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In the large cohorts that have been used for genome-wide associ-
ation studies (GWAS), it is prohibitively expensive to sequence all
cohort members. A cost-effective strategy is to sequence subjects
with extreme values of quantitative traits or those with specific
diseases. By imputing the sequencing data from the GWAS data
for the cohort members who are not selected for sequencing, one
can dramatically increase the number of subjects with information
on rare variants. However, ignoring the uncertainties of imputed
rare variants in downstream association analysis will inflate the
type I error when sequenced subjects are not a random subset of
the GWAS subjects. In this article, we provide a valid and efficient
approach to combining observed and imputed data on rare var-
iants. We consider commonly used gene-level association tests, all
of which are constructed from the score statistic for assessing the
effects of individual variants on the trait of interest. We show that
the score statistic based on the observed genotypes for sequenced
subjects and the imputed genotypes for nonsequenced subjects is
unbiased. We derive a robust variance estimator that reflects the
true variability of the score statistic regardless of the sampling
scheme and imputation quality, such that the corresponding asso-
ciation tests always have correct type I error. We demonstrate
through extensive simulation studies that the proposed tests are
substantially more powerful than the use of accurately imputed
variants only and the use of sequencing data alone. We provide an
application to the Women’s Health Initiative. The relevant soft-
ware is freely available.

data integration | gene-level association tests | genotype imputation |
linkage disequilibrium | whole-exome sequencing

Recent technological advances have made it possible to con-
duct high-throughput DNA sequencing studies on rare var-

iants, which have a stronger impact on complex diseases and
traits than common variants (1). However, it is still economically
infeasible to sequence all subjects in a large cohort, and, there-
fore, only a subset of cohort members can be selected for se-
quencing. A cost-effective sampling strategy is to preferentially
select subjects in the extremes of a quantitative trait distribution
or those with a specific disease (2, 3). For case−control studies,
an equal number of cases and controls provides more power than
other case−control ratios. For quantitative traits, the power
increases as more extreme values are sampled (2).
Trait-dependent sampling has been adopted in many sequenc-

ing studies, including the National Heart, Lung, and Blood In-
stitute (NHLBI) Exome Sequencing Project (ESP) and the
Cohorts for Heart and Aging Research in Genomic Epidemiology
(CHARGE) resequencing project. The NHLBI ESP consists of
three studies that sequenced subjects with the largest and smallest
values of body mass index (BMI), low-density lipoprotein, and
blood pressure, one case−control study on myocardial infarction,
and one case-only study on stroke (2). The CHARGE rese-
quencing project selected subjects with the highest values of 14
quantitative traits, as well as a random sample (4).

The cohorts from which subjects are drawn for sequencing
often have collected genotyping array data on all or most cohort
members through genome-wide association studies (GWAS).
This is certainly the case with the cohorts used in the NHLBI
ESP and CHARGE projects. If we impute the sequencing data
from the GWAS data for the cohort members who are not se-
lected for sequencing, we will dramatically increase the number
of subjects with information on rare variants. Indeed, such im-
putation is being carried out in the Women’s Health Initiative
(WHI) (5), which is a major component of the NHLBI ESP, and
other cohorts (6). The algorithms for rare variant imputation
include MaCH (Markov chain based haplotyper) (7), IMPUTE2
(8), BEAGLE (9), and minimac (10), all of which impute rare
variants by leveraging the linkage disequilibrium (LD) between
sequenced and GWAS variants.
The aforementioned imputation algorithms have been rou-

tinely used to impute untyped common single nucleotide poly-
morphisms (SNPs) (i.e., variants not present on the genotyping
array) in GWAS (11, 12). Common SNPs can be imputed with
high degrees of accuracy, and single-SNP association tests treating
imputed genotype values as observed quantities have reasonable
control of the type I error (13, 14).
There are major differences between imputing common SNPs

