-

Accurate sampling and deep sequencing of the HIV-1
protease gene using a Primer ID

Cassandra B. Jabara®"<, Corbin D. Jones*, Jeffrey Roach®, Jeffrey A. Anderson

b,c.f,1 b,c,9,2

, and Ronald Swanstrom

2Department of Biology, PLineberger Comprehensive Cancer Center, “University of North Carolina Center for AIDS Research, “Carolina Center for Genome
Sciences, *Research Computing Center, 'Division of Infectious Diseases, and Department of Biochemistry and Biophysics, University of North Carolina, Chapel

Hill, NC 27599

Edited by John M. Coffin, Tufts University School of Medicine, Boston, MA, and approved November 8, 2011 (received for review June 24, 2011)

Viruses can create complex genetic populations within a host, and
deep sequencing technologies allow extensive sampling of these
populations. Limitations of these technologies, however, potentially
bias this sampling, particularly when a PCR step precedes the se-
quencing protocol. Typically, an unknown number of templates are
used in initiating the PCR amplification, and this can lead to un-
recognized sequence resampling creating apparent homogeneity;
also, PCR-mediated recombination can disrupt linkage, and differ-
ential amplification can skew allele frequency. Finally, misincorpora-
tion of nucleotides during PCR and errors during the sequencing
protocol can inflate diversity. We have solved these problems by
including a random sequence tag in the initial primer such that each
template receives a unique Primer ID. After sequencing, repeated
identification of a Primer ID reveals sequence resampling. These re-
sampled sequences are then used to create an accurate consensus
sequence for each template, correcting for recombination, allelic
skewing, and misincorporation/sequencing errors. The resulting
population of consensus sequences directly represents the initial
sampled templates. We applied this approach to the HIV-1 protease
(pro) gene to view the distribution of sequence variation of a com-
plex viral population within a host. We identified major and minor
polymorphisms at coding and noncoding positions. In addition, we
observed dynamic genetic changes within the population during in-
termittent drug exposure, including the emergence of multiple re-
sistant alleles. These results provide an unprecedented view of a
complex viral population in the absence of PCR resampling.

drug resistance | genetic diversity | high throughput sequencing | HIV |
population dynamics

High throughput sequencing allows the acquisition of large
amounts of sequence data that can encompass entire
genomes (1-4). With sufficient amounts of starting DNA, PCR is
not needed before the library preparation step of the sequencing
protocol. Sequencing miscalls inherent in high throughput se-
quencing approaches are resolved using multiple reads over a
given base.

Deep sequencing can also capture the genetic diversity of viral
populations (5-10), including intrahost populations derived from
clinical samples. This approach offers the opportunity to view
population diversity and dynamics and viral evolution in un-
precedented detail. One place where the presence of minor
variants is of immediate practical importance is in the detection
of drug-resistant variants. Standard bulk sequencing methods
typically miss allelic variants below 20% in frequency within a
population (11, 12). Alternative assays can detect less abundant
variants that confer drug resistance, but require a priori selection
of sites and variants (13-23). Thus, deep sequencing approaches
offer the opportunity to identify minor variants associated with
resistance de novo with the goal of understanding their role in
therapy failure.

Although screening for drug-resistant variants is a practical
application of the deep sequencing technology, this technology
also addresses broader questions of sequence diversity and
structure for a complex population like HIV-1. However, the
relatively high sequencing error rates of these technologies
artificially increase genetic diversity, which confounds the detec-
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tion of natural genetic variation especially when sequencing
a highly heterogeneous viral population. Moreover, the use of
PCR to amplify the amount of material before starting the se-
quencing protocol adds the potential for several serious artifacts
(24-27): First, nucleotide misincorporation by the polymerase
during many rounds of amplification artificially increases se-
quence diversity; second, artifactual recombination during am-
plification occurs when premature termination products prime
a subsequent round of synthesis, which can obscure the linkage of
two sequence polymorphisms (28, 29); third, differential amplifi-
cation can skew allelic frequencies; and fourth, PCR amplification
can create a significant mass of DNA from a small number of
starting templates, which obscures the true sampling of the orig-
inal population as these few starting templates/genomes get re-
sampled in the PCR product, creating sequence resampling rather
than the observation of independent genomes (30). Overall, these
biases artificially decrease true diversity while introducing arti-
factual diversity and also skew allelic frequencies, which can lead
to incongruence between the real and observed viral populations.
Most investigators use statistical tools to attempt to control for
the types of sequencing errors that are associated with each se-
quencing platform.

