given

these mean parameters (i.e. the negative log-likelihood).

7. The above steps 1–6 were repeated for each of the 121

combinations of dispersal limitation and environmental

filtering, yielding negative log-likelihood values across

process space. The location in process space resulting in

the smallest negative log-likelihood value indicates the com-

bination of dispersal limitation and environmental filtering

that results in simulated patterns most similar to empirical

patterns. Negative log-likelihood surfaces were created

separately for taxonomic, functional and phylogenetic

distance-decay patterns by summing the negative log-likeli-

hood values based on the spatial distance decay and the

environmental distance decay at each location in process

space. We also summed across these three surfaces to
Proc. R. Soc. B (2012)
provide an integrated estimate of the region of process space

most likely to represent the actual processes governing

bivalve community composition.

3. RESULTS
(a) Empirical analyses

Whether considering functional, phylogenetic or taxonomic

measures, geographical and environmental distances typi-

cally explained a small fraction of the observed variation

in similarity (figure 2). Models incorporating both envi-

ronmental and spatial distances accounted for up to

26 per cent of taxonomic, 34 per cent of functional and

9 per cent of phylogenetic differences between sites (figures 2

and 3; electronic supplementary material, table S1). Com-

plete taxonomic turnover occurred rapidly over both

environmental and geographical distances, whereas turnover

in phylogenetic and functional composition was more gra-

dual (figures 2 and 3; electronic supplementary material,

table S1). In all but a few cases, the variance explained by

the environment alone was greater than variance explained

by space alone (figures 2 and 3; electronic supplementary

material, table S1). Likewise, regression slopes related to

environmental distance were generally steeper than slopes

related to spatial distance (figures 2 and 3; electronic

supplementary material, table S1).

Among the suite of environmental variables, carbon flux

and temperature explained the most variation in functional,

phylogenetic and taxonomic similarity (figure 3; electronic

supplementary material, table S1). Carbon flux and

temperature accounted, respectively, for 17.8 per cent

and 21.3 per cent of the variation in taxonomic similarity,

and for only 7.7 per cent and 6.9 per cent of variation in
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phylogenetic similarity (figure 3; electronic supplementary

material, figure S1). In contrast, regression models using

carbon flux or temperature accounted, respectively, for

29.2 per cent and 25.4 per cent of the variation in

functional trait similarity. Models accounting for both

temperature and carbon flux explained 33.9 per cent of
Proc. R. Soc. B (2012)
functional, 9.4 per cent of phylogenetic and 22.3 per cent

of taxonomic similarity (electronic supplementary material,

table S1). Because these environmental variables are

correlated (r ¼ 0.69), separating their unique effects is diffi-

cult. Carbon flux accounts for a slightly greater proportion

of variance (1–4% more) than does temperature for both
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phylogenetic and functional similarity (electronic sup-

plementary material, table S2). In contrast, temperature

describes a slightly greater proportion (1–4% more) of var-

iance in taxonomic similarity (electronic supplementary

material, table S2). Other environmental variables individu-

ally explained less than 10 per cent of functional, 16 per cent

of taxonomic and 5 per cent of phylogenetic similarity

(electronic supplementary material, table S1).

Depth emerges as a strong predictor of taxonomic

similarity, explaining 23.5 per cent of the variation (elec-

tronic supplementary material, table S1). The unique

proportion of variance in taxonomic similarity associated

with depth (i.e. vertical distance, 17%) is nearly twice that

explained by horizontal distance (9.9%; electronic sup-

plementary material, table S2), consistent with previous

studies (reviewed by Rex & Etter [24]). For both func-

tional and phylogenetic similarity, depth is a weak

predictor (2.4–6.4%; electronic supplementary material,

table S1). Although depth alone describes slightly more
Proc. R. Soc. B (2012)
of the variation in taxonomic similarity than either carbon

flux or temperature, these three explanatory variables are

highly correlated and jointly describe 15.6–18.9% of the

variation (electronic supplementary material, table S1).
(b) Comparison with simulation model

Different combinations of dispersal limitation and environ-

mental filtering in the simulation model yielded distinctive

patterns of distance decay (electronic supplementary

material, figure S1). The simulation model therefore

provides good resolution whereby strengths of the under-

lying process can be inferred by comparing empirical and

simulated patterns. In addition, the model’s predictions

responded in an intuitive way to increasing either the

strength of dispersal limitation or environmental filtering

(electronic supplementary material, figures S2–S5), pro-

viding additional support for the utility of the modelling

framework. Specifically, stronger environmental filtering
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or dispersal limitation resulted in steeper environmental or

spatial distance-decay patterns, respectively (electronic

supplementary material, figures S2–S5).