in GWAS and imputing rare variants in sequencing studies. First,
the former uses an external reference panel, such as the HapMap
(15) or the 1,000 Genomes (16), whereas the latter relies
primarily on an internal reference panel, i.e., the subset of
GWAS subjects who are sequenced. Second, rare variants cannot
be imputed very accurately because of the low minor allele count
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and weak LD. Third, untyped common SNPs are unobserved and
imputed for all subjects in GWAS whereas rare variants are
observed in a subset of the study subjects (i.e., sequenced sub-
jects) and imputed for the rest (i.e., nonsequenced subjects) in
sequencing studies, creating within-study differential quality in
genotype data. If the selection of subjects for sequencing depends
on the trait values, then the variance of the trait for sequenced
subjects is generally different from that of nonsequenced sub-
jects. The combination of differential genotype quality and
differential trait variability between the sequenced and non-
sequenced samples will cause inflation of the type I error in
association testing, as will be explained in Methods section.
To reduce within-study differential quality in genotype data,

one may use a postimputation quality control (QC) procedure
(6) to filter out variants that have been imputed with high
degrees of uncertainty. As stated, the imputation accuracy for
rare variants is typically low; therefore, the use of any reasonable
QC filter will remove a large number of rare variants. The re-
moval of variants results in loss of important information be-
cause the observed genotype data for sequenced subjects cannot
be used if a variant is excluded due to low imputation quality for
nonsequenced subjects and because the imputed genotypes, even
for a variant that cannot be imputed accurately, may still contain
valuable information about the association.
In this article, we show how to perform valid and efficient

association tests when rare variants are imputed for non-
sequenced subjects. Because single-variant tests and commonly
used gene-level tests, such as burden (17, 18), variable threshold
(VT) (19, 20), and sequence kernel association test (SKAT) (21),
are all based on the score statistic for testing the associations
between the genotypes of individual variants and the trait of
interest, we investigate the properties of the score statistic based
on the observed genotypes for sequenced subjects and the im-
puted genotypes for nonsequenced subjects. We find that the
score statistic is unbiased (provided that there is no strong
population stratification). We show that the standard variance
estimator for the score statistic is valid if a random subset of the
GWAS subjects is selected for sequencing but is invalid if the
selection depends on the trait values and the imputation is in-
accurate. In addition, we derive a robust variance estimator that
reflects the true variability of the score statistic regardless of the
sampling scheme and imputation quality, such that the corre-
sponding association tests are guaranteed to have correct type I
error. We show, in realistic simulation studies, that the proposed
approach is substantially more powerful than the use of accu-
rately imputed variants only and the use of sequencing data
alone. We further demonstrate the advantages of the new
methodology in an application to empirical data from the WHI.

Methods
We first consider single-variant analysis without covariates. Let G denote the
genotype (i.e., number of minor alleles) at the variant site, and let Y denote
the trait of interest. Suppose that a total of N unrelated cohort members are
measured on Y and GWAS SNPs and that a subset of n subjects is selected for
sequencing and thus measured on G. The selection may be completely
random or trait dependent. For example, when Y is quantitative, one may
select subjects with the largest and smallest values of Y, and when Y is bi-
nary, one may draw a case−control sample with an equal number of cases
(i.e., Y = 1) and controls (i.e., Y = 0) (regardless of the proportion of cases in
the entire cohort) or a case-only sample.

We infer the unknown values of G for the ðN−nÞ nonsequenced subjects
from their GWAS data by using the LD between the variant of interest and
the GWAS SNPs among the sequenced subjects. We impute G by the
expected count of the minor allele (i.e., dosage). The imputation is per-
formed by any of the commonly used algorithms (7–10) without considering
the trait information (e.g., by combining cases and controls in a case-control
study). Let eG denote the imputed value of G for the nonsequenced subject
and the observed value of G for the sequenced subject.

We relate quantitative Y to G through the linear regression model

Y = γ0 + βG+ e,

and binary Y to G through the logistic regression model

PrðY = 1Þ= eγ0+βG

1+ eγ0+βG
,

where γ0 is the intercept, β is the association parameter, and e is normal with
mean zero and variance σ2. The score statistic for testing the null hypothesis
H0 : β= 0 based on the data ðYi ,eGiÞ ði= 1, . . . ,NÞ is

U=
XN
i=1

�
Yi −Y

�eGi ,

where Y =N−1PN
i=1Yi . The standard variance estimator for U based on the

Fisher information is

Vstd =N−1
XN
i=1

�
Yi −Y

�2 XN
i=1

�eGi −G
�2

,

where G=N−1PN
i=1

eGi .
Let us order the data such that the first n subjects are the sequenced ones.