To make deep sequencing useful for complex populations, it is
necessary to overcome PCR resampling, which is mistaken for
sampling of the original population, and PCR and sequencing
errors, which can be mistaken for diversity. As nucleotide mis-
incorporation is largely random across sites and template
switching/recombination is more likely to occur in the later cycles
of a PCR (31), strategies that create a bulk or consensus se-
quence for each sampled template will call the correct base at
each position. One approach to sampling highly heterogeneous
populations, such as the HIV-1 env gene, is through endpoint
dilution titration of the template before nested PCR, such that
a single template is present in each PCR amplification (32-35).
In addition to masking the misincorporations, PCR-mediated
recombination produces recombinant templates identical to the
parental sequence. Although highly accurate, this technique is
labor-intensive and, as population sampling is dependent on the
number of templates sequenced, this methodology does not lend
itself to the identification of minor variants or to understanding
the structure of a complex population, nor is it easily adaptable
to a high throughput approach.

We have developed a high throughput technique for directly
resolving the genetic diversity of a viral population. This tech-
nique avoids the recording of PCR and sequencing errors that
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create artificial diversity, and corrects for artificial allelic skewing
and PCR resampling, revealing the original genomes in the
population. This is accomplished by embedding a degenerate
block of nucleotides within the primer used in the first round of
c¢DNA synthesis. This creates a random library of sequences
within the primer population. As primers are individually used
out of this library, each viral template is copied such that the
complement (cDNA) now includes a unique sequence tag, or
Primer ID. This Primer ID is carried through all of the sub-
sequent manipulations to mark all sequences that derive from
each independent templating event, and PCR resampling then
becomes over-coverage for each template to create a consensus
sequence of that template. Using this approach, we were able to
directly remove error, correct for PCR resampling, and capture
the fluctuation of minor variants in the viral population within a
host. We also resolved minor drug-resistant variants below 1% in
frequency before the initiation of antiretroviral therapy, and
were able to correlate these variants with the emergence of drug
resistance. The value of this strategy and its applicability to other
deep sequencing protocols has been further emphasized through
a recent parallel effort by Kinde et al. in short read sequencing of
human genomic material (36).

Results

A cDNA Synthesis Primer Containing a Primer ID Can Be Used to Track
Individual Viral Templates. A population of cDNA synthesis pri-
mers was designed to prime DNA synthesis downstream of the
HIV-1 protease (pro) gene, with the primer containing two ad-
ditional blocks of identifying information (Fig. 14). The first
block was a string of eight degenerate nucleotides that created
65,536 distinct sequence combinations (4%), or Primer IDs. This
region was flanked by an a priori selected three nucleotide bar-
code, creating a sample identification block so that multiple
samples could be pooled together in a sequencing run (7). A
designed sequence at the 5’ end of the cDNA primer was used for
subsequent amplification of the cDNA sequences by nested PCR.

Viral RNA was extracted from three longitudinal blood plasma
samples from an individual infected with subtype B HIV-1 who
was participating in a protease inhibitor efficacy trial (M94-247)

A reverse complement Primer ID _Barcode _PCR priming site
D NNN NNN' NN BAR primer 5’
pro "pel
VEN:'3/

B

Raw sequence reads ~_Primer ID Barcode
CATAATAC TAG

CATAATAC TAG

Sample T1 T2 T3

f Ritonavir - - +
| CATAATAC TAG
CATAATAC TAG Total 20,429 24,658 27,075
} | CATAATAC TAG reads

