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In cancer research, as in all of medicine, it is important to classify
patients into etiologically and therapeutically relevant subtypes to
improve diagnosis and treatment. One way to do this is to use
clustering methods to find subgroups of homogeneous individuals
based on genetic profiles together with heuristic clinical analysis.
A notable drawback of existing clustering methods is that they
ignore the possibility that the variance of gene expression profile
measurements can be heterogeneous across subgroups, and meth-
ods that do not consider heterogeneity of variance can lead to
inaccurate subgroup prediction. Research has shown that hyper-
variability is a common feature among cancer subtypes. In this
paper, we present a statistical approach that can capture both mean
and variance structure in genetic data. We demonstrate the
strength of our method in both synthetic data and in two cancer
data sets. In particular, our method confirms the hypervariability of
methylation level in cancer patients, and it detects clearer subgroup
patterns in lung cancer data.

lustering is an important type of unsupervised learning al-

gorithm for data exploration. Successful examples include K-
mean clustering and hierarchical clustering, both of which are
widely used in biological research to find cancer subtypes and to
stratify patients. These and other traditional clustering algo-
rithms depend on the distances calculated using all of the fea-
tures. For example, individuals can be clustered into homogeneous
groups by minimizing the summation of within-clusters sum of
squares (the Euclidean distances) of their gene expression pro-
files. Unfortunately, this strategy is ineffective when only a subset
of features is informative. This phenomenon can be demon-
strated by K-means clustering (1) results for a toy example using
only the variables which determine the underlying true cluster
compared with using all variables (which includes many un-
informative variables). As can be seen in Fig. 1, clustering per-
formance is poor when all variables are used in the clustering
algorithm (2).

To solve this problem, sparse clustering methods have been
proposed to allow clustering decisions to depend on only a subset
of feature variables (the property of sparsity). Prominent sparse
clustering methods include sparse principal component anal-
ysis (PCA) (3-5) and Sparse K-means (2), among others (6).
However, sparse clustering still fails if the true sparsity is a local
rather than a global phenomenon (6). More specifically, different
subsets of features can be informative for some samples but not
all samples, or, in other words, sparsity exists in both features
and samples jointly. Biclustering methods are a potential solu-
tion to this problem, and further generalize the sparsity principle
by considering samples and features as exchangeable concepts to
handle local sparsity (6, 7). For example, gene expression data
can be represented as a matrix with genes as columns, and
subjects as rows (with various and possibly unknown diseases or
tissue types). Traditional methods will either cluster the rows—
as done, for example, in microarray research, where researchers
want to find subpopulation structure among subjects to identify
possible common disease status—or cluster the columns, as
done, for example, in gene clustering research, where genes are
of interest and the goal is to predict the biological function of
novel genes from the function of other well-studied genes within the
same clusters. In contrast, biclustering involves clustering rows
and columns simultaneously to account for the interaction of row
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and column sparsity. This local sparsity perspective provides
an intuition for using sparse singular value decomposition
(SSVD) algorithms for biclustering (8-11). SSVD assumes
that the signal in the data matrix can be represented
by a low-rank matrix X~UDVT= Zlled,-u,-vf with XeR"*P.
U=[u,uy,...,u]eR™and V=|v, v,...,v,] € R"*P contain
left and right sparse singular vectors and are orthonormal with
only a few nonzero elements (corresponding to local sparsity).
D e R is diagonal (with diagonal elements dy,dy, . . . ,d,) with
r < rank(X). The outer product of each pair of sparse singular
vectors (wv!,i=1,2,...,r) will designate two biclusters corre-
sponding to positive and negative elements, respectively.

