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The population dynamics of endemic cholera in urban environ-
ments—in particular interannual variation in the size and distribu-
tion of seasonal outbreaks—remain poorly understood and highly
unpredictable. In part, this situation is due to the considerable de-
mographic, socioeconomic, and environmental heterogeneity of
large and growing urban centers. Despite this heterogeneity, the
influence of climate variability on the population dynamics of in-
fectiousdiseases is considered a large-scale, regional, phenomenon,
and as such has been previously addressed for cholera only with
temporal models that do not incorporate spatial structure. Here
we show that a probabilistic spatial model can explain cholera dy-
namics in themegacity of Dhaka, Bangladesh, and afford a basis for
cholera forecasts at lead times of 11 mo. Critically, we find that the
action of climate variability (El Niño southern oscillation and flood-
ing) is quite localized: There is a climate-sensitive urban core that
acts to propagate risk to the rest of the city. The modeling frame-
work presented here should be applicable to cholera in other cities,
as well as to other infectious diseases in urban settings and other
biological systems with spatiotemporal interactions.
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In regions where cholera is endemic, the considerable year-to-
year variation in the size of its seasonal outbreaks has moti-

vated the development of models to retrospectively explain
multiannual cycles in disease incidence and prospectively fore-
cast the occurrence of large cholera events (1–3). Previous
studies of endemic cholera have relied largely on data aggre-
gated over relatively large spatial scales (2, 4, 5) and statistical
models for recurrent outbreaks in urban centers have so far
achieved prediction at lead times of ≤1 mo (6, 7), too short to be
of use in early warning systems. Studies have also shown that the
El Niño southern oscillation (ENSO) influences multiannual
cycles in disease incidence (4, 2, 8, 9) but because such global
climate drivers have been expected to act over large spatial scales
and to synchronize epidemiological responses across space (the
Moran effect) (10, 11) and because the physical and ecological
linkages between global drivers and local transmission remain
obscure (12–14, 16), the fine-scale spatiotemporal dynamics of
endemic cholera have been largely ignored.
However, the rapid growth and pronounced demographic and

socioeconomic heterogeneity of the emerging megacities of the
modern era (17, 18) lead to significant fine-scale spatial structure
with unexplored consequences for disease dynamics. In the case of
fecal–oral diseases such as cholera, for which sanitary conditions
and access to clean water are determinants of disease risk, heter-
ogeneities on very local scales can be important, a fact that has
beenappreciated since Snow’smappingof the association between
cholera risk and water contamination (19). On the other hand,
a body of recent work has established a link between global climate
drivers—in particular the ENSO—and cholera dynamics. The
existence of key predictors on these two vastly different scales begs
the following questions: (i) What linkages mediate the action of

global climate drivers at the local scale? (ii) Can we combine data
at these two scales to obtain a useful cholera early-warning system?
We formulated a probabilistic model for cholera dynamics

within the city of Dhaka and fit it to O1 El Tor cholera hospi-
talization data broken down into administrative subdivisions
called thanas (Fig. 1). The monthly data span the period 1995–
2008 and include all cases since the last disappearance of the O1
classical and O139 strains. The cholera case data used here were
collected by International Centre for Diarrhoeal Disease Re-
search, Bangladesh (ICDDR,B) hospital located in Dhaka city.
This hospital provides free treatment to ∼110,000 diarrhea cases
annually. A systematic 4% sample (every 25th patient) from 1984
to 1995 and 2% sample (every 50th patient) from 1996 onward
were taken from all patients that reported to Dhaka hospital
irrespective of disease severity. Fecal specimens were collected
from these patients and were cultured for diagnosis of cholera
following standard procedures. Inspection of the data suggested
the existence of two distinct regions within Dhaka: one com-
prising the older core districts and the other, the newer urban
periphery (Fig. 1). Cholera attack rates in the core districts are
higher than in the periphery (Fig. 2 B and C and Movie S1).
Ourmodel assigns a probability to transitions in cholera rate for

each thana each month. We categorize the cholera attack rate in
each thana into “no cholera,” “low cholera,” and “high cholera,”
using a criterion described in section S1. Themodel is thus a finite-
state Markov chain (20, 21). We allow the transition probabilities
to depend on temporal and spatial covariates as well as the state of
neighboring thanas. Because all thanas’ transitions must be con-
sidered simultaneously, the model is a multidimensional in-
homogeneous Markov chain (MDIMC), schematized in Fig. 3.
Eachmonth, each thana is in one of three states. In the nextmonth,
each thana probabilistically changes its state according to transi-
tion probabilities that depend on temporal and spatial covariates
as well as the state of neighboring thanas. We enforced the total-
probability constraint through choice of parameterization and use
of the “barrier method”; we verified that the conclusions sum-
marized below are all robust to alternative parameterization (see
section S2 and section S3 for a description of the barrier method
and alternative parameterization analysis, respectively).
The model captures the inter- and intraannual dynamics of

cholera in each thana. Likelihood-ratio tests can be used to test the
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statistical significance of covariates. Although binning the original
numerical data into categories discards some information, it fo-
cuses attention on levels of variation that are relevant to public
health. Comparison of the binned and original data shows that the
percentiles of these two data sets match well and that loss of dif-
ferentiation is present only for large outbreaks and rare extreme

outbreaks (see Figs. S1 and S2 and Movie S2 for an animation of
the binned data). A detailed description of the model and specific
analyses performed can be found in sections S2–S4, Figs. S3–S5,
and Tables S1 and S2.
We identified significant spatial effects at two different scales.