CATAATAC TAG Consensus 857 1,609 2,213

sequences

Consensus sequence CATAATAC TAG
Fig. 1. Tagging viral RNA templates with a Primer ID before PCR amplifica-
tion and sequencing allows for direct removal of artifactual errors and iden-
tifies resampling. (A) A primer was designed to bind downstream of the
protease coding domain. In the 5’ tail of the primer, a degenerate string of
eight nucleotides created a Primer ID, allowing for 65,536 unique combina-
tions. An a priori selected three nucleotide barcode was designed for the
sample ID. Finally, a heterologous string of nucleotides with low affinity to
the HIV-1 genome was included in the far 5" end for use as the priming site in
the PCR amplification. (B) PCR biases and sequencing error are introduced
during amplification and sequencing of viral templates. Repetitive identifica-
tion of the barcode and Primer ID allow for tracking of each templating event
from a single tagged cDNA. As errors are minor components within the Primer
ID population, forming a consensus sequence directly removes them, and
corrects for PCR resampling. (C) HIV-1 RNA templates isolated from plasma
samples from two pre- and one postintermittent ritonavir drug therapy were
tagged, amplified, and deep sequenced. Tagged sequences containing full-
length protease were used to create a population of consensus sequences
when at least three sequences contained an identical barcode and Primer ID.
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(ref. 37; Fig. S1). Approximately 10,000 copies of viral RNA from
each sample were used in a reverse transcription reaction for
cDNA synthesis and tagging using the Primer ID. The cDNA
product was separated from the unused cDNA primers, and then
the viral sequences were amplified by nested PCR and sequenced
on the 454 GS FLX Titanium. Our data were distilled from total
reads of 20,429, 24,658, and 27,075 for the three time points (T1,
T2, and T3, respectively). Raw sequence reads were assessed for
the cDNA tagging primer and a full length pro gene sequence
(297 nucleotides long representing 99 codons), and when three or
more sequences within a sample contained an identical Primer
ID, a consensus sequence was formed to represent one sequence/
genome in the population (Fig. 1 B and C and Fig. S2).

With these manipulations we generated 857, 1,609, and 2,213
consensus sequences, respectively, for the three time points (Fig.
1C). The median number of reads per Primer ID was 6, ranging
from 1 to 96 (Fig. S34). The distribution of identical Primer IDs
did not form a normal distribution as would be expected if all
templates were amplified equally. We saw a higher than expected
number of single reads of Primer IDs; although we do not know
the reason for this, such a result is consistent with different cDNA
templates entering the PCR at different cycles. Because each
template is individually tagged the different number of reads is an
indication of allelic skewing, as noted this can be nearly 100-fold.
In an analysis of a number of low abundant variants we saw a 20-
fold range of representation through allelic skewing, with half of
the variants up to 2- to 3-fold more abundant than the mean, and
the other half up to 5- to 10-fold less abundant (Fig. S4).

We conservatively estimate the combined in vitro error rate of
the cDNA synthesis step by reverse transcriptase (RT) and the
first strand synthesis by the Taq polymerase to be on the order of
1 mutation in 10,000 bases, or approximately one mutation per
33 pro gene sequences, based on an RT error rate of 1 in 22,000
nucleotides (38) and a Taq polymerase error rate of 1.1 in 10,000
nucleotides (39) but reduced by half because only the first round
of synthesis is relevant and a misincorporation at this step gives a
mixture. Later rounds of Taq polymerase errors should be largely
lost through the creation of the consensus sequence. Thus, we
would expect 139 sequence misincorporations to be present in
the data set of 4,679 total sequences representing T1+T2+T3,
and with an excess of transitions. These would be expected to
occur as 113 single copy single-nucleotide polymorphisms
(SNPs) and 13 SNPs that appeared twice. We observed 98 single
copy SNPs in the data set with a threefold excess of transitions,
and with three-fourths of them being coding changes, which is
consistent with random mutations. We expect there to be low
frequency SNPs in the viral population from rare but persistent
variants that are fortuitously sampled, and from the intrinsic
error rate of viral replication (the error rate during one round of
viral replication would represent approximately one mutation
per 150 pro gene sequences; ref. 24). However, we cannot dis-
tinguish real polymorphisms from the inferred background error
rate associated with the first and second rounds of in vitro DNA
synthesis. Thus, we have limited the analysis of population di-
versity to SNPs that appeared at least twice in the data set (i.e.,
linked to at least two separate Primer IDs), either at the same
time point or at multiple time points in the overall data set
(Table S1). We have not corrected the data set for the presumed
13 SNPs that appeared twice that are expected to be present due
to error even though this represents 33% of all of the SNPs that
appeared twice (13 of 39). Overall, 80% of the SNPs (i.e., any
sequence change from the consensus that appeared at least
once) in the total data set of 72,162 sequence reads were re-
moved as error. Also, 60-65% of the sequence reads were
revealed as resampling. Finally, allelic skewing of up to nearly
100 fold was corrected (Fig. S4).

