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Almost all RNAs can fold to form extensive base-paired secondary
structures. Many of these structures then modulate numerous
fundamental elements of gene expression. Deducing these struc-
ture-function relationships requires that it be possible to predict
RNA secondary structures accurately. However, RNA secondary
structure prediction for large RNAs, such that a single predicted
structure for a single sequence reliably represents the cor-
rect structure, has remained an unsolved problem. Here, we dem-
onstrate that quantitative, nucleotide-resolution information from
a SHAPE experiment can be interpreted as a pseudo-free energy
change term and used to determine RNA secondary structure with
high accuracy. Free energy minimization, by using SHAPE pseudo-
free energies, in conjunction with nearest neighbor parameters,
predicts the secondary structure of deproteinized Escherichia coli
16S rRNA (>1,300 nt) and a set of smaller RNAs (75-155 nt) with
accuracies of up to 96-100%, which are comparable to the best
accuracies achievable by comparative sequence analysis.

RNA secondary structure | prediction | ribosome | pseudo-free energy |
dynamic programming

ssentially all RNA molecules, even those with seemingly ran-

dom sequences, have the ability to form extensive internal base
pairs (1-3). This internal structure has profound consequences for
RNA function. At large scales, long RNAs fold to form complex
regulatory motifs like those found in the 5" and 3’ untranslated
regions of mMRNAs and viral genomes and in large structured RNAs
like ribozymes (4). On small scales, the extent of local structure over
regions spanning 10-50 nt modulates whether an RNA motif can
function in translation initiation by the ribosome, is accessible for
interaction with the splicing machinery, or binds small siRNAs and
miRNAs (5-7).

To understand these fundamental cellular processes, it must be
possible to reliably establish the structure of an RNA based on a
single sequence. Accurate RNA secondary structures reflecting a
single biological state are essential to deduce structure—function
relationships in the many RNAs (i) for which a structure cannot be
inferred by comparative analysis, (if) that switch between distinct
base-paired conformations to carry out their biological function, or
(iii) that are in the process of folding to a functional state.

Two broad classes of approaches are used to score RNA sec-
ondary structure predictions for single sequences: empirical free-
energy parameters (7) and knowledge based (8—10). The current
best-performing algorithms achieve a sensitivity (percentage of
known base pairs predicted correctly) of 40-70% (8—12). Prediction
accuracies are higher for shorter RNAs, for base pairs with low
contact order (the number of nucleotides that separate the paired
nucleotides), and when chemical modification information is used
to constrain folding (11, 12). Accuracies tend to be poor for longer
RNAs, and there are important short RNAs for which the predic-
tion sensitivity is zero (12, 13).

Results

Structure of Escherichia coli 16S rRNA, as Predicted by a Best-of-
Category Algorithm. We focused on 16S ribosomal RNA (rRNA)
because its structure is known and it contains numerous typical
RNA motifs (14, 15). We predicted the secondary structure of 16S
rRNA by using the program RNAstructure (11), whose algorithm
is among the most accurate currently available (8). RNAstructure
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finds the lowest free energy structure by using empirical thermo-
dynamic parameters fit against a large database of model structures
with known stability (11, 16). We also implemented a maximum
allowable distance between base pairs of 600 nt, because 99% of
base pairs in rRNAs involve pairings of less than this distance (12,
17). Throughout this work, we only consider the lowest free energy
structure output by RNAstructure because, even if more accurate
structures are predicted at higher folding free energies, there is no
general way to identify these as improved structures.

Prediction errors can be of 2 classes. Either known base pairs are
missed or base pairs are predicted that do not exist in the accepted
target structure. These errors are reported by 2 prediction accuracy
measures, sensitivity and positive predictive value (PPV; the per-
centage of predicted base pairs in the known structure). By using
thermodynamic information alone, prediction sensitivity and PPV
for E. coli 16S rRNA are 49.7% and 46.2%, respectively (errors are
illustrated with red x’s and lines; Fig. 1).

A critical objective of RNA secondary structure prediction is to
create models useful for developing biological hypotheses regarding
RNA function. This objective can be well met by defining the overall
topology of an RNA in terms of the constituent helices and their
connectivity. Thus, we also calculate the prediction sensitivity for
helices. There are 69 helices in the covariation structure for 16S
rRNA, defined as a continuous stack of 3 or more canonical base
pairs interrupted by no more than a single nucleotide bulge.
Overall, 52% of helices in 16S rRNA are predicted in the lowest-
free-energy structure. Errors are distributed unevenly throughout
the RNA and, for example, 71% (15 of 21) of helices in the 3" major
domain are not predicted correctly (Fig. 1). All 3 metrics, sensitivity
of base pairs, PPV, and sensitivity of helices, support the same
conclusion. For 16S rRNA, the predicted secondary structure is
correct in some regions; whereas, in other regions, the structure is
completely wrong (Fig. 1 and Table 1).

