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Latent infection of EBV is linked to the development of multiple
cancers that have distinct patterns of expression of viral proteins
and microRNAs (miRNAs). In this study, we show that in vitro
infection of a gastric epithelial cell line with EBV alters growth
properties and induces growth in soft agar. The infected cells have
high levels of expression of a large cluster of viral miRNAs, [the
BamHI A rightward transcript (BART) miRNAs] and limited viral
protein expression. Expression profile microarray analysis of this
cell line revealed a large number of changes in cellular expression,
with decreased expression of many genes. Inhibition of the trace-
expressed levels of the viral oncoprotein, latent membrane protein
1, did not affect growth or alter the pattern of cellular expression.
The expression changes are highly enriched for genes involved in
cell motility and transformation pathways, suggesting these
changes are important for the altered growth phenotype. Impor-
tantly, the transcripts decreased by microarray are significantly
enriched in both experimentally and bioinformatically predicted
BART miRNA targets. The absence of viral protein expression and
the enrichment for viral miRNA targets in the modulated cell genes
suggest that the BART miRNAs are major contributors to the
transformed growth properties of the EBV-infected cells. The
ability to affect cell growth through miRNA expression without
viral protein expression would be a major factor in the develop-
ment of cancer in individuals with functional immune systems.
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EBV is a gamma-herpesvirus that establishes a lifelong latent
infection in greater than 90% of the human population (1).

EBV is a contributing factor to multiple malignancies that con-
tain the viral genome, including Burkitt lymphoma (BL), Hodg-
kin disease (HD), posttransplant lymphoma, nasopharyngeal
carcinoma (NPC), and gastric carcinoma (GC) (1, 2). In vitro,
EBV infection leads to the immortalized growth of B lympho-
cytes, and these transforming properties are thought to be linked
to its role in the development of cancer (1, 2). Different patterns
of viral gene expression have been identified in infected lym-
phocytes and the various malignancies. The most complex pat-
tern, termed type III latency, is found in B lymphocytes infected
in vitro as well as in lymphomas that arise in immune-compro-
mised individuals (1). Type III latency is marked by expression of
EBV nuclear antigen 2 (EBNA2), which regulates expression of
additional EBNAs. The malignancies that arise in individuals with
competent immune systems have a much more restricted pattern
of viral protein regulation. In type I latency, which is found in BL
and some GCs, EBNA1, which is required for maintenance of the
EBV episome, is the only expressed viral protein (3, 4). In type II
latency characteristic of HD and NPC, the oncogenic latent
membrane proteins 1 and 2 (LMP1 and LMP2) can be expressed
in addition to EBNA1 (1, 2).
There are also several viral noncoding RNAs associated with

EBV latent infection. The BamHIA rightward transcripts (BARTs)
are a set of alternatively spliced transcripts that were originally
identified in NPC samples (5, 6), where they are abundantly

expressed. These transcripts are the template for the precursors for
as many as 44 microRNAs (miRNAs) (7–9). The miRNAs are ∼22-
nt RNAs processed from longer RNA polymerase II transcripts that
function much like siRNAs in inhibiting protein translation through
base pair interactions with targetmRNAs (10). TheBARTmiRNAs
can be detected by PCR in all forms of EBV latency, although by far
the highest expression is detected in type I and II latency, particu-
larly in epithelial cell infection (e.g., NPC, GC) (7, 11, 12), in which
a large percentage of the total miRNA pool is exclusively BART
miRNAs, as evidenced by high-throughput sequencing of small
RNA libraries (9, 13).
The function of the BART miRNAs in the EBV life cycle and

in relation to EBV malignancies is presently unknown. The EBV
B95-8 laboratory strain that readily transforms primary B lym-
phocytes is deleted for most of the BART miRNAs, which, in
combination with the minimal expression in B-cell lines, indi-
cates that they are not required for B-cell transformation (11,
14). However, a cluster of three miRNAs that are produced from
the primary EBNA2 transcript have been shown to contribute to
B-cell transformation (15, 16). The contribution of the BART
miRNAs to the development of EBV-associated cancers of
epithelial origin has only begun to be explored. Several genes
involved in apoptosis are potential targets of various BART
miRNAs, including PUMA, Bim, and TOMM22 (17–19). Tumor
suppressor genes, such as WIF1 and APC, have also been sug-
gested as targets (20). However, many likely targets of the BART
miRNAs and their biological effects have yet to be determined.
This study shows that EBV infection of a GC cell line results in