By some simple algebra, U=
Pn

i=1YiðeGi −GÞ+PN
i=n+1YiðeGi −GÞ. Under the

null hypothesis H0, Y is independent of eG in both the sequenced and non-
sequenced samples. By Eq. S2 of SI Appendix, SI Method A, the means of eG
are the same as the mean of G in both samples. Thus, the mean of U is zero
regardless of the imputation quality. However, the standard variance esti-
mator Vstd may not fully capture the variability of U with imputed rare
variants, as explained below. First, the imputed values are less variable than
the observed values when the imputation accuracy is not sufficiently high.
Second, the variance of Y may be different between sequenced and non-
sequenced subjects when the selection for sequencing depends on Y. Thus,
the variance of Y may be related to the variance of eG. Consequently, the
standard variance estimator Vstd, which treats the variance of Y and the
variance of eG as unrelated, tends to underestimate the true variance of U;
a formal proof is provided in SI Appendix, SI Method B.

The following robust variance estimator fully captures the variability of
U under any sampling scheme by properly adjusting for the imputation
accuracy:

Vrob =
Xn
i=1

�
Yi −Y −

�
1− r2

��
Y seq −Y

��2�eGi −G
�2

+
XN
i=n+1

�
Yi −Y

�2�eGi −G
�2

,

[1]

where Y seq =n−1Pn
i=1Yi , r2 = ρ

ffiffiffiffiffiffiffiffi
Rsq

p
, ρ is the Pearson correlation coefficient

between the true and imputed genotypes, and Rsq (7) is the ratio of the
variance of the imputed genotype to the variance of the true genotype.
Eq. 1 is a special case of Eq. S13 derived in SI Appendix, SI Method C. Note that
r2 pertains to the imputation accuracy. In Eq. 1, the residuals of sequenced
subjects are adjusted by ð1− r2ÞðY seq −YÞ, which results from the de-
pendence of the imputed genotypes of nonsequenced subjects on the ob-
served genotypes of sequenced subjects. (The more correlated the imputed
genotypes are with their true values, the less dependent they are on the
genotypes of other subjects.) We show in SI Appendix, SI Method A that Rsq
is equivalent to ρ2 when the imputed posterior genotype probabilities are
accurately calibrated. Thus, in calculating Vrob, we replace r2 by the sample
Rsq (7), which does not involve the true genotypes. Specifically, the sample Rsq
is the ratio of the sample variance of the imputed genotype to 2bpð1− bpÞ, wherebp is the estimated minor allele frequency (MAF) under Hardy−Weinberg
equilibrium.

If the imputation is so accurate that r2 = 1 or the sampling is balanced
between the two extremes of a quantitative trait such that Y seq =Y , then
Vrob reduces to

XN
i=1

�
Yi −Y

�2�eGi −G
�2

, [2]

which is the empirical variance estimator based on efficient score functions
(22). Moreover, if ðY −YÞ2 and ðeG−GÞ2 are uncorrelated, which can be
achieved by perfectly imputing the missing genotypes or by selecting sub-
jects for sequencing in a totally random manner, then expression 2 is
equivalent to Vstd. In other words, Vstd will be valid if the imputation is
perfectly accurate or the selection for sequencing is totally random. When
the selection is totally random, eG is completely independent of Y, so the
standard analysis is valid.
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In SI Appendix, SI Method C, we extend our methodology in several
directions. First, we consider multiple variants in a gene and derive a robust
estimator for the variance−covariance matrix of the (vector-valued) score
statistic, from which all commonly used gene-level tests (e.g., burden, VT,
and SKAT) can be constructed (23). Second, we incorporate covariates (e.g.,
demographic variables and principal components for ancestry) into the re-
gression model and show that the score statistic continues to be unbiased as
long as covariates are independent of genotypes. (This implies that the score
statistic is approximately unbiased when there is no strong population
stratification.) We also provide the corresponding robust variance estimator
in Eq. S13 in SI Appendix. Third, we accommodate other types of traits such
as ordinal and count data by adopting the class of generalized linear models.
Fourth, we modify the robust variance estimator for binary traits to improve
numerical stability; see Eq. S14 in SI Appendix. Finally, we show how to
perform meta-analysis of multiple studies.

