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Notwithstanding their key roles in therapy and as biological
probes, 7% of approved drugs are purported to have no known
primary target, and up to 18% lack a well-defined mechanism of
action. Using a chemoinformatics approach, we sought to “de-or-
phanize” drugs that lack primary targets. Surprisingly, targets
could be easily predicted for many: Whereas these targets were
not known to us nor to the common databases, most could be con-
firmed by literature search, leaving only 13 Food and Drug Admin-
istration—approved drugs with unknown targets; the number of
drugs without molecular targets likely is far fewer than reported.
The number of worldwide drugs without reasonable molecular
targets similarly dropped, from 352 (25%) to 44 (4%). Nevertheless,
there remained at least seven drugs for which reasonable mechan-
ism-of-action targets were unknown but could be predicted, in-
cluding the antitussives clemastine, cloperastine, and nepinalone;
the antiemetic benzquinamide; the muscle relaxant cyclobenzapr-
ine; the analgesic nefopam; and the immunomodulator lobenzarit.
For each, predicted targets were confirmed experimentally, with
affinities within their physiological concentration ranges. Turning
this question on its head, we next asked which drugs were specific
enough to act as chemical probes. Over 100 drugs met the standard
criteria for probes, and 40 did so by more stringent criteria. A che-
mical information approach to drug-target association can guide
therapeutic development and reveal applications to probe biology,
a focus of much current interest.
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Recent studies suggest that for many approved drugs, a primary
target is unknown. In an influential review, Drews reported

that 7% of approved drugs lack a defined molecular target (1),
and in their seminal paper on modern drug development, Over-
ington et al. were only able to assign mechanism-of-action protein
targets to about 82% of Food and Drug Administration (FDA)
approved drugs (2). Given the critical role small molecule drugs
play in medicine, and their potential to serve as tools in biology,
the lack of a commonly accepted primary target for so many mo-
lecules seemed almost provocative.

Almost all drug discovery now begins with activity of molecules
on a molecular target, and it is hard to imagine how the primary
target of such molecules would be unknown. However, at least
half of drugs date from the premolecular era, when their action
was explored against whole tissues, rarely on isolated proteins,
and target identities were only inferred from tissue-based re-
sponses. Even today, 37% of first-in-class drugs derive from phe-
notypic screens (3), and the targets for some new drugs remain
unknown. Recent examples include the emergent polypharmacol-
ogy of imatinib and olanzipine, where the multiple targets not
only explain side effects but also therapeutic efficacy (4). Thus,
much effort has been spent on target discovery, including large-
scale experimental screening of approved therapeutics against
G-protein coupled receptors (GPCRs) (5) and kinases (6). Mean-

while, an ingenious chemical biology tool set has emerged for
target identification (7–9). This not only improved our under-
standing and use of these drugs but has enabled their deployment
as tools to probe biology.

Most of these chemical biology approaches focus on a particu-
lar target class or experimental strategy and do not lend them-
selves to the target identification for the diverse set of drugs
for which targets remain unknown. We therefore investigated
the chemoinformatic similarity ensemble approach (SEA) to link-
ing drugs to targets, followed by experimental testing in direct
binding assays. Whereas SEA and other chemoinformatics ap-
proaches (10–12) have liabilities (to which we shall return), they
can comprehensively and systematically interrogate all targets for
which ligands are known. Previously, we used SEA to discover
off-targets and mechanism-of-action targets for over 30 drugs
against over 40 targets (10, 13). In this strategy, a likely target for
a drug is identified when the known ligands for a target resemble
the “bait” drug much more closely than would be expected at
random; over 2,500 molecular targets have enough ligands to
be interrogated by this method. Extending this work, we screened
almost 1,000 target “orphan” drugs, finding for many high-like-
lihood predictions of sensible targets. Surprisingly, it often hap-
pened that these predicted targets were already reported in the
literature, even though they were unknown to the drug-target
databases; only rarely did the target orphan status of a drug sur-
vive close scrutiny. Still, several did, and for these we tried to pre-
dict and experimentally test sensible primary targets. Also, with
so many drugs well associated with targets, we thought to turn this
approach on its head and identify those drugs for which targets
and specificities were well-enough known to act as biological
probes, a subject of much current interest in the community. We
considered the application of this approach to investigating
mechanism-of-action targets for new molecules emerging from
phenotypic programs in drug discovery, and for the relatively
rapid identification of drugs and drug candidates that may be
used as biological probes.