Longitudinal Sequencing of the HIV-1 Protease (pro) Gene in an
Untreated Individual Reveals Dynamic Changes in Genetic Variation.
We analyzed the sequences of the pro gene populations to assess
allelic frequency at the two sampled time points, separated by 6 mo
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and before ritonavir (37) drug selection (Fig. S1). The combined
sequence population from the two time points (T1 and T2) before
therapy consisted of 492 unique pro gene sequences with 155
SNPs. About 4% (i.e., 21) of these unique gene sequences were
above 0.5% abundance, and these 21 unique gene sequences
represented 67% of all sampled genomes, with the genome rep-
resenting the overall consensus sequence comprising 21% of the
total population (Fig. S5 4 and B). The relatively small number of
unique gene sequences above 0.5% frequency in the population
contained only 7% of the 155 detected SNPs. Thus, a large pro-
portion of the viral population’s diversity was associated with
a large number of pro gene sequences that were present at low
abundance (Fig. S5 4 and C); conversely, the majority of the
population consisted of a small number of SNPs. Similarly, Taji-
ma’s D statistic for T1 and T2 in this individual were —2.35 and
—2.31, respectively (Table S2), indicative of a population structure
that has an excess of low frequency polymorphisms. This pattern is
consistent with but more extreme than that observed in a prior
shallow intrahost survey in which a metapopulation model was
proposed to explain the pattern of Tajima’s D statistic (40). Fig. 2
shows the encoded amino acid variability and synonymous nucle-
otide variability present in two or more individual genomes across
the 99 codons in the pro gene for these samples.

Synonymous variability. There were 57 codons (with 63 variants/
SNPs) that contained synonymous diversity that appeared in
both pretherapy time points, and 30 codons (with 31 variants)
that appeared in only one time point. Taken together, 75 of the
99 codons contained some level of synonymous diversity (Fig. 2
and Table S1). Of the 63 variants that were present in both
untreated time points, 92% were transitions. Of the 31 variants
that appeared in only one of the time points, 71% were tran-
sitions, representing a significantly smaller fraction of transitions
than among the synonymous variants that appeared at both time
points (P = 0.012; Fisher’s exact test). This suggests that syn-
onymous transversions are selected against over time.
Nonsynonymous variability. There were 26 codons (28 variants) that
contained coding variability that appeared in both pretherapy
time points, and an additional 28 codons (33 variants) with
nonsynonymous changes found in only one of the time points.
Taken together, 49 of the 99 codons contained some level of
nonsynonymous diversity (Fig. 2 and Table S1). For the 28
nonsynonymous variants detected at both time points, 22 were
transitions, and these mostly represented conservative amino
acid changes. In the case of synonymous mutations two-thirds of
the variants were present at both time points, whereas in the case
of nonsynonymous mutations, less than half were present at both
time points (P = 0.012; Fisher’s exact test). This observation

suggests that, at this level of sequence sampling, we are able to
see a difference in stability within the population in comparing
synonymous and nonsynonymous substitutions.

Genetic fluctuation. We compared the stability of minor SNPs
present at both T1 and T2. A total of 14 of the 91 SNPs (syn-
onymous and nonsynonymous that appeared at both time points)
had 51gn1ﬁcant changes in abundance between the two time
points (y* test with a false discovery rate of 0.05). Of the 14 SNPs
with significant changes in abundance, 11 had a decrease in the
abundance, with an average decrease around 7.5-fold. There
were three SNPs that had a significant increase in abundance, all
of which were synonymous, ranging from a 4- to 47-fold increase.
Although a majority of SNPs that changed in abundance had
a decrease in the frequency between T1 and T2, on a population
level, there was not a large change in diversity between the two
time points (T1 = = 0.0080, T2 = = 0.0079; Table S2). However,
the trend of increased abundance at the three sites may be driven
by selection of cryptic epitopes in an alternative reading frame
(see Discussion).