Results
Simulation Studies.We conducted extensive simulation studies to
evaluate the performance of the proposed methods in realistic
settings. We chose one gene, NPHS2 (nephrosis 2, idiopathic,
steroid-resistant) (accession NM_014625), on chromosome 1
and restricted our analysis to variants with MAFs ≤5% that are
nonsense, missense, or splice site. For the 360 African Ameri-
cans in the WHI who were sequenced by the NHLBI ESP, there
are five variants in NPHS2, with MAFs of 0.002, 0.004, 0.001,
0.022, and 0.005 for snp.98398, snp.98400, snp.98401, snp.98418,
and snp.98419, respectively. The number of variants and the
total MAF (i.e., sum of MAFs over variant sites) for NPHS2
equal the median number of variants and the median total MAF
for all genes, respectively, making this gene a good represen-
tation. We used GWAsimulator (24) to generate genotype data
for the variants identified by sequencing and for the flanking
GWAS SNPs by mimicking the MAFs and LD patterns observed
in the WHI genotype data.
We considered a cohort of 5,000 subjects. We gener-

ated quantitative traits from the linear regression model
Y = βS+ γ1X + e and binary traits from the logistic regression
model logitfPrðY = 1Þg= βS+ γ1X + γ0, where S is the total
number of mutations the subject carries in the gene, X is a normal
random variable withmean ξS and variance one, e is an independent

standard normal variable, and γ0 is the intercept which controls the
disease rate. Note that X is a potential confounder that may rep-
resent population stratification. We selected a subset of cohort
members for sequencing. For quantitative traits, we considered
five sampling schemes: (Q1) a random sample of 500 subjects;
(Q2) 250 subjects with the largest values of Y and 250 with the
smallest values; (Q3) 500 subjects with the largest values of Y and
250 with the smallest values; (Q4) 250 subjects with the largest
values of Y plus a random sample of 250 from the remaining
cohort; and (Q5) 250 subjects with the largest values of Y plus
a random sample of 1,000 from the remaining cohort. For binary
traits, we considered five disease rates: 50%, 30%, 20%, 10%,
and 5%, to be referred to as B1, B2, B3, B4, and B5, respectively,
and we selected 250 cases and 250 controls regardless of the
disease rate. (Note that B1 is equivalent to the situation in which
a random subset of subjects from the parent case−control GWAS
with the same case−control proportion is sequenced.) For sub-
jects that were not selected, we masked the genotypes for the
variants identified by sequencing and used minimac (10) (a low-
memory, computationally efficient variant of the MaCH algo-
rithm for haplotype-to-haplotype imputation) to impute them.
Due to the computational burden of phasing all replicates, we
avoided phasing the reference panel and the target sample but
retained the haplotype information generated from the simula-
tion. The average Rsq is 0.22 for snp.98418, which is relatively
common; it is less than 0.1 for the other variants.
We constructed the burden, VT, and SKAT tests based on

Vrob and Vstd. For the burden test, we adopted the MAF
threshold of 5%, which corresponds to T5. For SKAT, we used
the default weighted linear kernel function. We refer to these
methods as T5-rob, T5-std, VT-rob, VT-std, SKAT-rob, and
SKAT-std. As a benchmark, we included the tests based on se-
quenced subjects only, which are referred to as T5-seq, VT-seq,
and SKAT-seq. We set the nominal significance level at 0.001.
We first considered the situation of no confounding (i.e., ξ= 0)

and set γ1 = 0:2. The simulation results for the T5 tests under the
null hypothesis are summarized in Table 1. As expected, the score
statistic is virtually unbiased in every scenario, and Vrob accurately
reflects the true variability of U. Consequently, T5-rob always has
correct control of the type I error. Under random sampling (i.e.,
Q1 and B1), Vstd is accurate and yields proper type I error. Under
other sampling schemes, Vstd underestimates the true variability
ofU, and the type I error rate can be 50 times the nominal level. The
results for VT and SKAT exhibit the same patterns as those of T5.
Fig. 1 and SI Appendix, Fig. S1 compare the power of various