Results
Finding Primary Targets for Drugs. Our initial goal was to find
molecular targets for drugs for which the primary target was
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unknown. We began with the 1,382 approved drugs from the
DrugBank database. From the 127 drugs with an unknown pri-
mary target, 44 were discarded as topically applied, acting via a
nonprotein target (e.g., chelators) or as diagnostics, while 5 were
discarded for having a molecular weight greater than 1,000 dal-
tons. This yielded 78 approved drugs, 5.6% of those in DrugBank,
a figure consistent with the literature (1).

To discover molecular targets for these 78 drugs, we looked for
chemical similarities to ligand sets for over 2,500 targets, using
SEA (10, 14). SEA describes each target by its known ligands,
as represented by topological fingerprints (here extended connec-
tivity fingerprints [ECFP] ECFP_4 (15)). The query molecule is
compared to the set of known ligands for a target by summing all
pair-wise similarities. This raw score is normalized for the size
bias by comparing it to a score expected at random for similar
set sizes, using the basic local alignment search tool (BLAST)
algorithms (16). The final scores, as in BLAST, are expectation
values (E-values); the smaller this E-value, the more significant
the drug-target association.

For 10 of the 78 drugs, the SEA-predicted target exactly
matched one of the chemical libraries we interrogated. For 60
of the remaining 68 drugs, E-values ranged from 9.84 × 10−6

to 1.85 × 10−251. We selected those predictions that were related
to the drug’s indication. For 19 drugs, the predicted targets were
confirmed by literature (Table S1). A mechanistically sensible tar-
get could be found manually in the literature for another 31 drugs
for which it could not be predicted using SEA, leaving only 19
drugs (1.51%) for which a reasonable therapeutic target could
not be identified.

Before submission of this paper, DrugBank was updated to
version 3 (17), resulting in a more comprehensive list of targets.
Many of the drugs that previously had no target had one anno-
tated in the new version; only nine drugs had a target found in the
literature but not in DrugBank (Table S2). Reassuringly, in 53
cases these targets corresponded to those predicted by SEA and
confirmed in the literature. Intriguingly, two of the new Drug-
Bank targets differed from the SEA predictions. Here, the SEA
predictions seem more consistent with the drug’s indication.
Thus, olsalazine is annotated to interferon-γ and thiopurine
S-methyltransferase. However, olsalazine is a prodrug of mesala-
mine, active on cyclooxygenase 1 and 2 and arachiodonate 5-li-
poxygenase, targets predicted by SEA and widely thought to be
related to the anti-inflammatory indication for olsalazine and me-
salamine. Conversely, thiopurine S-methyltransferase is most
likely an off-target of the drug (18). Similarly, DrugBank associ-
ates silver sulfadiazine with DNA as a target, but the target of
the core molecule is almost certainly dihydropteroate synthetase
(19), as predicted chemoinformatically. The results of the up-
dated annotations from DrugBank and our own SEA-guided lit-
erature searching (Fig. 1) left only 13 drugs for which a sensible
primary target could not be determined (Table S3). These are
considerably fewer than might have been anticipated from the
previous literature.

Because we were most interested in finding targets for drugs
that truly lacked them, we also considered the 1,431 worldwide-
approved drugs from the MDL Drug Data Report (MDDR).
After combining the information already present in MDDR and
ChEMBL database, the initial number of compounds with no
known protein target was 352. Here too, we used SEA to suggest
targets that could be verified in the literature. A sensible mole-
cular target was found for 308 compounds, leaving a set of 41
approved drugs for which either no target was predicted or the
prediction could not be confirmed (3%) (Table S4).