Significance of rare variants. We observed two extremes in terms of
biological relevance in the untreated population among variants
detected as at least two independent sequences across the three
time points. At one extreme was the detection of nonviable
genomes in the form of a coding variant at position 25, which
mutates the active site of the protease, and the detection of ter-
mination codons at positions 42 and 61 (Table S1). At the other
extreme was the detection of the L.90M and V82A variants (at
time points 1 and 2, respectively) that became the major resistance
populations after ritonavir therapy was initiated (see below, Fig.
3); in addition, V82I and V82L were detected at T2. We found
two more examples of primary resistance mutations at low abun-
dance, K20R at all three time points and M46I at two time points,
but these did not grow out in the presence of ritonavir (Fig. 3 and
Table S1). Similarly, fitness compensatory mutations were also
detected at low abundance (L10F, M361, L63P, A71T, and V77I),
all below 1%, and only L63P increased (modestly) in abundance
after exposure to ritonavir. More generally, of the 28 substitutions
most closely associated with protease inhibitor drug resistance (41,
42), we found 10 such variants, half of which were detected at both
pretherapy time points (Table S1).

Assessment of Linkage Disequilibrium (LD) Within the HIV-1 pro Gene
Population. We measured LD for the sequences in the T1 and T2
populations. We identified very few examples of LD at these two
time points using the Fisher’s exact test with a Bonferroni cor-
rection. Of the 103 polymorphic sites in T1, only three pairs were
in significant LD. Similarly, in T2 with 118 polymorphic sites, only
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Fig. 2. Frequency of codon variation across all 99 positions in protease over three time points. Within a codon position, the first two bars represent untreated
time points 1 and 2, respectively. Bars 3 and 4 are the third time point split based on the presence or absence of the resistance mutations to ritonavir. Bar 3 is
the population of susceptible genotypes (defined as not V82A, 184V, or L90M), and bar 4 is the major resistant variant, V82A, population. Upward facing bars
are nonsynonymous changes (scale in regular typeface), and downward facing bars are synonymous changes (scale in bolded typeface). Within a codon

position, different shading represents different SNPs.
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four pairs displayed significant LD. A positive D (i.e., linkage) was
found for six of the seven pairs in the untreated populations, with
one pair associating at a lower than expected frequency. Overall,
LD did not appear to play a significant role in defining the pro gene
population in this late stage individual, with only a single pair of
SNPs showing linkage in both of the time points.

Detection of Multiple Drug-Resistant Alleles After Exposure to Selec-
tion by a Protease Inhibitor. The third plasma sample we examined
from this subject was from a time point (T3) after the initiation
of therapy with the protease inhibitor ritonavir. It is apparent
from the cyclical pattern of viral load and self-report that this
person had incomplete adherence to the drug regimen (Fig. S1).
Thus, we expected selective pressure from the drug to disrupt the
viral population but not to select for the more homogeneous
populations that are associated with virologic failure solely due
to the appearance of drug resistance. The choice of this sample
allowed us to look at the evolution of resistance and the per-
sistence of polymorphisms in both the resistant and nonresistant
portions of the population. Over two-thirds of the sequences
from T3 carried a resistance mutation, with ~50% of the
sequences carrying the V82A allele, the most common resistance
mutation associated with resistance to ritonavir (43).

There were two divergent paths for population diversity at the
third time point. For the large V82A-containing population
there was a general trend of decreased diversity (x = 0.0069),
consistent with the expected bottleneck associated with fixing a
drug resistance mutation. In contrast, the diversity in the coex-
isting drug sensitive population was higher than the drug-re-
sistant population and comparable to the earlier time points (t =
0.0082; Table S2).