T5 tests for quantitative and binary traits, respectively. The results
for sampling scheme Q3 are not included in Fig. 1 because they are
similar to those of Q5. The results for B3 are intermediate between
those of B2 and B4 and thus omitted from SI Appendix, Fig. S1. It is
clear that T5-rob is uniformly more powerful than T5-seq, dem-
onstrating the benefit of integrating sequencing and GWAS data.
Under sampling scheme Q1, T5-std is slightly more powerful than
T5-rob. Under B1, the two tests have the same power. Under other
schemes, T5-std has inflated type I error (Table 1), so the power
comparisons would not be meaningful. To make fair comparisons,
we calculated the power of T5-std by resetting the critical values to
attain correct type I error. The power of T5-std so calculated is
similar to or much lower than the power of T5-rob.
We examined the robustness of the proposed methods to

confounding (i.e., ξ≠ 0). We set ξ= 0:1 and 0.2, which corre-
spond to Pearson correlation coefficients of ∼0.03 and ∼0.057,
respectively. (The correlation coefficient of 0.03 is the third
quartile of the correlation coefficients between the T5 burden
scores and the percentage of African ancestry in the WHI.) In
this case, the mean of the score statistic may not be zero. As
shown in SI Appendix, Fig. S2, however, the type I error of
T5-rob is still reasonable, especially for binary traits.

Table 1. Simulation results for the T5 tests under the null
hypothesis

Vrob Vstd

Sampling scheme Bias SE SEE Size SEE Size

Q1: random sample
of 500 subjects

0.000 0.120 0.118 0.87 0.118 1.02

Q2: 250 largest and
250 smallest values

−0.001 0.181 0.180 0.68 0.118 36.22

Q3: 500 largest and
250 smallest values

−0.006 0.192 0.191 0.96 0.131 27.95

Q4: 250 largest and
random sample of 250

−0.006 0.134 0.130 0.89 0.118 3.61

Q5: 250 largest and
random sample of 1,000

−0.005 0.171 0.169 0.97 0.152 3.39

B1: 50% disease rate 0.000 0.060 0.059 0.78 0.059 0.93
B2: 30% disease rate −0.001 0.057 0.056 0.94 0.054 1.63
B3: 20% disease rate −0.002 0.053 0.052 0.91 0.047 3.16
B4: 10% disease rate −0.003 0.047 0.046 1.00 0.036 13.47
B5: 5% disease rate −0.003 0.043 0.041 1.09 0.026 50.95

Q1, Q2, Q3, Q4, and Q5 are five different sampling schemes for
quantitative traits; B1, B2, B3, B4, and B5 are five different sampling
schemes for binary traits; Vrob and Vstd are the robust and standard variance
estimators, respectively. Bias and SE are, respectively, the bias and SE of the
score statistic of T5. SEE is the mean of the SE estimator, and size is the type I
error rate divided by the nominal significance level of 0.001. Each entry is
based on 100,000 replicates.
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As mentioned previously, a common practice is to use a post-
imputation QC procedure to filter out inaccurately imputed
variants before association analysis. For example, Auer et al. (6)
excluded variants if their Rsq values were less than the thresh-
olds chosen such that within each MAF category, variants pass-
ing the threshold had an average Rsq of 0.8 or higher. In
particular, they chose Rsq thresholds of 0.3, 0.6, 0.8, and 0.9 for
variants with MAFs 3–5%, 1–3%, 0.5–1%, and 0.1–0.5%, re-
spectively, and excluded all variants with MAFs <0:1%. If we
had adopted such a QC procedure in our simulation studies, we
would have excluded the gene NPHS2 entirely since the largest
Rsq of the variants was merely 0.22. By contrast, our integrative
analysis not only allowed association tests for this poorly imputed
gene but also gained substantial power over the analysis of se-
quenced subjects only.
To further demonstrate the benefits of using inaccurately imputed