Finally, we also analyzed the drugs in the NCGC Pharmaceu-
tical Collection (NPC) v1.1.0 (20) (Fig. 2). There, we extracted
the set of human-approved drugs, excluding those in DrugBank
v3. This yielded a total of 6,554 entries. From these, 5,339 were
discarded for being, for instance, pharmaceutical aids (233) or for

simply lacking an indication (4,323). For the remaining 1,259
compounds, 420 were found in DrugBank—336 as approved
drugs. Thus, our final set consisted of 839 worldwide-approved
drugs, from which 208 had a protein target annotation in the
NPC, 70 in ChEMBL, and 5 in MDDR. We then mined the lit-
erature for known therapeutic targets for the remaining 556
drugs, again guided by SEA. This revealed targets for 340 of the
drugs, all of which were checked for consistency with the drug’s
indication. For 121 drugs (36%), the target was predicted using
SEA and then confirmed by literature search. For 219 drugs
(64%) the target was not predicted by SEA but was found in
the literature.

Relevant Targets for Seven Drugs. For seven worldwide-approved
drugs that continued to lack a therapeutically relevant target, we
were able to find and test in vitro a therapeutically relevant target
(Table 1, Fig. 3, and Fig. S1). Three of these drugs—cloperastine,
clemastine, and nepinalone—are antitussives. Although cloper-
astine was discovered based on phenotypic experiments on
animals looking for antihistamine response (21), histaminergic
activity explains a side effect, somnolence, but not its activity in
cough. SEA found three interesting targets for cloperastine. As
expected, histamine H1 and H3 were predicted with E-values of
3.28 × 10−8 and 6.21 × 10−24, respectively. It also predicted ac-
tivity on σ receptors (E-value ¼ 2.03 × 10−12), of which subtype 1
has previously been associated with cough (22). Since the affinity

2.13% 0.64%

96.31%

Target in Drug Bank v3 No protein target

Target in literature / patent Unknown target

0.96%

Fig. 1. Distributions of the DrugBank v3 approved drugs by to whether they
have a database-assigned target (blue), a literature one (green), act by a non-
protein target (red), or if their molecular target is unknown (purple).

Fig. 2. Distribution of the human-approved drugs set from NPC v1.1.0. (A)
All human-approved drugs set excluding DrugBank. (B) Characteristics of NPC
drugs were discarded.
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of cloperastine for histamine receptors could not be found in the
literature, all four predictions were tested in vitro by ligand dis-
placement assay. The observed Ki values were 3.8 nM for H1,
2,148 nM for H3, 20 nM for σ1, and 900 nM for σ2 (Fig. 3).

Similarly, clemastine is reported to be a selective antihistamine
and anticholinergic agent (23). These targets explain its sedating
and antipruritic effects, but its antitussive effect remains unex-
plained. Given their high chemical similarity and the cross-phar-

macology between the histaminergic and σ receptors, we tested
clemastine against the σ1 and σ2 receptors in vitro, observing
Ki values of 67 and 15 nM, respectively. The third antitussive,
nepinalone, was also predicted to act via σ, with an E-value of
1.93 × 10−17. This prediction was confirmed in vitro with Ki
values of 30 nM for σ1 and 404.6 nM for the σ2 receptor.

Lobenzarit is an immunomodulator for which no target is
known. SEA predicts cyclooxygenase-2 (COX-2) with an E-value
of 1.8 × 10−5. Although the two anions in lobenzarit are unpre-
cedented among COX-2 ligands, in vitro testing confirmed this
target with an IC50 value of 128 μM. Whereas this appears high
for a drug, we note that lobenzarit’s maximum plasma concentra-
tion (Cmax) is 70 μM (24). This IC50∕Cmax ratio is not unprece-
dented among COX inhibitors: indomethacin has a Cmax of 3 μM
and an IC50 of 180 μM, whereas even aspirin has a Cmax of
1.11 mM and an IC50 of 18 mM.

Nefopam is a widely used antinociceptive with safety advan-
tages over the opiates and the NSAIDs, although its molecular
targets remain uncertain. Whereas phenotypic patterns in animal
models have suggested activities via the serotonin, glutamate, and
dopamine circuits (25–28), these suggestions and experiments
were made and undertaken before direct assays were available,
except as in brain homogenates. For instance, though evidence
from classical pharmacology supports a role for the monoamine
transporters in nefopam’s activity (25, 29), molecular binding
affinities and selectivities remain unknown. Whereas chemoin-
formatic inference finds little similarity to glutaminergic ligands,
SEA does predict serotonergic activity (E-value ¼ 1.40 × 10−26).