Although V82A is the most common resistance mutation asso-
ciated with ritonavir resistance, the 184V allele and L90M allele can
also be selected and in combination with V82A can confer a higher
level of resistance (44). We detected all three of these distinct drug
resistance alleles in the T3 sequence population, collectively rep-
resenting 69% of the total T3 population: V82A (50% of the
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Fig. 3. Phylogenetic representation of protease population derived from deep
sequencing with a Primer ID. A Neighbor-Joining tree was constructed from
sequences derived from all three time points and colored based on susceptibility
to ritonavir. Blue colored taxa represent susceptible variants (defined as not
V82A/I/LJF, 184V, or L90M). Red colored taxa represent variants containing the
major ritonavir resistant variant, V82A. Pink colored taxa represent the minor
resistant variants V82I/L/F. Green and orange colored taxa represent the minor
resistant alleles L9OM and 184V, respectively. Within a color, color brightness is
correlated with sample time. Dark green and red arrows point to pre-RTV low-
abundance sequences that clonally amplified to their respective clades.
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population), 184V (5%), and L90OM (14%). These three resistance
mutations appeared on different genomes, with only a single ex-
ample of a sequence with two of these resistance mutations (V82A/
L90M). In total, there were 136 unique sequences carrying the
V82A mutation (all with the GCC Ala codon), 29 unique
sequences carrying the 184V mutation (all with the GTA Val co-
don), and 36 unique sequences carrying the L.90M mutation.

There were also small groups of pro gene sequences in T3 that
appear to be the result of selection by ritonavir. Two other
substitutions at position 82, V821 and V82L, were detected at a
low level at T2 and also seen at T3, but now representing 1.3%
and 1.1% of the population. V82F was also detected as 0.14% of
the population at T3. Finally, the compensatory mutation L63P
was detected at T1 and modestly expanded at T3, with half of the
sequences in the V82A background (Table S2).

An important issue is the number of times each of the resistance
mutations evolved in the presence of drug selection. The data are
consistent with the major V82A variant (42% of the V82 sequen-
ces) growing out from the preexisting variant detected at T2. For
the six genomic variants of V82A that each accounted for greater
than 2.5% of the V82A population, all were on the background of
the consensus except for the three different polymorphisms at
positions 19 and 70 (Fig. S6B). In total, these represented ~71% of
the V82A population and presumably arose via recombination with
the founding sequence (Fig. S64). The remaining 29% of the
V82A-containing genomes vary in relative abundance from 2.3%
to 0.1%, including over 100 unique sequences that each appeared
once but to a large extent represent the variation seen at T1 and T2
added on to the predominant V82A genotypes.

The composition of the 184V and L90M populations were
similar to the V82A population. In each case there was a pre-
dominant population defined by a 5’ polymorphism: the major
L90M lineage (69% of the L.90M sequences) was on the G16G/
L19V background (Fig. S6 C and D), whereas the major 184V
lineage (35% of the 184V sequences) was on the consensus se-
quence background for the 5’ polymorphisms (G16/L19) (Fig. S6
E and F). The next three most abundant I84V lineages, repre-
senting 28% of the 184V sequences, differed from the most
abundant sequence by other 5’ polymorphisms (Fig. S6F). Sim-
ilarly, the next three most abundant L90M lineages, representing
14% of the L90M sequences, differed from the most abundant
L90M sequence by 5’ polymorphisms (Fig. S6D). With the ex-
ception of the 5" polymorphisms and the resistance mutations, all
eight of these lineages were in the consensus sequence back-
ground. The remaining sequences are accounted for by the low
level variability added onto these major lineages.

As noted above, the major V82A lineage was detected at T2 (as
a single genome), and this population was likely clonally amplified
to form the large proportion of the drug-resistant population seen
at T3 (Fig. 3). L90M was also detected on the same pro gene
background in the therapy-naive environment at T1, and was
likely also clonally amplified to form the large proportion of the
L90M sequences (Fig. 3 and Fig. S6D). In contrast, V82I and
V82L were detected in the pretherapy time points on background
sequences that did not become the predominant sequence when
these mutation modestly expanded at T3, although these two
populations have complex mixtures of the 5’ polymorphisms,
which may indicate low level persistence and recombination
during the period of drug exposure. Finally, I84V and V82F were
not detected in either pretherapy population (Table S1).