altered growth properties. The EBV-negative AGS cell line
normally grows very poorly in soft agar; however, cells latently
infected with a recombinant EBV are anchorage-independent,
a hallmark of transformation. The expression pattern of these
cells is reminiscent of type I latency, with very limited protein
expression but high levels of the BART miRNAs. Importantly,
microarray analysis revealed dramatic changes in expression
patterns after infection with EBV. The large numbers of genes
down-regulated during EBV latent infection are enriched for
potential BART miRNA targets, suggesting the BART miRNAs
are major contributors to the dramatic expression changes. This
finding provides evidence of EBV effects on epithelial cell
growth that are likely attributable to BART miRNA expression.
This in vitro system should be ideally suited for the further study
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of the contribution of the BART miRNAs to EBV-induced
malignancy.

Results
EBV Latent Infection in AGS Cells Promotes Growth in Soft Agar.
To identify effects of EBV infection on epithelial cell growth
properties, the ability of an EBV-negative GC cell line (AGS),
which was stably infected in vitro with a recombinant EBV, was
assessed for growth in soft agar (21). Growth in soft agar in-
dicative of anchorage independence is a hallmark phenotype of
cellular transformation. Uninfected AGS cells grew very poorly
in soft agar, with dead remnants or aborted colonies remaining
after 1–2 wk in culture (Figs. 1A and 2C). In contrast, cells
infected with EBV grew significantly better in soft agar, with
uniformly healthy looking colonies after 1–2 wk in culture (Figs.
1A and 2C).
To assess EBV expression in the infected AGS cell line, ex-

pression of EBNA2, LMP1, and LMP2 was determined by im-
munoblotting. The AGS-EBV cells lacked EBNA2 expression,
indicative of type III latency, and had trace levels of LMP1
compared with the Jijoye type III BL cell line although slightly
higher than the NPC cell line, C666-1. LMP2 was not expressed,
similar to expression in type I latency (Fig. 1B). Expression of the
BART miRNAs was determined using quantitative RT-PCR of
a subset of the BART miRNAs. Each BART miRNA that was
assessed had reproducibly high expression, higher than the NPC
C666-1 cell line in all cases, indicating that this infected cell line
produces very high levels of EBV BART miRNAs (Fig. 1C).
LMP1 is necessary for lymphoid transformation and is suffi-

cient for transformation of rodent fibroblasts (22, 23). To de-
termine the requirement for LMP1 for the altered growth in soft
agar, LMP1 was inhibited by expression of a dominant negative
(DN) LMP1 construct. This construct expresses LMP1 with

mutated CTAR1 and CTAR2, the major transactivating domains,
and is thought to function as a DN by oligomerizing with and
inactivating endogenous LMP1 (24). The LMP1 DN was stably
expressed at levels many fold greater than the WT LMP1 in the
infected cell lines (Fig. 2A). Additionally, two cell lines were
produced that stably expressed LMP1 shRNAs that had signifi-
cantly reduced expression of LMP1 protein (Fig. 2A). In both
cases, the inhibition of LMP1 did not affect the enhanced growth
in soft agar (Fig. 2 B and C).

Microarray Analysis of EBV-Infected AGS Cells.Growth in soft agar is
a complex phenotype that likely reflects numerous changes in
multiple cellular pathways. To assess the effects of EBV in-
fection, AGS cell gene expression, transcriptional profiling was
performed using the Agilent G3 Human GE 8×60K dual-color
microarray. Four arrays tested the infected AGS cells without
further modification, two arrays assessed the infected cells with