variants, we considered a second gene, OR10J3 (olfactory receptor,
family 10, subfamily J, member 3) (accession NM_001004467), on
chromosome 1 that has seven variants, snp.88226, snp.88228,
snp.88232, snp.88236, snp.88240, snp.88241, and snp.88244,
with MAFs of 0.016, 0.01, 0.008, 0.002, 0.001, 0.008, and 0.002,
respectively. The Rsq is 0.67 for snp.88226 and almost zero for
the other variants. With the use of a QC procedure (6), only
snp.88226 would be retained. As shown in Fig. 2 and SI Appendix,
Fig. S3, the T5-rob test based on pre-QC variants is substantially
more powerful than the T5-std test based on post-QC variants.
The aforementioned simulation studies were based on two

specific genes. We also considered all genes on chromosome 1
and generated a binary trait from the logistic regression model
logitfPrðY = 1Þg= βS+ γ1X + γ0, where S is the total number of
mutations the subject carries in five genes, and β= 0 and 1.2
under the null and alternative hypotheses, respectively, γ1 = 0:2,
and γ0 was chosen to yield 10% disease rate. We simulated a
cohort of 5,000 subjects, selected 250 cases and 250 controls for

sequencing, and imputed the genotypes of the variants identified
by sequencing for subjects that were not selected. As shown in SI
Appendix, Fig. S4, the test based on Vrob correctly controls the
type I error and identifies three out of five causal genes after
Bonferroni correction. The test based on Vstd and pre-QC var-
iants has inflated type I error, while the one based on Vstd and
post-QC variants identifies only one causal gene.

WHI Data. The WHI was established by the National Institutes of
Health in 1991 to address major health issues causing morbidity
and mortality among postmenopausal women (5). We focused
on the BMI values for the African American participants of the
WHI cohort. Among the 8,142 African American participants
who were genotyped by the Affymetrix 6.0 arrays, 360 with BMI
values > 40 or < 25 were selected for whole-exome sequencing in
the NHLBI ESP (2). The distribution of the BMI values is dis-
played in SI Appendix, Fig. S5.
We used the 360 sequenced subjects as an internal reference

panel to impute sequencing data from the GWAS data for the
nonsequenced subjects. Specifically, we used MaCH (7) to con-
struct a reference panel of 720 phased haplotypes consisting of
both the variants discovered by exome sequencing and the SNPs
on the GWAS arrays. We also prephased haplotypes at the
GWAS SNPs for the remaining cohort members. We then used
minimac (10) to impute genotypes at the variants discovered by
exome sequencing for the nonsequenced subjects. We restricted
our attention to nonsense, missense, and splice site variants with
MAFs ≤5%. We ended up with a total of 19,135 genes con-
taining at least one polymorphic site and a total of 143,273
variants in those genes. SI Appendix, Fig. S6 shows the Rsq
values for the variants whose MAFs are lower than the 5% and

Fig. 1. Power of the T5 tests at the nominal significance level of 0.001 for
the integrative analysis of sequencing and GWAS data based on the robust
(T5-rob) and standard variance estimators (T5-std) and for the analysis of
sequenced data only (T5-seq). The trait of interest is quantitative. The β
values of 0.2, 0.3, and 0.4 correspond to 0.26%, 0.58%, and 1.0% of the trait
variance explained by the causal variants. In Q2, Q4, and Q5, the critical
values for T5-std were reset to achieve correct type I error. Each power es-
timate is based on 1,000 replicates.