Discussion

Complex viral populations can form within a host (45-47). High
throughput sequencing technologies allow for extensive sampling
of these populations (1-3, 5, 22, 48). However, these technologies
are severely limited when a PCR amplification precedes the se-
quencing protocol, as each sequence read has the potential to be
reported as an independent observation without properly con-
trolling for PCR resampling, PCR-mediated recombination, al-
lelic skewing, PCR-introduced misincorporations, and sequencing
errors. When working with pathogenic agents in clinical samples,
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the number of pathogen genomes in the sample is limited, and the
use of PCR can obscure the quality of the sampling by creating a
large amount of DNA from a relatively small number of starting
templates. This can create artificial homogeneity, inflate estimates
of segregating genetic variation, skew the distribution of alleles in
the population, and introduce artificial diversity.

We have developed a strategy that allows each sampled tem-
plate to be tagged with a unique ID by a primer that has a de-
generate sequence tag incorporated during the primer oligonu-
cleotide synthesis (Fig. S7). This tag can then be followed through
the PCR and the deep sequencing protocol to identify sequenc-
ing over-coverage (resampling) of the individual viral templates.
Because the Primer ID allows for the identification of over-cov-
erage, this can then be used to create a consensus sequence for
each template, avoiding both PCR-related errors and sequencing
errors (Fig. S8). In addition, the number of different Primer IDs
reflects the number of templates that were actually sampled. This
allows a realistic assessment of the depth of population sampling
and makes it possible to apply a more rigorous analysis of minor
variants by correcting the allelic skewing during the PCR.

We tested the Primer ID approach by sequencing the HIV-1
protease coding domain at three time points in a subject who was
intermittently exposed to a protease inhibitor between the second
and third time points. A key feature of our approach is the re-
moval of fortuitous errors and accounting for resampling, which
results in a dramatic reshaping of the original data set of 72,162
reads. Other approaches that rely on statistical modeling have
been developed to deal with the problem of high sequencing error
rates associated with deep sequencing technologies (49-51). The
use of the Primer ID to create consensus sequences resulted in
the removal of 80% of the unique sequence polymorphisms
(defined as a change in the consensus without regard to frequency
of appearance) in the data set. Similarly, allelic skewing was
dramatic among the sampled sequences, in most cases ranging
from 2- to 15-fold but going up to nearly 100-fold. Although the
Primer ID reveals such skewing and helps correct it, this is clearly
a poorly controlled feature of PCR amplifications that can dra-
matically affect the observed abundance of complex populations,
especially the minor variants. Allelic skewing may still persist if
the cDNA primer or the upstream PCR primer binds differen-
tially among the templates, or if cDNAs enter the PCR amplifi-
cation in later rounds and are discarded because they do not
result in at least three reads to allow a consensus sequence to be
formed. Also, residual misincorporation errors by RT and in the
first round of PCR synthesis still limit the interpretation of
mutations that occur in the range of 0.01-0.1%. This problem is
not overcome with larger numbers of sequences. Given the low
diversity in these samples, we removed all substitutions that
appeared once because their number approximated the expected
number of residual sequence errors, and this resulted in a sensi-
tivity of detection in the range of 0.1% for SNPs that appeared
above the frequency of the residual sequence error rate.

Using the Primer ID approach, we were able to describe a
number of features of the protease sequence population, however
our results are from a single individual and therefore cannot be
generalized. First, a pooled analysis of two time points six months
apart showed that the variants present at greater than 0.5% in
abundance made up two-thirds of the total population but rep-
resented only 4% of unique genome sequences and contained
only 7% of the total unique sequence polymorphisms. About 60%
of the diversity was stable over both time points, with synonymous
SNPs maintained at a significantly higher proportion in the two
time points than nonsynonymous SNPs. Only 18% of the total
diversity represented nonsynonymous SNPs that were present at
both time points. However, our ability to assess persistence of
these sequences is limited by the depth of sampling, although we
feel we are approaching the practical limit of sampling with this
technology. We observed nonviable substitutions and estimate
that most of the SNPs that appeared once were the result of re-
maining method error. We found no pattern of conserved linkage
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among these SNPs, consistent with high levels of recombination
across the population.