Table 1. Experimentally confirmed primary target predictions for approved drugs.

Drug name Indication E-value Predicted target Ki (nM)

Cloperastine Cough suppressant
2.03 × 10−12 σ receptor σ1 20

σ2 900

3.28 × 10−8 Histamine H1 receptor 4
6.21 × 10−24 Histamine H3 receptor 2,148

Nepinalone

Cough suppressant 1.93 × 10−17 σ receptor
σ1 30
σ2 405

Clemastine Cough suppressant N/A σ receptor
σ1 67
σ2 15

Benzquinamide
Antiemetic
Antipsychotic

2.04 × 10−19 Adrenoceptor α2 receptor
α2A 1,365
α2B 691
α2C 545

N/A Dopamine receptor D2 4,369
D3 3,592
D4 574

Lobenzarit

Anti-inflammatory 1.8 × 10−5 COX-2 128,000*

Cyclobenzaprine Muscle relaxant N/A Muscarinic M1 receptor 25
Muscarinic M2 receptor 60
Muscarinic M3 receptor 6

Nefopam Analgesic

2.95 × 10−5 Serotonin receptor 2A 1,685
2.95 × 10−5 Serotonin receptor 2B 330
2.95 × 10−5 Serotonin receptor 2C 56
7.04 × 10−4 Dopamine transporter 531

N/A Serotonin transporter 29
1.10 × 10−1 Norepinephrine transporter 33

*Indicates IC50 value instead of Ki.

Fig. 3. Dose-response curves for prospective primary target predictions of
cloperastine (A) Histamine H1. (B) Histamine H3. (C) σ1. (D) σ2.
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Though its prediction against the dopamine transporter (DAT)
was less substantial (E-value ¼ 7.04 × 10−4), the known cross
activity between the two targets and the speculation from the
classical literature led us to test both predictions. Nefopam had
Ki values for 5-HT2A, 5-HT2B, and 5-HT2C of 1,685, 329.5, and
56 nM, respectively. Similarly, it had a Ki of 531 nM against DAT.
This, in turn, led us to test the molecule against the norepinephr-
ine (NET) and serotonin (SERT) transporters, where its Ki
values, at 33 and 29 nM, were more substantial still. Conversely,
whereas a role for dopamine receptors has also been mooted
(28), we observed no activity against either the D1 and D2 sub-
types. As nefopam achieves plasma concentrations of 48.5 to
183.1 nM (30), these results support a role for the three aminergic
transporters (SERT, NET, and DAT) and the 5HT2 receptors
for the drug’s analgesic activity. As with other antinociceptives
targeting transporters, like duloxetine, nefopam’s efficacy may
relate to the ratio of its transporter Ki values, with its serotonin-
norepinephrine reuptake inhibition (SNRI) slightly over 10-fold
more potent than against the dopamine transporter, which it
nevertheless seems to engage.

For other drugs, such as benzquinamide, targets are not only
unknown but are known wrong. It is accepted in the field and
reported in DrugBank that the primary targets for this drug are
the histamine H1 and the muscarinic M1-5 receptors. However,
there is no direct experimental evidence of this activity in the
literature, despite much assertion. By SEA, the drug was much
more similar to the ligand set of the α2A adrenergic receptor
(E-value ¼ 2.04 × 10−19), with no significant similarity to the his-
tamine H1 or any muscarinic receptor (M1–5) ligand sets. Upon
experimental testing, no substantial modulation of any of the H1
or M1–5 receptors was observed (maximum inhibition of 16%
at 10 μM). Conversely, and consistent with prediction, benzqui-
namide did bind to the α2A, α2B, and α2C adrenergic receptors
(α2-AR) with Ki values of 1,365, 691, and 545 nM, respectively.
This activity may partially explain the anxiolytic activity
effect of the drug (31). Although there are studies linking the
α2-AR and emesis (32), this is not an established target for this
indication. We therefore adopted a target-hopping strategy, look-
ing for nausea-related targets with strong chemoinformatic asso-
ciations with α2-AR. This led us to the dopamine D2 receptor,
which by ligand-set similarity resembles α2-AR (13) and is an
accepted target for emesis. On testing benzquinamide on the D2,
D3, and D4 receptors, we observed Ki values of 3,964, 3,592, and
574 nM, respectively. Notwithstanding the fact that the α2-AR
values are lower than the D2 values, it is the D2 activity that
may be the most relevant for emesis.