A common assumption of existing SSVD biclustering methods
is that the observed data can be decomposed into a signal matrix
plus a fully exchangeable random noise matrix:

X=E+®, [1]

where X is the observed data, E=(;) is an n Xp matrix repre-
senting the signal, and @ = (¢;) is an n X p random noise/residual
matrix with independent identically distributed (i.i.d.) entries
(10, 12, 13). A method based on model 1 is proposed in ref. 9
which minimizes the sum of the Frobenius norm of X—Z and
a penalty function with variable selection, such as the ¢, — norm
(14) or smoothly clipped absolute deviation (15). A similar loss
plus penalty minimization approach can be seen in ref. 11. A
different method for SSVD employs iterative thresholding QR
decomposition to estimate E in ref. 10. We refer to ref. 9 as
LSHM (for Lee, Shen, Huang, and Marron) and ref. 10 as fast
iterative thresholding for SSVD (FIT-SSVD), and compare
these approaches to our method. An alternative approach, which
is more direct, is based on a mixture model (16, 17). For exam-
ple, ref. 17 defines the bicluster as a submatrix with a large pos-
itive or negative mean. Although these approaches have proven
successful in some settings, they are limited by their focus on only
the mean signal approximation. In addition, the explicit homo-
geneous residual variance assumption is too restrictive in
many applications.

To our knowledge, the only extension of the traditional model
given in [1] is the generalized PCA approach (18), which assumes
that if the random noise matrix were stacked into a vector,
vec(®), it would have mean 0 and variance R'®Q!, where
R! is the common covariance structure of the random variables
within the same column, and Q' is the common covariance
structure of the random variables within the same row. This
approach is especially suited to denoising NMR data for which
there is a natural covariance structure of the form given above
(18). Drawbacks of the generalized PCA method, however, are
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Fig. 1. Data set contains two clusters determined by two variables X; and X; such that points around (1,1) and (-1, — 1) naturally form clusters. There are
200 observations (100 for each cluster) and 1,002 variables (X;, X and 1,000 random noise variables). We plot the data in the 2D space of X; and X,. Graphs
with true cluster labels and predicted cluster labels obtained by clustering using only X; and X; and clustering by using all variables are laid from left to right.
The predicted labels are the same as the true labels only when X; and X; are used for clustering; however, the performance is much worse when all variables

are used.

that it remains focused on mean signal approximation and the
structure of R™! and Q! must be explicitly known in advance.
In this paper, we present a biclustering framework based on
SSVD called heterogeneous sparse singular value decomposition
(HSSVD). This method can detect both mean biclusters and
variance biclusters in the presence of unknown heterogeneous
residual variance. We also apply our method, as well as com-
peting approaches, to two cancer data sets, one with methylation
data and the other with gene expression data. Our method
delivers more distinct genetic profile pattern detection and is able
to confirm the biological findings originally made for each of the
data sets. We also apply our method as well as other competing
approaches on synthetic data to compare their performance
quantitatively. We demonstrate that our proposed method is ro-
bust, location- and scale invariant, and computationally feasible.

Application to Cancer Data

Hypervariability of Methylation in Cancer. We demonstrate the
capability of variance bicluster detection with methylation data
in cancer versus normal patients (19). The experiments were
conducted by a custom nucleotide-specific [llumina bead array to
increase the precision of DNA methylation measurements on
previously identified cancer-specific differentially methylated
regions (cDMRs) in colon cancer (20). The data set (GEO ac-
cession: GSE29505) consists of 290 samples including cancer
samples (colon, breast, lung, thyroid, and Wilms’ tumor cancers)
and matched normal samples. Each sample had 384 methylation
probes which covered 151 cDMRs. The authors of the primary
report concluded that cancer samples had hypervariability in
these cDMRs across all cancer types (19).

First, we wish to verify that HSSVD can provide a good mean
signal approximation of methylation. In this data set, all of the
probes measuring the methylation are placed in the cDMRs
identified in colon cancer patients. As a result, we would expect
that mean methylation levels differ between colon cancer sam-
ples and the matched normal samples. Under this assumption,
we require the biclustering methods to capture this mean structure
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before investigating the information gained from variance
structure estimation. Note that the numerical range of methyl-
ation level is between 0 and 1. Hence, we applied the logit
transformation on the original data for further biclustering
analysis. We compare three methods, HSSVD, FIT-SSVD and
LSHM, all based on SVD. Only colon cancer samples and their
matched normal samples are used for this particular analysis. In
Fig. 2, we can see from the hierarchical clustering analysis that
the majority of colon cancer samples (labeled blue in the side-
bar) are grouped together and most of the cDMRs are differ-
entially expressed in colon tumor samples compared with normal
samples. The conclusion is the same for all three methods
compared, including our proposed HSSVD method.