Although the overall measurement of diversity (x) was similar
between the first two time points, we noted that the biggest
changes in SNP abundance between the two time points were in
three synonymous codon positions (L24L, K70K, and G73G).
These dynamic increases made these SNPs part of a larger group
of SNPs that accounted for 51% of the total sequences that were
otherwise identical to the consensus sequence (Q18Q, L191, L24L,
K70K, G73G, and Q18Q/L19I/L24L’). These SNPs also over-
lapped the major SNPs that defined subgroups of the resistant
variants (L19I; L19V; G16G/L19V). We considered the possibility
that there was a unifying feature of these SNPs. We found such a
feature in that all of these SNPs, both coding and noncoding, result
in changes in two relatively large alternative ORFs that lie at the
5" and 3’ ends of the pro gene. Alternative reading frames have
been suggested to generate cryptic CTL epitopes (52-54). In this
scenario, these abundant SNPs would represent various escape
mutants. Such selective pressures could explain the dynamic be-
havior of several of these SNPs between the first two time points.

After intermittent exposure to the protease inhibitor ritonavir,
we were able to identify six independent lineages of drug re-
sistance mutations. With the intermittent exposure in this par-
ticular subject, it was possible to see the major V82A lineage
most often seen with ritonavir resistance, but also significant
populations of 184V and L90M. We also saw minor populations
of V82I, V82L, and V82F. This mixed population of resistant
lineages likely represents the early stages of the evolution of
resistance, a conclusion supported by the minor appearance of
the L63P compensatory mutation and the complete absence of
154V, which is an often seen compensatory mutation for V82A.
We saw few examples of genomes with multiple resistance
mutations, although these would be expected after more exten-
sive selection (55, 56). We and others have previously examined
viral sequences that have been collected in large databases.
Typically, these sequences represent the single predominant se-
quence within an individual, and the use of these sequences
allows for assessment of interperson diversity. In the future, it
will be an interesting exercise to compare the conclusions
reached by examining viral diversity within a person to viral di-
versity between people; however more intraperson diversity
needs to be measured at this level of detail to allow comparison
of inter- versus intraperson diversity.

The presence of preexisting drug-resistant variants and their
role in therapy failure is of great interest, and accurate, deep
sampling of a viral population can add significantly to our un-
derstanding of this question. We were able to detect several
examples of drug-resistance mutations but only at a very low
level. Our ability to reliably detect these mutations is limited to
those that appear at a frequency of 0.1-0.2%, limited in part by
the low overall diversity in the population. We were able to see
examples of mutations that are typically seen only in the pres-
ence of drug selection. However, the detection was usually as one
genome at two time points or two genomes at one time point.
This was also the level of detection of active site mutations in the
protease and of termination codons, which must represent either
transient viral genomes or residual misincorporation errors. In
two cases, we were able to observe the resistance mutation
(V82A and L90M) at pretherapy time points linked to the same
polymorphisms that were present on the variant that grew out
during drug exposure. Thus, although it is likely that we are
detecting relevant preexisting drug-resistant variants, these are at
the limit of detection and, if they are maintained at a steady-state
level, it is well under 0.5% abundance.

Most protocols of high throughput sequencing technologies
still require an initial quantity of DNA that necessitates an
upfront PCR step for many applications. The use of a Primer ID
will help clarify the sequencing products in any strategy that uses
an initial PCR step with its attendant error rate, recombination,
and resampling. In an independent effort Kinde et al. have de-
scribed an analogous approach in another deep sequencing
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setting (36). We believe a strategy that allows an initial tagging
of individual templates before PCR and subsequent sequence
analysis will be essential for understanding the true complexity
and diversity of genetically dynamic populations.

Materials and Methods

Viral RNA was isolated from blood plasma using the QIAmp Viral RNA kit
(Qiagen). cDNA was generated using SuperScript Ill Reverse Transcriptase (Invi-
trogen) using the primer (with Primer ID) as described. Following the reaction,
RNA in hybrid was removed by RNaseH treatment (Invitrogen). Unincorporated
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cDNA primer was removed, and the cDNA product amplified by PCR. Sequencing
was done using the 454 platform (Roche). Detailed methods for cDNA tagging,
amplification, and analysis are presented in the S/ Materials and Methods.
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