This same target-hopping strategy was used for the muscle
relaxant cyclobenzaprine. Though first developed as an antide-
pressant and an antipsychotic, the drug is mostly used today as a
muscle relaxant, and none of the drug’s known targets, such as
transporters, are consistent with this indication. As with benzqui-
namide, SEA did not directly suggest a target that was closely
linked with muscle relaxation. The method did, however, predict
H1 histaminergic activity for cyclobenzaprine, with an E-value of
2.21 × 10−56, which has recently been tested and confirmed with
a Ki value of 21 nM (33). By ligand similarity, the H1 receptor is
associated with muscarinic receptors, which are well-accepted
targets for muscle relaxation. Consistent with this prediction,
cyclobenzaprine had Ki values of 25.0, 60.0, and 6.3 nM for
the muscarinic M1, M2, and M3 receptors. Given that the drug
has maximum plasma concentrations of 16 to 31 nM and an AUC
of 325 to 647 nM·h, this affinity is consistent with the drug’s role.

Drugs as Probes. An unexpected lesson of this work is that most
drugs do in fact have reasonable primary molecular targets, and
so we wondered if this point could be taken a step further: For
how many drugs is potency and specificity well-enough known to
identify them as chemical probes of biology? The distinction

between drugs, which must be therapeutically efficacious but can
often be promiscuous, and probes, which must have a high-fide-
lity to their targets but can be therapeutically ineffective, has been
well established (34, 35). We wondered, nevertheless, whether
some drugs might have the specificity requirements to meet the
common criteria of probes (36). If so, they might find wide utility,
not least because the burden of developing new, genuinely effec-
tive probes has been high (37). We began with the NIHMolecular
Libraries Screening Centers Network (MLSCN) definition of a
biological probe (38), a small molecule with activity on a target
of 100 nM or better and at least 10-fold selectivity over any re-
lated target. We found over 100 drugs that fit these criteria, acting
on 41 targets. These covered the major protein families including
enzymes, ion channels, nuclear hormone receptors, and transpor-
ters. Notwithstanding the well-known promiscuity of GPCRs, we
nevertheless found 30 drugs that could be used as probes for 17
members of this family with at least 10-fold selectivity to any
other member of the family for which they have been tested.

Despite being the NIH standard, a 10-fold selectivity cutoff
may be too permissive, so we increased the selectivity threshold
to 100-fold. We further insisted that any drug be cell- and typically
tissue-penetrant and used SEA to calculate potential off-targets.
This found a smaller but higher-confidence set in which all the
drugs for which a related target could be chemoinformatically
predicted with an E-value of 10−5 or lower (better) were re-
moved. Pregabalin, for example, was discarded because it is pre-
dicted by SEA to hit the glycine receptor, a target closely related
to its presumed target, the voltage-gated calcium channel.

This high-confidence set consists of 40 drugs that can serve as
probes for 25 unique protein targets (Table S5). This is almost
certainly only a subset of a full list of high-specificity probe-like
drugs, as we have made no effort to be comprehensive here. Still,
these 40 probe-like drugs illustrate how such active molecules
might be found. Many, like selective serotonin reuptake inhibi-
tors (SSRIs), are designed and checked for selectivity versus
other monoamine transporters and receptors. For SSRIs, inhibit-
ing α1 adrenergic, muscarinic, and histamine H1 receptors leads
to undesired side effects, so selectivity is closely associated with
compound progression. Thus, fluvoxamine is 500-fold selective
versus the next-best target, the muscarinic M1 receptor (39),
and lacks substantial SEA E-values to other related targets
(Fig. 4). Similarly, the proteasome inhibitor bortezomib was ad-
vanced due not only to its potency but also for its selectivity pro-
file over antitargets such as chymotrypsin and elastase (40)
(Fig. 4). Similarly, anastrozole (Fig. 4) is a selective aromatase
inhibitor that has little activity against other cytochromes. A very
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Fig. 4. Example drugs that can be used as chemical probes. Activity is shown
as a circle proportional to the pKi or pIC50. Themain target is marked in green.
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different example is that of pravastatin, a statin that has not been
tested for off-targets responsible of undesired side effects, but
for activity against organic anion transporting polypeptides
(OAT 1–4), the transporters responsible for the drug’s active
transport into hepatocytes (Fig. 4).