Fig. 1. Phenotype and expression pattern of AGS cells infected with EBV.
(A) AGS cells and AGS cells infected with EBV were grown in soft agar for
12 d. A representative colony from the infected cells compared with a pic-
ture of the aborted colonies from the uninfected cells is shown. The pictures
as currently shown are at 100× magnification. (B) Expression of EBV latent
proteins in AGS cells; AGS cells infected with EBV; Jijoye, a type III BL cell line;
and C666-1, an NPC cell line. Expression of LMP1, LMP2, and EBNA2 by
Western blotting is shown, with HSC70 and GAPDH used as loading controls
(Left) or overexposed to show the small amount of LMP1 (Right) expressed in
the AGS-EBV cells. (C) Quantitative RT-PCR for representative BART miRNAs
in AGS-EBV cells. Plotted are the relative expression levels of each miRNA
relative to the NPC cell line C666-1 from three independent experiments
with the SEM indicated.

Fig. 2. Inhibition of LMP1 through a DN or with shRNAs. (A) LMP1 ex-
pression in stable cell lines expressing a DN LMP1 (204-208AAAAA, Y384G),
the pBABE vector control, two independent shRNAs targeted to LMP1, and
a scrambled shRNA sequence used as a negative control. Shown is a long-
exposure Western blot for LMP1, illustrating the large degree of over-
expression of the DN construct over the endogenous LMP1 and knockdown
by the shRNAs. GAPDH is used as a loading control. (B) Stable cell lines were
grown in soft agar for 12 d. Arrows point to examples of the four classes of
colonies scored below; single cell (1), aborted colony (2), small colony (3), and
large colony (4). The pictures as currently shown are at 50× magnification.
(C) Colonies in each soft agar assay were counted and classified based on the
four categories shown above. At least 150 colonies for each genotype were
counted.
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the LMP1 DN construct, and two arrays were used for the
infected cells with the control vector for the DN construct. Each
array was performed from a separate culture of cells, and the
reference RNA was a pooled mix of four RNA preparations
from the uninfected AGS cells. Strikingly, there were a large
number of genes that were differentially expressed in the infec-
ted cells despite the lack of viral protein expression. Using a one-
sample t test for genes significantly differentially expressed with
EBV infection, 2,251 spots on the array were significantly down-
regulated at least twofold and 1,351 spots were up-regulated at
least twofold (Table 1). Hierarchical clustering analysis of the
differentially expressed genes separated the arrays of cells that
contained vectors (LMP1-DN or pBABE control). The two
LMP1 DN samples clustered together; however, the differences
between them and the vector control samples are similar to the
differences between the four replicate arrays from the cells
lacking any vectors (Fig. 3). To evaluate changes in expression
patterns attributable to LMP1 further, a one-way ANOVA was
performed comparing either the two arrays performed using the
LMP1 DN cell line with the two vector control arrays or all other
six microarrays. In either case, very few significant twofold
changes were observed (Table 1). These data reveal that there
are large-scale changes in gene expression during latent EBV
infection of AGS cells and that the small amount of LMP1 ex-
pression in this situation is not responsible for these changes.
Ingenuity Pathway Analysis (IPA; Ingenuity Systems) software

was used to analyze the 3,604 probes representing 2,859 unique
genes to assign known molecular functions and relevant diseases
and group them into categories. The software also statistically
determines if these categories are enriched over the expected
random number of genes that would fall into that category based
on the size of the gene set and number of genes in that category
across the genome and assigns a P value for any enrichment. The
top four molecular and cellular functions enriched in this set of
genes were cellular movement, cell-to-cell signaling and in-
teraction, cell growth and proliferation, and cell death; each was
highly significant with extremely low P values (Table 2). In-
terestingly, infection of AGS cells with EBV has been shown
previously to increase cellular mobility (25), and expression of
EBNA1 in AGS cells inhibits expression of promyelocytic leu-
kemia nuclear bodies and reduces apoptosis in response to DNA
damage (26). The IPA-identified categories reflect these known
properties and are likely relevant to the growth in the soft agar
phenotype presented here. These molecular function categories
can be subdivided into more specific functions, and those that
were significantly enriched along with the P values for enrich-
ment are indicated in Table 2.