Model parameters were obtained that yielded simu-

lated patterns (figure 4) of phylogenetic, functional and

taxonomic distance decay comparable with empirical

patterns (figure 2). The region of process space where

empirical and simulated phylogenetic distance decay

best matched each other was a combination of very

strong environmental filtering (n ¼ 1024) and modera-

tely strong dispersal limitation (d ¼ 1022.5; figure 5a).

A similar pattern was found for taxonomic distance

decay, with the best match occurring in the same location

of process space (figure 5c). Functional trait distance

decay showed a somewhat different pattern, with good

matches emerging under strong dispersal limitation

independent of the strength of environmental filtering.

The best match, however, occurred where dispersal limit-

ation and environmental filtering were both quite strong

(n ¼ 1023.5 and d ¼ 1024; figure 5b).

After combining negative log-likelihoods from taxo-

nomic, phylogenetic and functional trait analyses, the

lowest 5 per cent of negative log-likelihoods included six

parameter combinations in the lower left corner of pro-

cess space (black box, figure 5d). These six parameter

combinations varied from dispersal breadths of 1024 to

1023, and from niche breadths of 1024 to 1023.5.
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Figure 6. Quantitative descriptions of how dispersal limitation
and environmental filtering operate in deep-sea bivalves.

More specifically, shown are Gaussian (a) dispersal (dashed
line, d ¼ 1023; solid line, d ¼ 1024) and (b) survival (dashed
line, n ¼ 1023.5; solid line, n ¼ 1024) curves estimated by
comparing empirical and simulated distance-decay patterns.
Spatial distance is with reference to the spatial position of a

reproducing individual and environmental distance is with
reference to the environmental optimum of an individual.
Solid curves are characterized by the smallest estimated var-
iance for each type of curve, and therefore the strongest
estimated strength of each process. Dashed curves are

characterized by the largest estimated variances, and thus
the weakest estimated strength of each process. The esti-
mated range in variances is delineated by the lowest 5% of
negative log-likelihoods from figure 5d. Plus symbols indicate
the 95th percentile of each function, and the corresponding

x-axis values are indicated.
4. DISCUSSION
Our findings provide evidence that distance-decay patterns of

the deep-sea benthos at oceanic scales are driven by both

environmental filtering and dispersal limitation. In the best

statistical models, variation in environmental parameters

uniquely explained more of the variation in taxonomic,

functional and phylogenetic similarity than spatial distance.

In addition, rates of decay in similarity with environmental

distance were eightfold to 44-fold steeper than with spatial

distance. Together these patterns suggest that the niche-

based process of environmental filtering more strongly

influences deep-sea bivalve communities than the spatial

process of dispersal limitation. Comparing empirical

distance-decay patterns with simulation model predictions

provided additional insight into how much stronger environ-

mental filtering is than dispersal limitation, which cannot be

directly inferred from variation partitioning or regression ana-

lyses [18]. Specifically, the empirical–theoretical comparison

confirmed that environmental filtering is stronger than

dispersal limitation, but not dramatically. Our analyses there-

fore suggest that both niche-based processes and spatial

processes strongly influence deep-sea bivalve community

composition at the oceanic scale.

Many deep-sea taxa possess substantial dispersal abil-

ities augmented by extended larval development in cold

deep waters [34,54], yet our model showed that dispersal

limitation strongly influences oceanic-scale patterns of

turnover in community structure. Simulations in which

the dispersal breadth parameter ranged from 1024 to

1023 best matched empirical distance-decay patterns.

Because this parameter is the variance of a Gaussian

dispersal kernel, and because geographical distance in

the simulations is scaled to the maximum observed

inter-site distance, we can interpret d-values in a probabil-

istic context based on empirical distances. In this case, the
Proc. R. Soc. B (2012)
95th percentile of the dispersal kernel corresponds to

somewhere between 237 and 749 km, based on estimates

of d ¼ 1024 and d ¼ 1023, respectively (figure 6a). This

indicates that on average across species, 95 per cent of

deep-sea bivalve propagules disperse somewhere between

237 and 749 km from their natal site. Although actual

larval dispersal distances are unknown for deep-sea soft-

bottom bivalves, these estimates are reasonable given a

simple model of potential larval dispersal. Bathymodiolus
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childressi, a cold seep mussel, has a planktonic larval dur-

ation of up to 270 days [55], yielding a dispersal distance

up to approximately 1000 km based on moderate currents

[34]. Given a potential shorter larval duration of 15–40

days for the bivalves in this study, dispersal distances

would be 200–500 km under mild bottom currents

[34], similar to our theoretical predictions.