Occasionally, the protein target for which the drug can be used
as a probe is not its therapeutic target. Thus, mofezolac (Diso-
pain®), like most NSAIDs before the introduction of the coxibs,
has activity on both COX-2, its primary mechanism-of-action tar-
get, and COX-1, the off-target to which its gastrointestinal side
effects have been attributed. Unlike most NSAIDs, and far dif-
ferent from the coxibs, mofezolac is actually specific for COX-1,
with an IC50 of 1.4 nM for this target and an IC50 of only 440 nM
for COX-2. Whereas specificity for what is commonly considered
a toxic off-target may seem perverse, for a tool it may help de-
convolute the pathways modulated by the COX-2 specific and the
nonspecific NSAIDs, and may better elucidate the roles and even
possible therapeutic modalities of COX-1.

Discussion
Four key observations emerge from this study. First, the number
of drugs with unknown primary targets can be reduced from
the relatively high figures widely accepted in the field to 1%,
in the case of approved drugs included in DrugBank. Second,
we find that chemoinformatic methods are useful guides to at
least first-pass efforts to assign drug or candidate targets when
these are unknown. Third, we were able to chemoinformatically
predict, and confirm in vitro, therapeutically relevant targets for
seven drugs where the primary targets were genuinely unknown.
Fourth, many approved drugs can qualify as chemical probes—
highly sought tools in biological studies.

It was surprising how often likely primary targets for drugs that
supposedly lacked them were found in the literature. In contrast
to the much higher figures often implied (1, 2), and what seem to
be common conceptions in the field, only 4% of worldwide drugs
in the MDDR, only 3% of drugs in the NPC database, and less
than 1% of the approved drugs in DrugBank lack a well-estab-
lished target in the literature. This discrepancy reflects a simple
lack of annotation in the databases, something largely corrected,
at least for DrugBank, in its most recent update. What does seem
true is that chemoinformatic prediction, using SEA or related
methods (11, 12), can rapidly fill these gaps for established drugs
and for new investigational molecules that may emerge from non-
target-based drug discovery, such as phenotypic screening (41).

Of course, a more compelling illustration of this approach is
the prospective prediction of therapeutically sensible targets for
drugs. Both by direct drug-target association and by target-hop-
ping, the chemoinformatic method identified plausible mechan-
ism-of-action targets for seven approved but until now target-
orphan drugs. Especially interesting are the identification of the
σ1 receptor as the target for three cough suppressant drugs
(cloperastine, nepinalone, and clemastine). Although σ1 has a
checkered history in pharmacology (42), and is notorious for
its promiscuity, perhaps the only physiology to which it is reliably
linked is cough, and so the 20 to 67 nM affinities of these drugs
may illuminate their mechanism of action and that of other drugs
in this class. Similarly, the association of benzquinamide clarifies
what had been a widespread (17) but false association with
muscarinic and histaminergic signaling, for which we found no
evidence in vitro. These results, and those with lobenzarit and
cyclobenzaprine, support a role for chemoinformatic association
in target identification for leads emerging from phenotypic or
other nontarget-based methods.