Second, our proposed HSSVD method confirms the most
important finding in ref. 19 that cancer samples tended to have
hypervariability in methylation level regardless of tumor subtype.
We compared the mean approximation and variance approxi-
mation results of HSSVD. All samples were used in this analysis.
The variance approximation of HSSVD (Fig. 34) shows that
nearly all normal samples have low variance compared with cancer
samples, and this pattern is consistent across all cDMRs. Notably,
our method provides additional information beyond the conclu-
sion from ref. 19. Specifically, our variance approximation suggests
that some cancer samples are not characterized by hypervariability
in methylation level for certain cDMRs. More precisely, some
cDMRs for a few cancer samples (surrounded by normal samples)
are predicted to have low variance (lower left part of Fig. 34). Our
method also highlights cDMRs with the greatest contrast variance
between cancer and normal samples. The corresponding cDMRs
with high contrast variance (especially some of the first and middle
columns of Fig. 34) warrant further study for biological and clin-
ical relevance. We also want to emphasize that the analysis in ref.
19 relies on the disease status information, whereas for HSSVD
the disease status is only used for result interpretation. Note that
most cancer patients cluster together by hierarchical clustering of
the variance approximation from HSSVD. In contrast, cluster-
ing the mean approximation from HSSVD in Fig. 3B fails to
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Fig. 2. Mean approximation of colon cancer and the normal matched samples. From left to right the methods are HSSVD, FIT-SSVD, and LSHM. Colon cancer
samples are labeled in blue, and normal matched samples are labeled in pink in the sidebar. Genes and samples are ordered by hierarchical clustering. Colon
cancer patients are clustered together, which indicates that the mean approximations for these three methods achieve the expected signal structure.

reveal such a pattern. This indicates that most cancer samples
may have hypervariability of methylation as a common feature
whereas their mean-level methylation varies from sample to
sample. Hence, identifying variance biclusters can provide po-
tential new insight for cancer epigenesis.

Gene Expression in Lung Cancer. Some biological settings, in con-
trast with the methylation example above, do not express vari-
ance heterogeneity. Usually, the presence or absence of such
heterogeneity is not known in advance for a given research data
set. Thus, it is important to verify that the proposed approach
remains effective in either case for discovering mean-only biclus-
ters. We now demonstrate that even in settings without variance
heterogeneity, HSSVD can better identify discriminative biclusters
for different cancer subtypes than other methods, including
FIT-SSVD (10), LSHM (9), and traditional SVD. We use a
lung cancer data set which has been studied in the statistics litera-
ture (9, 10, 17). The samples are a subset of patients (21) having
lung cancer with gene expression measured by the Affymetrix
95av2 GeneChip (22). The data set contains the expression levels
of 12,625 genes for 56 patients, each having one of four dis-
ease subtypes: normal lung (20 samples), pulmonary carcinoid
tumors (13 samples), colon metastases (17 samples), and small-
cell carcinoma (6 samples).

The performance of different methods is evaluated based on
the pattern difference of subtypes based on the mean approx-
imations. For all methods, we set the rank of the mean signal
matrix equal to 3 to maintain consistency with the ranks used in
FIT-SSVD (10) and LSHM (9). Further, we use the measure-
ment “support” to evaluate the sparsity of the estimated gene
signal (10). Support is the cardinality of the nonzero elements in
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HSSVD: Variance Approximation

the right and left singular vectors across the three layers (i.e.,
support is an integer that cannot exceed the data dimension).
Smaller support values suggest a sparser model. Table 1 shows
that HSSVD, FIT-SSVD and LSHM yield similar levels of
sparsity in the gene signal, whereas SVD is not sparse, as expec-
ted. Fig. 4 shows checkerboard plots of rank-three approximations
by the four methods. Patients are placed on the vertical axis, and
the patient order is the same for all images. Patients within the
same subtype are stacked together and different subtypes are
separated by white lines. Within each image, genes are laid on the
horizontal axis and are ordered by the value of v, (10). We can
see a clear block structure in both the FIT-SSVD and HSSVD
methods, indicating biclustering. The block structure suggests we
can discriminate the four cancer subtypes using either the FIT-
SSVD or HSSVD methods, whereas LSHM and SVD are unable
to achieve such separation among subtypes.