Our results suggest that dispersal limitation and

environmental filtering simultaneously influence commu-

nity composition, and that energy availability is the most

influential environmental variable evaluated here. In

addition, our comparison of empirical and simulated

distance-decay patterns estimated the variance of the

Gaussian niche curve ranges from 1024 to 1023.5. As

with the measure of dispersal breadth, this value can be

interpreted in terms of relevant environmental differences

on an absolute scale. Based on the 95th percentile of

the niche function related to carbon flux, 95 per cent

of deep-sea bivalve propagules will be able to persist in

environments that deviate from their optimum by 1.2 to

2.1 g m22 yr21. The deep oceans are exceptionally

energy-limited, so it makes biological sense that deep-

sea organisms would be sensitive to such small changes

in carbon flux [24,36,56,57]. In addition, functional attri-

butes such as body size have long been hypothesized to

reflect patterns in carbon flux to the deep seafloor

[58,59], but such relationships have never been quantitat-

ively tested. Consistent with this hypothesis, we show that

body size differences among locations are primarily owing

to differences in carbon flux.

In our analyses, most of the variation in similarity

remained unexplained. Low explained variance appears

to be a general pattern across systems [5,8,11,60,61]. In

part, low explained variance could be due to unmeasured

environmental variables. For example, sediment charac-

teristics not included in this study correlate with deep-

sea species richness [30]. Unfortunately, other datasets

characterizing environmental variables across the Atlantic

Ocean do not exist beyond the seven variables examined

here. In addition, one need not invoke unmeasured

environmental variables to account for low explained var-

iance as our simulation model shows that even with a

single environmental driver, stochastic evolutionary and

ecological processes introduce considerable noise into

distance-decay relationships.

We found good correspondence between empirical

patterns and theoretical predictions, but the match

was not exact. The most apparent difference was the

greater scatter in empirical values for functional trait

(cf. figures 2 and 4, right panels) and taxonomic similarity

versus environmental distance (cf. figures 2 and 4, top left

panels). This departure from simulation predictions may

be owing to stochastic disturbances in the empirical

system. In addition, increased scatter in empirical func-

tional similarity may suggest that additional traits

besides body size have important influences on commu-

nity assembly. A more subtle departure from simulation

predictions was found in the pattern of spatial phyloge-

netic distance decay at very large spatial distances, in

which predicted similarity was less than that observed

empirically. A likely cause for this is rare, very long disper-

sal events that occurred in deep evolutionary time.

Replacing the Gaussian curve with a heavy-tailed function

such as the Weibull distribution, thereby allowing for
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these rare dispersal events, could prove useful in deter-

mining the cause of the difference in empirical and

simulated phylogenetic distance-decay patterns.

Discrepancies between the empirical and model-

generated patterns may also reflect simplifying assumptions

of the simulation model. First, we assumed that dispersal

limitation and environmental filtering are the two most

influential processes governing community structure.

We also implicitly invoke competition by making the

probability of occurrence at a given site dependent on

the presence of other species that are better suited to the

site’s environment. However, it would be useful to explicitly

include species interactions in future modelling efforts.

Second, we assumed the probability of dispersing to a

given site declines the further that site is from a species geo-

graphical centre of abundance—a significant unknown for

deep-sea organisms. Third, we modelled the average way

in which dispersal limitation and environmental filter-

ing influence all species. Thus, we do not incorporate

interspecific variation in dispersal ability or degree of

environmental specialization. These are simplifying assump-

tions that help make the framework more tractable and its

predictions more interpretable. Nonetheless, we encourage

further development of the simulation approach taken

here, and note that Stegen & Hurlbert [18] provide a full

account of the model’s assumptions and point to reasonable

ways in which these assumptions could be altered.

While minor differences between our theoretical pre-

dictions and the empirical patterns exist, the striking

degree of empirical–theoretical correspondence supports

our quantitative estimates of average dispersal abilities

and environmental tolerances. Our estimates of the

absolute geographical distances and environmental differ-

ences that affect probabilities of successful dispersal

and colonization should, however, be interpreted as first

approximations. Nonetheless, our study suggests that

deep-sea bivalves will be considerably impacted by climate

change. Recent work indicates that a 1 per cent reduction of

median phytoplankton production occurred annually over

the last century [62] and that there has been a considerable

redistribution of production at the ocean’s surface [63].

Over the same period, the heat capacity of the deep

oceans increased from 16 to 89 per cent [64]. Previous

work predicts that deep-sea fauna will respond rapidly to

changes in energy availability [65,66], and our results

further suggest that reduction and redistribution of global

phytoplankton production and temperature regimes could

severely impact global patterns of deep-sea biodiversity

and community composition.

Very little is known about large-scale patterns of turnover

in taxonomic, functional and phylogenetic composition in

the Earth’s largest environment, the deep sea. Here, we

demonstrate a link between deep-sea community structure

and both energetics and dispersal limitation. This study

also illustrates the utility of a modelling approach incorpor-

ating both ecological and evolutionary dynamics as they

relate to space and the environment. In doing so, we have

provided strong clues about the relative effects of spatial

and niche-based processes on oceanic-scale patterns of

community structure while obtaining community-level

estimates of niche breadth and dispersal ability.
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