The first effect corresponds to the core–periphery distinction
shown in Fig. 1. Cholera transmission dynamics (as indicated by
model transition matrices) differ significantly between core and
peripheral thanas (P< 0.0001).The second effect ismore local:We
found a significant spatial effect between neighboring thanas (P <
0.05), implying propagation of outbreak risk from thana to thana.
The evidence for two distinct regions within the city raises the

question of the interaction between climate forcing and the spatial
dimension of disease dynamics. Consistent with previous studies for
an earlier period (4, 8), we find that ENSO per se is a significant
driver of cholera outbreaks in Dhaka (P < 0.0001). Warming in the
Pacific precedes an effect on disease dynamics by 11moas indicated
by the lag with highest likelihood. Importantly, we find a signifi-
cantly greater effect of ENSO in the core relative to the periphery
(P < 0.05). Thus, even though the city covers only 160 km2, there is
important heterogeneity in cholera’s sensitivity to this global driver.
Previous studies of temporal cholera patterns have suggested

that flooding may mediate the effect of ENSO locally (2, 22–24)
via a dynamical linkage between sea surface temperature (SST)
in the Pacific and regional precipitation in Bangladesh (16).
Flooding events occur each summer in this region, vary in
magnitude from year to year, and can be extensive in Dhaka. We
identify a significant correlation between flooding and cholera
cases both during and after the monsoon season (P < 0.01). We
further investigated the interaction between the effect of flood-
ing and region of the city and found the correlation varied

Fig. 1. The thanas (administrative subdivisions) of Dhaka. We divided tha-
nas into two groups: older, core thanas (orange) and newer, peripheral
thanas (blue).
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Fig. 2. Cases of cholera per 10,000 in Dhaka (in black) superimposed to an index for the El Niño southern oscillation (ENSO) (in blue) and annualized flood extent
at the level of the country as a whole (red). (Top) The whole city of Dhaka; (Middle) the core, older region of the city; (Bottom) the peripheral, new regions. The
interannual variability in the cholera rate is coherent with that of the climate covariates, especially for the older thanas and for the very large El Niño of 1998.
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significantly spatially (P < 0.01). For example, flooding correlates
strongly with the midmonsoon season cholera level within the
core regions of the city (r = 0.764 for July), but is essentially
uncorrelated within the peripheral regions (r = −0.009 for July).
Moreover, in the 2 y with most extensive flooding—1998 and
2007—there was earlier onset of the fall cholera season, which
suggests that flooding may not only increase cholera attack rates
but also hasten the postmonsoon epidemic peak. Statistical evi-
dence for a seasonal shift is limited, however, by the low number
of extreme events in these data.
Importantly, the remote forcing of Dhaka cholera by SST in

the Pacific at a relatively long lead time (11 mo) affords an op-
portunity for anticipating outbreaks using model-based forecasts.
To assess our model’s prediction performance, we took a cross-
validation approach, sequentially removing 1 y of data, refitting
the model to the remaining data, and then simulating 11 mo into
the future to assess forecasting accuracy. Fig. 4 shows that the
predicted rate of cases is highly coherent with the observed rate.

We checked that the model fulfills the basic requirement for
forecasting skill, namely that it outperforms the simpler model
given by the seasonal means (25); our model’s 11-mo predictions’
sum of squared error (SSE) is 79% that of the seasonal mean
model. When we remove months of the year with consistently
low cholera (December through March), our model’s SSE is 75%
that of the seasonal model. We also considered a more stringent
benchmark based on ENSO. Specifically, we adjusted the sea-
sonal prediction according to the linear relationship between
ENSO and the cholera anomaly. Not surprisingly, this bench-
mark improves on the strictly seasonal model: Its SSE is 84% of
that of the seasonal mean model. Our model outperforms the
stricter benchmark, with an SSE 12% smaller during months
when cholera is present.
More relevant to public health is the model’s skill at predicting