Genes with Decreased Expression Are Enriched in BART miRNA
Targets. The limited viral protein expression in the AGS-EBV
cells with elevated expression of the BART miRNAs suggests
that if the BART miRNAs are responsible for some of the
changes, the down-regulated genes should be enriched for
BART miRNA targets. This would be true of not only the genes
down-regulated twofold but of those down-regulated to a lesser
degree, because miRNAs often have smaller changes on the level
of mRNA of their targets as opposed to the protein level (27).

There were 9,187 spots significantly down-regulated to any
amount with a false discovery rate (FDR) of less than 0.05 on the
microarray. The most comprehensive list of BART miRNA
targets has been determined using a technique known as
photoactivatable-ribonucleoside enhanced crosslinking and
immunoprecipitation (PAR-CLIP), where miRNA targets from
a dual Karposi’s sarcoma-associated herpesvirus (KSHV)/EBV-
infected primary effusion lymphoma cell line were immunopre-
cipitated and sequenced (28). Of the 2,764 unique mRNAs
bound to EBV BART miRNAs, 940 were also down-regulated in
the infected AGS cells Dataset S1). The 9,187 total spots down-
regulated on the microarray represent 7,612 unique genes, which
is 25.5% of the 29,870 unique genes represented on the Agilent
arrays. A χ2 analysis revealed that the appearance of 940 pre-
dicted miRNA targets in the down-regulated genes is highly

Table 1. Summary of array data

Down at least twofold Up at least twofold

Eight EBV arrays vs. noninfected* 2,251 1,353
Two LMP1 DN vs. two vector controls† 1 1
Two LMP1 DN vs. two vector controls and four with no vector† 3 2

*One-sample t test with an FDR adjusted to P < 0.05.
†One-way ANOVA with an FDR adjusted to P < 0.05.

Fig. 3. Heat map of all genes changed at least twofold on the microarray.
A cluster diagram of the 3,602 entities that were statistically significantly
changed twofold across the eight microarrays as produced by Partek
Genomics Suite software. Blue indicates down-regulation, and red indicates
up-regulation. The bracket tree at the top of the diagram demonstrates the
similarity between the array data as determined by the clustering algorithm,
with the length of the vertical bars being proportional to the degree of
dissimilarity. The two arrays from cells expressing the LMP1 DN construct
cluster together and then cluster with the pBABE vector control arrays. The
expression of the LMP1 DN did not affect the expression pattern of these
genes compared with the other arrays.
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significant (P < 0.0001) over the 705 targets (25.5% of 2,764
genes) that would be expected if there were no correlation be-
tween the two sets of genes (Table 3). Interestingly, considering
only those genes down-regulated greater than fourfold, there is
no enrichment for miRNA targets. Of the 429 IPA-identified
proteins that decreased fourfold, only 24 of these overlap with
the PAR-CLIP dataset, which is fewer than the 39 genes (1.44%)
that would be expected by random overlap. A similar analysis
was performed on the up-regulated gene set. In this case of the

7,288 genes mapped by IPA, only 118 overlap with the BART
miRNA targets, a significant depletion compared with the 674
expected by random overlap (Table 3).
The genes down-regulated in the microarray are also enriched

for bioinformatically predicted BART miRNA targets. Predicted
targets of all the potential BART miRNAs from the Targetscan
5.2 Web site were also significantly enriched for down-regulated
genes (29) (Table 3). The enrichment is even higher if only
targets predicted for 10 high-expressing miRNAs (miR-BART1-
5p, 1-3p, 3, 4, 5, 7, 8, 8*, 9, and 10) are considered (Table 3). A
second prediction program, Diana-microT (30), was also used to
predict targets from these 10 high-expressing BART miRNAs,
and this list of targets was also significantly enriched with down-
regulated genes (Table 3). These data strongly suggest that
a significant number of the changes identified by expression
microarray in the AGS-infected cells are attributable to the ex-
pression of the BART miRNAs. Similar to the result observed
with the PAR-CLIP dataset, the up-regulated genes on the array
are significantly depleted for bioinformatically predicted miRNA
targets (Table 3).
To determine if the changes observed at the mRNA level for