Simulation Study

To evaluate the performance of HSSVD quantitatively, we
conducted a simulation study. We compared HSSVD with the
most relevant existing biclustering methods, FIT-SSVD and
LSHM (9, 10). HSSVD includes a rank estimation component,
whereas the other methods do not automatically include this. For
this reason, we will use a fixed oracle rank (at the true value) for
the non-HSSVD methods. For comparison, we also evaluate
HSSVD with fixed oracle rank (HSSVD-O).

The performance of these methods on simulated data was
evaluated on four criteria. The first criterion is “sparsity of es-
timation,” defined as the ratio between the size of the correctly
identified background cluster and the size of the true background
cluster. The second criterion is “biclustering detection rate,”
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Fig. 3. HSSVD approximation result for all samples. (A) Variance approximation; (B) mean approximation. Blue represents cancer samples, and pink rep-
resents normal samples in the sidebar. Genes and samples are ordered by hierarchical clustering. Red represents large values, and green represents small
values. Only the variance approximation can discriminate between cancer and normal samples. More importantly, within the same gene, the heatmap for the
variance approximation indicates that cancer patients have larger variance than normal individuals. This result matches the conclusion in ref. 19. In addition,
the cDMRs with the greatest contrast variance across cancer and normal samples are highlighted by the variance approximation, whereas the original paper
does not provide such information.
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Fig. 4. Checkerboard plots for four methods. We plot the rank-three approximation for each method. Within each image, samples are laid in rows, and
genes are in columns. We order the samples by subtype for all images (top to bottom: carcinoid, colon, normal, and small cell), and different subtypes are
separated by white lines. Genes are sorted by the estimated second right singular vector (&), and we only included genes that are in the support (defined in
Table 1). Across all methods, the HSSVD and FIT-SSVD methods provide the clearest block structure reflecting biclusters.

defined as the ratio of the intersection of the estimated bicluster
and the true bicluster over their union (also known as the Jac-
card index). For the first two criteria, larger values indicate
better performance. The third and fourth criteria are “overall
matrix approximation errors” for mean and variance biclusters,
consisting of the scaled recovery error for the low-rank mean
signal matrix £=2+b J, computed via

and the scaled recovery error for the low-rank variance signal
matrix log(X) =log(X) +log(p*J), computed via

2
o172 <l1/2
log(X'" )-log(X= /
( ) ( ) r
with ||-|| = being the Frobenius norm.
2

The simulated data comprise a 1000x 100 matrix with in-
dependent entries. The background entries follow a normal
distribution with mean 1 and SD 2. We denote the distribution as
N(1,22), where N(a,b?) represents a normal random variable
with mean a and SD b. There are five nonoverlapping rectan-
gular- shaped biclusters: bicluster 1, bicluster 2, and bicluster 5

2
5

Lyar (log (2),log (2)) =

log (2‘.1/ 2)

F

Table 1. Cardinality of union support of the first three singular
vectors for different methods applied on lung cancer data