the chance of a large outbreak. We evaluated the performance of
our model at this task. Specifically, we used the model to predict
the chance of monthly cholera incidence exceeding its 75th
percentile in 11 mo. Thus, for example, Fig. 4, Left Inset shows
the distribution of model forecasts for October 1998 based on
November 1997 data. Although the mean prediction differs from
the observation, almost all (>99%) model simulations resulted in
large events. Thus, our model would have, with high confidence,
predicted a large outbreak in October 1998 due to the large
preceding El Niño event. Fig. 4, Right Inset repeats this hindsight
analysis for May 2003 (using data from June 2002). Here, we find
a reduced, but still large (∼87%) probability of large outbreak.
By construction, our model tends to underestimate the size of
outbreaks: We find that an outbreak probability >26% (and not
50%) should be interpreted as an indication of risk (see section
S5 and Figs. S6 and S7).
Using the 75th percentile definition of a large event, we find

false positive and false negative rates of ∼25%, but that the
chance of observing an outbreak when none is predicted is only
10% (10/99 mo). Section S6 contains further discussion of our
probabilistic forecasts and their interpretation.
An 11-mo lead time makes a cholera early-warning system

based on the MDIMC model and ENSO practically operational.
A short lead-time model with an accurate flooding index would
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Fig. 3. Schematic representation of MDIMC model. Thanas of the same hue
are governed by the same rules. Each thana can be in one of three states (0,
1, or 2 for no cholera, low cholera, or high cholera, respectively) as indicated
by the different shades within each of the two groups. Probability of tran-
sitions between states from one month to the next can vary according to
season, district group, state of neighboring districts, and climate covariates.
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Fig. 4. Eleven-month predictions (blue dots) with empirical estimate of 95% confidence interval (yellow shaded region) vs. the observed data (black line).
(Left Inset) Distribution of predictions for October 1998. (Right Inset) Distribution of predictions for May 2003.
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allow updating of 11-mo predictions immediately before and
during the postmonsoon season.
Because it is annualized, theflooding index considered here is of

limited practical application to prediction.However, becausemost
of theflooding occurs during themonsoon season, this index is well
correlated with cholera throughout the city in themonsoon season
(r=0.91; Fig. S8). Our results suggest that a complementary short
lead-time model based on an accurate monthly flooding index
would allow updating of long-range predictions 1–2mo before the
onset of the postmonsoon cholera season. The evidence that the
effect of flooding on cholera is fully felt only 4–7 wk after initial
flooding (23) further supports this suggestion. Our results suggest
too that efforts to forecast flooding itself are likely to prove valu-
able for cholera early warning.
Because our modeling framework permits assessment of the

effects of spatial and temporal variables on disease in a straight-
forward and effective way, it should prove useful for investigations
of other diseases in other large cities. It complements previous
approaches to the larger-scale spatiotemporal dynamics of in-
fectious diseases inspired by metapopulation models in ecology
(26, 27). Indeed, the approach described here can be viewed as an
extension of presence/absence models (26) to more than two
states. As with the earlier approaches, the MDIMC framework
is simple, flexible, and straightforward to fit by maximum likeli-
hood. The likelihood-ratio test affords a convenient means of
discounting model complexity. Our modeling framework also
complements more recent efforts to model the detailed spatial
spread of cholera in Haiti at the shorter timescales of an in-
dividual outbreak following the introduction of the disease into
a fully susceptible population (28–30). Models incorporating
spatial effects of “gravity” type have proved useful in this context
(31, 32); their utility in the context of urban and endemic cholera
remains to be seen. More generally, spatial structures more
complex than the nearest-neighbor effect we have considered
here can be incorporated and tested within the MDIMC frame-
work. On another front, we are currently exploring more sys-
tematic methods of identifying spatial heterogeneities of the
type described here. Specifically, we are developing statistical
approaches for the objective identification of regions sharing
similar dynamics. Although more sophisticated models yielding

more skillful predictions are without doubt possible for cholera,
our results—the most skillful forecasts to date at lead times of
practical utility—make unequivocally clear that such forecasts
must account appropriately for heterogeneities at local scales.
Interestingly we found that the action of the global driver,

ENSO, on cholera in Dhaka is locally differentiated: The sen-
sitive city core acts to couple climate variability to interannual
variation of disease and propagates the risk of disease to the rest
of the city. The partition of the city into two dynamically distinct
regions maps well onto the distribution of demographic param-
eters closely linked to socioeconomic conditions: The core dis-
tricts are largely those with the highest population density, the
highest number of the poorest kind of housing, and the greatest
reliance on municipal tap water (as opposed to wells; Fig. S9).
The existence of a sensitive core is consistent, too, with the well-
established roles of sanitary conditions and access to clean water
as key risk factors for a fecal–oral disease such as cholera. For
these reasons, we hypothesize that the flooding-induced break-
down of sanitary conditions is likely the principal mediator of the
effect of climate on the postmonsoon peak in the core districts of
Dhaka. More generally, our results show that spatial structure
within a city is central not only in the fine-scale structure of
transmission classically illustrated by Snow’s famous map of
London’s 1854 cholera epidemic (19), but also to the disease’s
dynamical response to climate forcing at the megacity scale.
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