these potential miRNA targets resulted in decreased protein
levels, immunoblotting for several of the potentially interesting
targets was performed. A majority of the targets examined had
dramatic decreases in protein levels in the infected cells, in-
cluding PTEN, caspase 3, STAT6, BCL3, FOXO3, IRF1, and
integrins α5 and αV (Fig. 4 A and B). Many of these genes had
significantly more down-regulation at the protein level than at
the mRNA level (Fig. 4B and Dataset S1), which is consistent
with these genes being miRNA targets. However, not all the
tested genes were down-regulated at the protein level. Those not
down-regulated included MCL1, STAT3, and cyclin D2 (Fig. 4 A
and B), despite being statistically down-regulated on the micro-
arrays and identified as miRNA targets in the PEL cell lines by
PAR-CLIP. It is likely that the BART miRNAs may function
differently depending on cell type and other variables or that
these genes are under additional regulation that counteracts the
inhibition of translation by the miRNAs. To determine if these
miRNA targets are also affected in NPC, three NPC xenograft
tumors passaged in mice with dramatically different BART
miRNA expression were compared. High levels of the BART
miRNAs are expressed in the C15 xenograft, whereas the C17
and C18 tumors have little to no BART miRNA expression (11).
Many of the proteins tested were decreased in the C15 tumors,
including FOXO3, caspase 3, and integrins α5 and αV (Fig. 4C).

Discussion
Many studies have contributed to our understanding of the
mechanisms by which EBV infection can immortalize B lym-
phocytes. However, much less is known about the effects on
cellular expression that occur during epithelial cell infection, and
EBV infection has not been shown to transform epithelial cells.
In this study, the effects of EBV infection on epithelial growth
properties were determined and the global changes in cellular

Table 2. Enriched molecular and cellular functions in
differentially expressed genes

P value* No. of genes

Cellular movement 373
Migration 9.38E-16 344
Cell movement 9.38E-16 365
Movement 1.07E-15 345
Invasion 4.13E-07 120
Chemotaxis 2.28E-04 91
Homing 2.62E-04 96
Recruitment 4.84E-04 52
Cell rolling 6.66E-04 11
Infiltration 1.62E-03 64
Extravasation 3.57E-03 16

Cell-to-cell signaling and interaction 319
Binding 1.07E-10 110
Adhesion 2.11E-06 118
Activation 2.25E-06 159
Response 1.27E-04 107
Recruitment 4.84E-04 52
Afterhyperpolarization 2.23E-03 3
Density 2.23E-03 3
Inflammation 2.23E-03 3
Aggregation 2.68E-03 13
Stimulation 2.75E-03 50
Antiviral response 3.50E-03 4

Cell growth and proliferation 549
Proliferation 3.18E-09 444
Growth 5.52E-06 294
Expansion 7.38E-05 47
Colony formation 6.83E-04 80
Formation 1.99E-03 15
Stimulation 2.75E-03 50
Quantity 3.50E-03 4

Cell death 324
Apoptosis 4.62E-07 243
Cell death 2.28E-06 313
Self-renewal 2.03E-04 5
Survival 1.34E-03 46
Cytotoxicity 3.18E-03 18

*Calculated using Fisher’s exact test.

Table 3. miRNA targets are enriched in the down-regulated genes on array

Down-regulated gene set Up-regulated gene set

Observed overlap Expected overlap* Observed overlap Expected overlap†

EBV PAR-CLIP dataset 940 705 118 674
TargetScan 5.2 predictions 1,707 1,576 214 1,508
TargetScan 5.2 predictions of 10 highest expressing miRNAs 737 527 82 504
DIANA-microT predictions of 10 highest expressing miRNAs 275 210 34 198