Support HSSVD FIT-SSVD LSHM SVD
Uiz lluille 4,689 4,686 4,655 12,625
Ui Ivillo 56 56 56 56
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are mean clusters, bicluster 3 is a mean and small variance
cluster, and bicluster 4 is a large variance cluster. More precisely,
bicluster 1 (size 100 x 20) is generated from N(7,22), bicluster 2
(size 100x10) is generated from N(-5,2%), bicluster 3 (size
100 x 10) is generated from N(7,0.4%), bicluster 4 (size 100 x 20)
is generated from N(1,8?), and bicluster 5 (size 100x20) is
generated from N(6.8,22). The biclustering results are shown in
Table 2: HSSVD and HSSVD-O can detect both mean and
variance biclusters, whereas FIT-SSVD-O and LSHM-O can only
detect mean biclusters (where “O” stands for oracle input bicluster
number). For mean bicluster detection, all methods performed
well because the biclustering detection rates are all greater
than 0.7. For variance bicluster detection, HSSVD and HSSVD-
O deliver a similar biclustering detection rate. On average, the
computation time of LSHM-O is about 30 times that of HSSVD
and 60 times that of FIT-SSVD-O.

Both FIT-SSVD and LSHM are provided with the oracle rank
as input. We also evaluated an automated rank version for these
methods, but determined the performance was worse than the
corresponding oracle rank version (results not shown). Note that
the input data are standardized to mean 0 and SD 1 element-
wisely for FIT-SSVD-O and LSHM-O. Although this step is not
mentioned in the original papers (9, 10), this simple procedure is
critical for accurate mean bicluster detection. From Table 2, we
can see that HSSVD-O provides the best overall performance,
while HSSVD is close to the best; however, in practice, the oracle
rank is unknown. For this reason, HSSVD is the only fully auto-
mated approach which delivers robust mean and variance de-
tection in the present of unknown heterogeneous residual variance
among those considered.

Conclusion and Discussion

In this paper, we introduced HSSVD, a statistical framework and its
implementation, to detect biclusters with potentially heterogeneous
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Table 2. Comparison of four methods in the simulation study

Criteria HSSVD HSSVD-O FITSSVD-O LSHM-O

Lmean 0.013 (0.01) 0.013 (0.01) 0.081 (0.01) 0.019 (0.01)
Lvar 0.157 (0.03) 0.156 (0.03) NA NA

Sparsity 0.950 (0.04) 0.950 (0.03) 0.988 (0.02) 0.997 (0.01)
BLK1 (mean) 0.861 (0.10) 0.862 (0.10) 0.818 (0.08) 0.872 (0.08)
BLK2 (mean) 0.934 (0.18) 0.936 (0.17) 0.939 (0.18) 0.976 (0.01)
BLK3 (mean) 0.972 (0.10) 0.974 (0.10) 0.971 (0.11) 0.987 0.01)
BLK5 (mean) 0.977 0.11) 0.948 (0.11) 0.977 (0.11) 0.996 (0.01)
BLK3 (var) 0.977 (0.02) 0.977 (0.02) NA NA

BLK4 (var) 0.628 (0.25) 0.633 (0.24) NA NA

Lynean and L,,, measure the difference between the approximated signal and the true signal, and so smaller is better. For the other measures of accuracy of
bicluster detection, the larger the better. The rows BLK1 to BLK5 represent the biclustering detection rate for each bicluster.”-O" indicates that the oracle

rank is provided.

variances. Compared with existing methods, HSSVD is both scale
invariant and rotation invariant (as the quantity for scaling is the
same for all matrix entries and does not vary by row or column).
HSSVD also has the advantage of working on the log scale
(Materials and Methods) in estimating the variance components: the
log scale makes detection of low-variance (less than 1) biclusters
possible, and any traditional SSVD method can be naturally used in
our variance detection steps. This method confirms the existence of
methylation hypervariability in the methylation data example. Al-
though we use the FIT-SSVD method in our implementation, other
low-rank matrix approximation methods are applicable. Moreover,
the software implementing our proposed approach was compu-
tationally comparable to the other approaches we evaluated.

A potential shortcoming of SVD-based methods is their in-
ability to detect overlapping biclusters. We investigate this
problem in the first paragraph of SI Materials and Methods. We
show that our method can serve as a denoising process for
overlapping bicluster detection. In particular, we can first apply
the HSSVD method on the raw data to obtain the mean ap-
proximation. Then we can apply a suitable approach, such as the
widely used plaid model (16, 23), on the mean approximation to
detect overlapping biclusters. This combined procedure improves
on the performance of the plaid model when the overlapping
biclusters have heterogeneous variance. Hence, our method
remains useful in the present of overlapping biclusters.