The structure of 16S rRNA has been assessed by using conven-
tional chemical modification reagents (DMS, kethoxal, and CMCT)
(18). Prediction accuracies using RNAstructure improve when
positions judged to have strong or moderate reactivities are pro-
hibited from participating in Watson—Crick base pairs except at the
end of helices or adjacent to GU pairs: the resulting sensitivity and
PPV are 71.8% and 67.4%, respectively; 75% of helices are
predicted correctly [Table 1 and supporting information (SI) Fig.
S1]. However, predictions at 75% sensitivity are still characterized
by many regions with large errors (Fig. S1). An alternate, widely
used, 2-criterion approach for interpreting chemical modification
data, prohibiting sites of chemical modification from forming
internal base pairs and forcing sites of strong reactivity to be
single-stranded, actually reduces accuracy: sensitivity and PPV
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Fig. 1.
analysis (32) but not predicted by free energy minimization are represented by red x

decrease to 66.7% and 64.2%, only 70% of helices are predicted
correctly (Table 1).

In sum, these calculations emphasize the persistent and unmet
challenges in secondary structure prediction. Neither thermody-
namic-based prediction nor prediction constrained by conventional
chemical mapping data yield an accurate structure for 16S rRNA.
Developing useful biological hypotheses by using RNA secondary
structures predicted at even 75% sensitivity is difficult. Moreover,
widespread prediction of elements that are not in the accepted
structure, as reflected in a poor PPV, underscores the difficulty, or
impossibility, of designing instructive experiments guided by this
level of accuracy.

Redefining the RNA Secondary Structure Prediction Problem. Current
thermodynamic parameters are spectacularly useful for predicting
the stability of individual helices and hairpins (7, 19). However,
several factors make it difficult to predict large RNA structures.
First, many structures have predicted folding free energies within 1
kcal/mol of that for the most stable structure. Second, kinetic
processes and protein—-RNA interactions may modulate RNA fold-
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ing. Third, local interactions exhibit complex sequence-dependent
interactions (20, 21) and it may not be possible to account for all
interactions with a tractable number of parameters.

Local nucleotide flexibility can be measured at the vast majority
of positions in any RNA by use of SHAPE (selective 2'-hydroxyl
acylation analyzed by primer extension) chemistry (22, 23). SHAPE
is approaching conventional DNA sequencing in terms of the
facility and straightforwardness with which it can be performed
(24-27). In a SHAPE experiment, RNA is treated with an
electrophile that reacts selectively, but sparsely, with the 2'-hydroxyl
position at conformationally flexible nucleotides to form a 2'-O-
adduct. 2'-O-adducts are then detected by primer extension.
SHAPE reactivities report the extent to which a nucleotide is
constrained by base pairing or other interactions (22, 24,27-29). We
therefore sought to redefine the RNA secondary structure predic-
tion problem to use quantitative, nucleotide-resolution SHAPE
information in concert with thermodynamic parameters for RNA
folding.

SHAPE Analysis of E. coli 165 and 23S rRNAs. Total RNA was purified
from E. coli bacteria by using a nondenaturing protocol, equili-
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Table 1. Prediction accuracy for 16S rRNA as a function of
experimental information

. Base pairs Helices
Experimental
constraints Target Sensitivity PPV  Sensitivity
None 1 49.7 46.2 52
SHAPE 1 (covariation 84.2 80.9 90
model)
SHAPE 2 (with omit 91.1 83.1 95
regions)
SHAPE 3 (with local 97.2 95.1 98
refolding)
Moderate and strong (omit 71.8 67.4 75
chemical modification pseudoknots)
prohibited at internal
base pairs
Moderate chemical (omit 66.7 64.2 70
modification prohibited pseudoknots)

at internal base pairs;
sites of strong reactivity
required to be single
stranded

brated under conditions that stabilize native RNA structure (Fig.
2A4), and treated with 1-methyl-7-nitroisatoic anhydride (1M7) (24).
Sites of adduct formation were detected by a high-throughput
SHAPE approach in which the primer extension reactions, per-
formed by using color-coded fluorescently labeled DNA primers,
are resolved by capillary electrophoresis (Fig. 2B) (24, 25). SHAPE
reactivities for each primer read, covering 350—600 nt, were nor-
malized by using model-free statistics to a scale spanning 0 to ~2,
where 1.0 is the average intensity for highly reactive positions (Fig.
2C). Nucleotides with normalized SHAPE reactivities >0.7 or
0.3-0.7 are considered highly and moderately reactive, respectively,
and are colored red and yellow. Unreactive nucleotides, with
SHAPE reactivities <0.3, are black (Fig. 2D).