*Based on 25.5% of all genes recognized by IPA software down-regulated in microarray. χ2 analysis indicates P value for observed enrichment ≤0.0001 in each
case.
†Based on 24.4% of all genes recognized by IPA software up-regulated in microarray. χ2 analysis indicates P value for observed depletion ≤0.0001 in each case.
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expression were profiled. Strikingly, the EBV-infected cells
exhibited anchorage independence, which is a major phenotype
characteristic of transformation and malignancy. Additionally,
there were many changes in the gene expression profile com-
pared with uninfected cells, and the molecular functions of the
altered genes were enriched for functions that would likely
contribute to the altered growth of these cells.
Several lines of evidence suggest that a considerable number

of the changes detected in the AGS cells on EBV infection are
attributable to the expression of the BART miRNAs. First, there
is very little latent protein expression in these cells other than,
presumably, EBNA1, and inhibiting the small amount of LMP1
that is expressed in these cells did not affect the cells pheno-
typically or by microarray. Second, the majority of the significant
changes in expression were down-regulation. Expression of
miRNAs both inhibits translation and often results in a reduction
in the mRNA levels. Secondary effects of miRNA action could
also increase or decrease mRNA levels. Importantly, the genes
that were down-regulated by microarray were enriched in both
experimentally determined miRNA targets (PAR-CLIP dataset)
and bioinformatically predicted targets from two different

algorithms. These findings strongly suggest that the BART
miRNAs substantially contribute to the expression profile of the
AGS-EBV cells.
The microarray analysis indicates that few if any gene ex-

pression changes observed are attributable to LMP1 expression;
however, other viral products expressed during this latency I-type
infection could contribute to the observed changes. EBNA1 can
significantly alter cellular gene expression (31). The noncoding
EBER RNAs can induce IGF1 expression in GC (32), and se-
creted EBERs can active TLR3 signaling (33). Additionally,
there is a significant level of lytic replication in these infected
cells (34). It is therefore likely that some of the differences in
gene expression, particularly of those genes whose expression has
increased or decreased more than fourfold, reflects the expres-
sion of these viral genes. Although the overlap between the
PAR-CLIP–defined BART miRNA targets and the genes down-
regulated in the microarray is extremely significant, there are still
many predicted targets that are not down-regulated at the
mRNA level in the AGS cells. It is possible that many of these
targets are not affected at the steady-state mRNA level. Addi-
tionally, many other factors likely influence the targetome of
the BARTs in distinct cellular contexts. Differences in BART
miRNA expression, target mRNA expression, or perhaps even
expression of cellular or KSHV miRNAs are likely to be very
different in the dually KSHV- and EBV-infected PEL cell line
used in the PAR-CLIP study and the GC cell line used in this
study. Additionally, in many cancers, there is widespread short-
ening of 3′ UTRs that could have dramatic effects on the ability
of miRNAs to function on a range of targets (35).
This study shows that EBV infection of an epithelial cell line

induces a transformed phenotype. The lack of expression of the
EBV-transforming proteins EBNA2 and LMP2 and the very low
levels of LMP1 suggest that the phenotype is attributable, in
part, to the abundant BART miRNAs. Importantly, there is
remarkable overlap between potential miRNA targets and the
genes down-regulated on the expression arrays, with highly sig-
nificant clustering in growth-altering pathways. These findings
suggest that the BART miRNAs are likely contributors to the
development of epithelial malignancies that are linked to EBV,
including NPC and GC, where they are expressed at high levels.
The ability to affect cell growth in the absence of viral protein
expression would be particularly important to the development
of EBV-associated cancers in immunocompetent individuals.

Materials and Methods
Cell Lines and Constructs. The GC cell line AGS was grown in F-12 media
(Gibco) with 10% (vol/vol) FBS and antibiotic/antimycotic reagent (Gibco).
AGS-EBV cells were also maintained with 500 μg/mL G418 (Gibco) to select
for retention of the EBV episome. Growth in soft agar was assessed by
resuspending cells in 2 mL of media containing 0.5% bactoagar in a six-well
plate. After agar solidified, an additional 4 mL of F-12 media was added to
the top and the plate was allowed to grow for 12 d, changing the media
every 2 d. The NPC xenograft tumors C15, C17, and C18 were serially pas-
saged in nude mice and have been described previously (36).