Fig. 2. Power at the nominal significance level of 0.001 for the T5 test based
on the robust variance estimator and pre-QC variants (T5-rob, pre-QC), the
T5 test based on the standard variance estimator and pre-QC variants
(T5-std, pre-QC), and the T5 test based on the standard variance estimator
and post-QC variants (T5-std, post-QC) in the integrative analysis of se-
quencing and GWAS data on the gene OR10J3. The power of T5 for the
analysis of pre-QC variants based on sequenced subjects only (T5-seq, pre-
QC) is also included. The trait of interest is quantitative. In Q2, Q4, and Q5,
the critical values for T5-std (pre-QC) were reset to achieve correct type I
error. Each power estimate is based on 1,000 replicates.
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1% thresholds. The variants with MAFs ≤ 1% account for
a majority (83.3%) of all variants with MAFs ≤5% and are as-
sociated with lower Rsq values than those with MAFs >1%.

We used the log-transformed BMI value as the quantitative
trait and included age and the proportion of African ancestry
estimated by FRAPPE (frequentist approach for estimating in-
dividual ancestry proportion) (25) as covariates. The Pearson
correlation coefficients between the ancestry variable and the
burden scores of the variants with MAFs ≤5% have the first
quartile, median, and third quartile of −0:013, 0.013, and 0.030,
respectively. We refer to the burden tests with MAF thresholds
of 1% and 5% as T1 and T5, respectively. We constructed the
T1, T5, VT, and SKAT tests based on Vrob and Vstd. We also
included the tests using only sequenced subjects.
The quantile−quantile plots are displayed in Fig. 3 and SI

Appendix, Fig. S7. For all tests based on Vrob, the observed P
values agree very well with the global null hypothesis of no as-
sociation, except at the extreme right tails. By contrast, the ob-
served P values for all tests associated with Vstd show early
departures from the global null distribution, reflecting inflation
of the type I error. All tests using only sequenced subjects yield
less extreme P values than their counterparts in the integrative
analysis based on Vrob.
The top 10 genes identified by T5-rob are listed in Table 2.

The top gene ODF2L (accession NM_020729) is ranked the
second by VT-rob and the fourth by SKAT-rob, and its impu-
tation accuracy is quite high, with an average Rsq of 0.685. The
common SNPs in the seventh gene BDNF were previously found
to be associated with BMI in several GWAS (26, 27). This gene is
not in the top 10 list by any test with Vstd.
For any type of test, the version based on Vstd prioritized the

top genes differently from the one based on Vrob, as shown by the
numerical marks in Fig. 3 and SI Appendix, Fig. S7. A gene
identified by a test based on Vstd but not by its counterpart based
on Vrob typically has very low average Rsq (i.e., <0:1). For ex-
ample, the top gene TPSG1 (accession NM_012467) identified by
T5-std is not among the top 10 genes by T5-rob and has an av-
erage Rsq of only 0.028. Because the tests based on Vstd tend to
generate significant results when there are substantial differences
in the genotype quality between the sequenced and nonsequenced
subjects, the top genes identified by these tests are not reliable.
Applying the postimputation QC procedure of Auer et al. (6)

to the WHI data, we found that only 17.1% of variants and
47.9% of genes passed the QC criteria. To be specific, 92.8% of
variants with MAFs 3–5% passed QC, 69.6% with MAFs 1–3%,
29.5% with MAFs 0.5–1%, and only 3.5% with MAFs 0.1–0.5%.
We repeated our association analysis for the post-QC variants
and genes. As shown in SI Appendix, Figs. S8 and S9, the tests
with Vstd no longer exhibit inflation of the type I error. However,
their top P values are less extreme than those of Vrob without

Fig. 3. Quantile−quantile plots of −log10(P values) for the T1 and T5 tests in the
analysisof theBMIdata intheWHI. (Left)Thetopfivegenes identifiedbyT1-robare
marked as 1–5. (Right) The top five genes identified by T5-rob are marked as 1–5.