Another potential issue for HSSVD is the question of whether
a low-rank mean approximation plus a low-rank variance ap-
proximation could be alternatively represented by a higher-rank
mean approximation. In other words, is it possible to detect
variance biclusters through mean biclusters only, even though
the mean clusters that form the variance clusters would be
pseudomean clusters? A detailed discussion of this issue can be
found in the second paragraph of SI Materials and Methods. Our
conclusion is that the variance detection step in HSSVD is
necessary for the following two reasons: First, pseudomean
biclusters are completely unable to capture small variance
biclusters. Second, although pseudomean biclusters are able to
capture some structure from large variance biclusters, such
structure is much less accurate than that provided by HSSVD,
and can be confounded with one or more true mean biclusters.

Although HSSVD works well in practice, there are a number
of open questions that are important to address in future studies.
For example, it would be worthwhile to modify the method to
allow nonnegative matrix approximations to better handle count
data such as next-generation sequencing data (RNA-seq). Ad-
ditionally, the ability to incorporate data from multiple “omic”
platforms is becoming increasingly important in current bio-
medical research, and it would be useful to extend this work
to simultaneous analysis of methylation, gene expression, and
microRNA data.

Chen et al.

Materials and Methods

Model Assumptions for HSSVD. We define biclusters as subsets of the data
matrix which have the same mean and variance. We assume that there exists
a dominate null cluster in which all elements have a common mean and
variance and that all other biclusters are restricted to rectangular structures
which have either a distinct mean or variance compared with the null cluster.
We can also express our model in the framework of a random effect model
wherein

X=E+p’Ex®+bJ, [2]

where X and E are the same structures given in the traditional model 1, and
where we require ®, an nx p matrix, to have i.i.d. random components with
mean 0 and variance 1. Moreover, the “x” in [2] is defined element-wisely:
see the next section for details. Added components in the model include
X=(oj), an nxp matrix representing the heterogeneous variance signal;
Jnxp, @n nxp matrix with all values equal to 1; p, a finite positive number
serving as a common scale factor; and b, a finite number serving as a com-
mon location factor. We also make the sparsity assumption that the majority
of (&;) values are 0 and the majority of (s;) values are 1. Further, just as we
assumed for the mean structure Z, we also assume that the variance struc-
ture @ is low rank.

From the definitions, the traditional model 1 is a special case of our model
2, with b=0, £=J, and p=1. The presence of b and p in the model allows the
corresponding method to be scale invariant, while the presence of X enables
us to incorporate heterogeneous variance signals.

HSSVD Method. We propose HSSVD based on the model 2 with a hierarchical
structure for signal recovery. First, we properly scale the matrix elements to
minimize false detection of pseudomean biclusters which can arise as arti-
facts of high-variance clusters. This motivates us to add the quadratic
rescaling step in the procedure. Then we can detect mean biclusters based
on the scaled data and later detect variance biclusters based on the loga-
rithm of the squared residual data after subtracting out the mean biclusters.
The quadratic rescaling step works well in practice, as shown in the simu-
lation studies and data analysis. The pseudocode for the algorithm is pro-
vided as follows:

1. Input step: Input the raw data matrix X,igin. Standardize Xoigin (treat
each cell as i.i.d.) to have mean 0 and variance 1. Denote the overall mean
of Xorigin as fi and the overall SD as 6, and let the standardized matrix be
defined as X = (Xorigin — 1) /6.

2. Quadratic rescaling: Apply SSVD on X? —J to obtain the approximation
matrix U.

3. Mean search: Let Y=X//U+J-cJ, where c is a small nonpositive con-
stant to ensure that +/U+J—cJ exists. Then, apply SSVD on Y to obtain
the approximation matrix Y.

4. Variance search: Let Zy/jgin = Iog(X—?x VU+] - cJ)Z, center Zyigin to have
mean 0, and denote the centered version as Z. Perform SSVD on Z to
obtain the approximation matrix Z.