The LMP1 DN construct contains mutations of amino acids 204–208 to A as
well as Y348G (37). shLMP1-1 and shLMP1-2 plasmids express a hairpin RNA
with a 19-mer stem, targeting sequences that have been successfully used to
knock down LMP1 (38, 39). Complementary oligonucleotides (Dataset S2)
were annealed and cloned into the BamHI/HindIII sites of pSilencer 5.1-U6
retro (Ambion). pScramble is a nonspecific shRNA sequence in the pSilencer
5.1 vector sold by Ambion as a negative control.

Western Blotting. Protein lysates from cells and frozen C15, C17, and C18
tumors andWestern blots were prepared as previously described (40, 41). The
antibodies used are indicated in Dataset S3. Densitometry analysis was done
with ImageJ software (National Institutes of Health).

Quantitative RT-PCR for miRNAs. Total cellular RNA was prepared from cells
using TRIzol reagent (Invitrogen) (11). Quantitative RT-PCR for the BART
miRNAs was performed using the miScript system (Qiagen) (19). The relative

Fig. 4. Analysis of select genes shown to be down-regulated by microarray.
(A) Western blot analysis of a group of genes down-regulated by microarray
and predicted to be BART miRNA targets. Expression in AGS cells infected
with EBV (+) is compared with that in noninfected AGS cells (−). GAPDH and
HSC70 serve as loading controls. (B) Densitometry quantification of immu-
noblots for the indicated proteins. The ratio of the signal in infected cells vs.
uninfected cells normalized to the loading control and averaged between at
least three independent experiments is indicated with error bars repre-
senting the SEM. (C) Expression of the down-regulated proteins in protein
lysates prepared from the NPC xenografts C15 (BART miRNA-positive) and
C17 and C18 (BART miRNA-negative). GAPDH serves as the loading control.
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abundance of each miRNA reported was obtained by normalizing the dif-
ference in cycle threshold (CT) between the AGS-EBV cells and the C666-1 for
each BART miRNA to a control reaction that amplifies the small nuclear RNA
U5 using the following formula: Relative Abundance = 2∧{(CT[C666 BART
miRNA] − CT[AGS BART miRNA]) − (CT[C666 U5] − CT[AGS U5])}.

Microarray Analysis. Total RNA was prepared using the RNeasy Plus Mini Kit
(Qiagen) from independent cultures of cells that have been seeded at a density
of 750,000 cells in a 10-cm dish and grown for 2 d in F12 media with 10% FBS
without selection to 50–75% confluency at the time of harvest. RNA quality was
confirmed using capillary electrophoresis (Bioanalyzer 2100; Agilent), ampli-
fied, and hybridized to an Agilent G3 Human GE 8×60K dual-color microarray
by the University of North Carolina Lineberger Comprehensive Cancer Center
Genomics and Bioinformatics Core Facility. Microarrays were scanned using an
Axon 4200 Scanner (Molecular Devices), normalized using GenePix 5.0 software
(Molecular Devices), and analyzed using the Partek Genomics Suite 6.5 soft-
ware. ANOVA and t test analysis were performed using Genomics Suite 6.5
software with an FDR cutoff of P < 0.05. Clustering of the significantly changed
gene set was also performed with Genomics Suite 6.5 software.

Molecular function enrichment analysis was performed using IPA soft-
ware. A gene list of all the twofold significant changes was downloaded from
Partek and uploaded into IPA for analysis. Enriched molecular functions were
determined by running the core analysis considering only experimentally

determined relationships. The miRNA target enrichment analysis was also
aided by the IPA software. Gene lists were created for the entire microarray
dataset as well as for those statistically down-regulated or up-regulated (P <
0.05) by any amount in the microarray. IPA was able to map 29,870, 7,612,
and 7,288 genes from these datasets, suggesting that 25.5% of all IPA rec-
ognized genes were down-regulated and 24.4% were up-regulated to some
degree. The compare analysis function of IPA was used to overlap the 7,612
and 7,288 genes with those genes targeted by EBV miRNA in the PEL PAR-
CLIP data [downloaded from the supplementary data in the report by
Gottwein et al. (28)] or from bioinformatically generated target lists from
Targetscan or Diana-microT, algorithms which are available as online tools.
The actual overlap in these gene sets was compared with the null hypothesis
overlap (25.5% or 24.4% of each list) using a χ2 analysis.
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