Table 2. Top 10 genes for BMI identified by T5-rob in the analysis of the WHI data

P value

Gene Accession Chr m Rsq T5-rob T5-std T5-seq

ODF2L NM_020729 1 11 0.685 3:1× 10−5 1:7×10−5 4:9× 10−2

ITSN1 NM_003024 21 7 0.609 5:0× 10−5 3:3×10−5 3:3× 10−2

KDM6B NM_001080424 17 30 0.266 5:8× 10−5 1:0×10−5 6:7× 10−2

SOCS1 NM_003745 16 2 0.348 7:8× 10−5 1:6×10−5 1:5× 10−2

ODF2L NM_001007022 1 9 0.689 1:1× 10−4 7:1×10−5 6:4× 10−2

ACADVL NM_000018 17 15 0.189 1:6× 10−4 6:8×10−5 1:1× 10−1

BDNF NM_170734 11 2 0.628 2:1× 10−4 2:5×10−4 1:0× 10−1

TRDMT1 NM_004412 10 3 0.718 2:3× 10−4 1:8×10−4 8:1× 10−2

FAM60A NM_001135811 12 1 0.768 2:3× 10−4 4:0×10−4 6:5× 10−1

PDGFRA NM_006206 4 12 0.563 2:4× 10−4 2:2×10−4 1:4× 10−3

Chr is the chromosome number, m is the number of variants in the gene, and Rsq is the Rsq value averaged
over the variant sites in the gene. T5-rob and T5-std are the T5 tests in the integrative analysis of sequencing
and GWAS data with the robust and standard variance estimators, respectively, and T5-seq is the T5 test using
only sequenced subjects.
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QC. We list the top 10 genes identified by T5-std in SI Appendix,
Table S1, which can be compared with Table 2. We see that the
association signal for BDNF is weaker after QC. None of the
other genes in SI Appendix, Table S1 has previously been found
to be associated with BMI.

Discussion
This article provides a valid and efficient approach to integrative
analysis of sequencing and GWAS data. The approach is very
general in several aspects: (i) It can handle any type of trait and
any sampling scheme; (ii) it encompasses all commonly used gene-
level tests for rare variants; (iii) it includes single-variant tests as
a special case; and (iv) it allows for covariates. The computation is
the same as the usual gene-level tests except for the replacement
of the standard variance estimator with the robust one. The
proposed methods have been implemented in the software pro-
gram SEQGWAS (integrative analysis of SEQuencing and
GWAS data), which is freely available at web1.sph.emory.edu/
users/yhu30/software.html. It took ∼2 h on an IBM HS22 ma-
chine to analyze the WHI data.
For binary traits, the GWAS subjects may come from a cohort

or case-control study. The standard variance estimator is valid if
the case−control ratios are the same between the sequencing
study and the parent study. This condition typically holds when the
parent study is a case−control study but likely fails when the
parent study is a cohort study.
It is also desirable to integrate other types of genetic data. For

example, a subset of the WHI African Americans was genotyped
on Metabochip (28) and used as the reference panel to impute
Metabochip variants for the remaining African Americans with
GWAS data (29). In addition, the GWAS genotyping arrays can
be replaced by the Metabochip (28) or the Exomechip (30),
which can then be imputed against sequencing data (28). Our
approach can be readily used to analyze such mixtures of ob-
served and imputed data.

Our approach is built upon existing imputation algorithms and
focused on properly analyzing a mixture of observed and imputed
genotype data. Thus, we can take full advantage of newly developed
imputation programs to improve imputation accuracy and compu-
tational efficiency. Although imputed data may pertain to the
genotype dosage, the most likely genotype, or the genotype
probabilities, our approach is tailored to the dosage data. In
practice, the dosage is the most commonly used because, unlike
the most likely genotype, it partially accounts for the uncertainty
in the imputed value and because the dosage is computationally
more tractable than the genotype probabilities while still retaining
most information.
The postimputation QC process can alleviate the inflation of the

type I error caused by the use of Vstd. However, this strategy tends
to remove many rare variants. The removal of variants results in loss
of important information because the observed genotype data for
sequenced subjects cannot be used if a variant is excluded due to
low imputation quality and because the imputed genotypes, even
for a variant with low Rsq, may still contain valuable information
about the association. Our approach does not exclude any variants
with low Rsq. The imputed values for those variants have small
variances and do not add much noise. When Rsq is close to zero,
the integrative analysis reduces to the analysis of sequenced subjects
only and thus can at least use the information in sequenced subjects.
Our approach can certainly be applied to data after QC, but the QC
criteria can be much less stringent.
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