5. Background estimation: Let P={p;} denote the nx p matrix of indicators
of whether the corresponding cells belong to the background cluster,
with p; =1 if both f(,-,-:O and Z,-,-:O, and p; =0 otherwise. Based on the
assumption that most elements in the matrix should be in the null cluster,
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we can estimate b with ”x“;’?+1xp>1 and p with

a vector with all elements equal to 1.

71/(x°”ﬁ’,"l,ff;bp)z1, where 1 is
6. Scale back: Define Py = {p;;}, with p; =1 if f(,-,-:O, pi =0 otherwise. Simi-
larly, define P, ={p;}, with p;j=1 if Z;j=0, p;j=0 otherwise. The mean
(E+bJ) approximation is computed with 6(Y x VU+J—cJ) +i(J —P1) +
bP4, and the variance (p*®) approximation is computed with [5*P; + 52
(J-P)| xexp(Z).

The operators x, /, exp(),log(), exp(), min(), and /() used above are
defined element-wisely when they are applied to the matrix, e.g.,
Upnxp X Vixp = (ujvj). In all steps involving SSVD, we implement the FIT-SSVD
method (10). We use FIT-SSVD because it is computationally fast and has
similar or superior performance compared with other competing methods
under the homogeneous variance assumption (10). The matrix vVU+J—cJ
provides a working variance level estimate of the data and makes our
method more robust. Note that the reason for working on the log scale for
the variance detection is twofold. First, working on the log scale makes the
detection of the deflated variance (less than 1) bicluster possible. Intuitively,
as variance measures deviance from the mean, we can work on the squared
residuals to find the variance structure. For the deflated variance bicluster
setting, if the mean structure is estimated correctly, the residuals within the
bicluster are close to zero. The SSVD-based methods shrink the small non-
zero elements to zero to achieve sparsity. As a result, if we work on the
squared residuals directly, the SSVD based methods will fail to detect the low
variance structure. Second, to use the well-established SSVD method in the
variance detection steps we need to work on the log scale. To see this, we
can rewrite the equation in [2] as log(X —E — bJ)® =log(£?) + log(p2®?),
which is similar to the model in [1]. Consequently, we can apply any methods
which are applicable to [1] in our variance detection step if we work on the
log scale and @ is low rank. We also want to point out that results obtained
directly from FIT-SSVD are relative to the location and scale of the
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background cluster. In addition, we have scaled the data in the “input step.”
To provide a correct mean and variance approximation of the original data,
we need the “scale back” step. Assuming that the detection of null clusters is
close to the truth, then the pooled mean and variance estimates based on
elements exclusively from the identified null cluster ([J and p) are more ac-
curate than estimates based on all elements of the matrix (& and 5). As
a result, we need to use the comprehensive formula proposed in the scale
back step.

The FIT-SSVD method, as well as any other SVD-based method, requires an
approximation of the rank of the matrix (which is essentially the number of
true biclusters) as input. We adapt the bicross validation method (BCV) by ref.
24 for rank estimation, and we notice that in some cases the rank is
underestimated. For this reason, we introduce additional steps following
a BCV rank estimation of rank k: First, we approximate the data with
a sparse matrix X, (rank = k + 1), where x, , =le'(=+11 a,g,,;,]. Define the
propor_‘ciqr} of varjance explained by the top i rank sparse matrix as
R; =Z}:1dj /Z/’-jﬂ d; (25). R; is between 0 and 1 and is increasing with i, and
we believe that the redundant components of the sparse matrix should not
contribute much to the total variance. The final rank estimation for HSSVD is
the smallest integer r which satisfies R, >0.95, and 1 <r <k + 1. Note that FIT-
SSVD (10) used the modified BCV method for rank estimation; however, the
authors require that most rows (the whole row) and most columns (the
whole column) are sparse, which appears to be too restrictive. In practice,
this assumption is violated if the data are block diagonal or have certain
other commonly assumed data structures. For this reason, we use the orig-
inal BCV method as our starting point.
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