In undertaking this study, we initially hoped to discover pri-
mary targets for drugs with unknown targets. As we learned, there
are in fact few drugs with truly unknown targets. We wondered if
this lack of drug-target association also affects the identification
of those drugs that are truly target specific, a quality important for

their use as biological probes. We therefore considered an inver-
sion of our original hypothesis: Are there many drugs that are
likely so specific, potent, and penetrant that they may act as bio-
logical probes, notwithstanding the well-recognized arguments
that drugs often are poor probes (34, 43)? Using the National
Institutes of Health Molecular Libraries Probe Production Cen-
ters criteria for a probe (38) (at least 100 nM activity and 10-fold
specificity against related targets), we found over 100 qualifying
drugs. Because a 10-fold selectivity may be too permissive, we
then considered drugs with at least a 100-fold selectivity and
further insisted that no related target have a SEA E-value better
(less) than 10−5 for the putative tool. These more stringent cri-
teria culled the list to 40 tool drugs for 25 targets. This is likely a
lower limit as we have made no attempt to be comprehensive, and
many drugs that may meet these criteria were not considered.
Our point is that, in fact, there are many drugs that meet the
criteria for probes, and many of these may be overlooked, not-
withstanding their outstanding physical and biological properties
that are, after all, substantially better than all but the most highly
developed probes. Given the high cost and difficulty to develop a
probe for any given protein, having access to a set of high-quality
chemical compounds such as approved drugs may be broadly use-
ful to the field.

Despite these efforts, there remains a small but important
group of drugs to which we could not assign reasonable targets,
such as metformin, among the world’s most highly prescribed
molecules. Even for the drugs for which we could find a relevant
target in the literature, only 36% of them were initially guided
by SEA, while the rest did not have relevant predictions and the
targets were found through manual literature search. This reflects
the limitations of the chemoinformatics method, which is essen-
tially inferential. When targets are poorly annotated for ligands,
or when the drug does not share chemotypes with the ensemble of
annotated ligands, SEA will miss the association. More subtly,
demonstrating a target does not demonstrate a mechanism of
action. Establishing target-engagement mechanistically in vivo
remains difficult, ultimately demanding full animal physiology,
and even then unanticipated modalities may play a role (witness
the evolving understanding of even a recent drug such as imatinib
(44, 45)). Thus whereas the targets we predict and test are reason-
able, based on in vitro binding and a known biological role for
the protein, their status as mechanism-of-action targets is, for
now, no more than reasonable. Also, many drugs exert their effect
through the modulation of several targets, and so identifying
one protein target for a drug may leave others important for its
mechanism unknown.

These caveats should not obscure the central themes of this
study. In the teeth of current opinion, we found that few drugs
lack reasonable primary targets, at least among domain experts.
The ability of chemoinformatics methods to rapidly identify tar-
gets, and to predict those which can be experimentally confirmed,
supports the idea that this and related methods (11, 12, 46–48)
will be useful in target identification for drugs that emerge from
nontarget-based methods. Even in this molecular era of drug dis-
covery, there remain new investigational drugs whose molecular
targets are unclear, restricting their optimization and broad use in
disease. The same chemoinformatic strategy may be used to illu-
minate those drugs that can, in fact, be used as biological probes,
meeting and typically surpassing the specificity, potency, and
biological penetrance criteria now current in the field. Given the
resources devoted to probe discovery and development on a
national level, it may be estimated that between $1 million to
$2 million are required to develop a new probe molecule. There
may be a substantial number of overlooked probes that already
exist in our drug armentarium, and these may be deployed even
today, at little expense, to illuminate biology.
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Methods
Test Sets. Four collections of drugs with annotated targets were used: the
approved drugs set of DrugBank version 2 (1,382 FDA approved drugs);
the approved drugs set of DrugBank version 3 (1,410 drugs); the launched
drugs set of MDDR version 2006.1 (1,431 drugs); and the human approved
drugs set excluding those in DrugBank v3 of NPC v.1.1.0 (6,554 drugs). For
each of these databases, the drugs that do not have an associated target have
been taken as the initial set of “drug with unknown protein target.” These
have been further explored by SEA (10, 14) and by a literature search to get
the final set of drugs with no known targets.

Ligand-Based Virtual Screening. Each drug was computationally screened
against 2,521 ligand-target sets with activity of 10 μM or better from the
ChEMBL 09 (49) and MDDR databases. The virtual profiling was performed

using SEA, as described (10). More detail on the SEA calculations can be found
in SI Methods.

Known Target Assignment. See the SI Methods.

Experimental Testing. See SI Methods and Table S6.
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