We analyzed 91% and 95% of the nucleotides in E. coli 16S and
23S rRNAs (1,542 and 2,904 nt, respectively). In many regions,
including domain II of 23S rRNA, agreement between SHAPE
reactivities and the secondary structure determined by comparative
sequence analysis is essentially perfect (Fig. 3). Nucleotides that
participate in canonical base pairs are unreactive; whereas, nucle-
otides in loops, bulges, and other connecting regions are reactive
(compare black with red and yellow nucleotides; Fig. 3).

In a few regions, nucleotides expected to be base paired are
scored as reactive by SHAPE (blue boxes, Fig. 3): these positions
apparently reflect regions in which evolutionarily supported base
pairs do not form when rRNA is isolated from bacteria. The number
of such nucleotides is small, =~9% of all nucleotides in the 16S and 23S
rRNAs. SHAPE thus provides comprehensive, direct, and quan-
titative information regarding the structure of large RNAs.

AGsuape. SHAPE reactivities report fine differences in local nucle-
otide flexibility (Fig. 3) (22, 27-29) and are strongly correlated with
the extent of local disorder as measured by the NMR generalized
order parameter (30). Because base pair formation also reduces
local nucleotide flexibility and disorder, SHAPE reactivities are
inversely correlated with the probability that a nucleotide forms a
base pair. We therefore create a pseudo-free energy change term
for RNA folding at nucleotide i as

AGSHAPE(i) =m ln[SHAPE reactivity(i) + 1] +b [1]

This model has 2 free parameters, the intercept b and slope m. The
intercept is negative and represents a favorable free energy incre-
ment for pairing nucleotides at which the SHAPE reactivity is low.
The slope is positive and penalizes base pairing at nucleotides with
high SHAPE reactivities. The AGspapr term was integrated into
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Fig.2. Analysis of E. colirRNA structure by SHAPE. (A) Total RNA isolation under
nondenaturing conditions and modification with a SHAPE electrophile. (B) Res-
olution of SHAPE reactivities by capillary electrophoresis. (C) Calculation of nor-
malized SHAPE reactivities by box-plot analysis (31). (D) Histogram of SHAPE data
and superposition on the secondary structure for E. coli 23S rRNA.

the dynamic programming algorithm in RNAstructure (11) as an
additional nearest neighbor free energy change term (16).

The slope and intercept were parameterized against 23S rRNA
by using the secondary structure determined by comparative se-
quence analysis (15) as the target structure (Fig. 4). 23S rRNA is a
good choice for parameterization because this single RNA encom-
passes a large database of diverse and nonredundant RNA motifs.
In this analysis, we excluded nucleotides (14%) where SHAPE
shows that base pairs in the comparative structure do not form or
for which no SHAPE reactivity information was obtained (blue
boxes and gray nucleotides, Figs. 3 and S2). In the absence of the
AGsuape term, base pairs in 23S rRNA are predicted with a
sensitivity and PPV of 72% and 60% (0,0 point; Fig. 4). As the
absolute values of the intercept and slope increase, prediction
accuracy improves to produce a large “sweet spot” corresponding
to >89% sensitivity (in red, Fig. 4).

The optimal parameter regions for both sensitivity and PPV are
large. Good predictions are therefore obtained even if the AGspape
parameters are varied by large increments (Fig. 4). As general
parameters for folding large RNAs, we selected a slope and
intercept of 2.6 and —0.8 kcal/mol, respectively, because this point
corresponds to a high prediction sensitivity, is adjacent only to other
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points in the sweet spot, and is as close as possible to the origin. We
selected parameters centrally located in the optimal region to
accommodate RNAs whose folding properties might differ from
23S rRNA. We chose a point close to the origin to impose the
smallest bias in the nearest neighbor free energy calculation con-
sistent with high prediction accuracy. The estimate of >89%
correctly predicted base pairs in 23S rRNA (Fig. 4) is a conserva-
tive, lower limit because some regions in the deproteinized rRNA
do not actually fold to the phylogenetically accepted structure.

16S rRNA Structure Determination. Use of AGspyapg free energies,
optimized against 23S rRNA, dramatically increase the prediction
accuracy for E. coli 16S rRNA (compare Figs. 1 and 5). We
considered 3 target structures when quantifying the overall predic-
tion accuracy.

1. The structure determined by comparative sequence analysis.
This is a conservative approach and assumes that all base
pairs showing evolutionary covariation are maintained in the
free RNA in the absence of ribosomal proteins.

2. The comparative structure after omitting regions (i) that clearly
do not fold to this structure as judged by SHAPE or (i) for which
no structural data could be obtained. These “omit” regions are
emphasized with blue boxes and gray nucleotide lettering, re-
spectively (Fig. 5).

3. A structure that allows for local RNA refolding. Although we
purified 16S and 23S rRNAs from cells under nondenaturing

100 | www.pnas.org/cgi/doi/10.1073/pnas.0806929106
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Fig. 4. Accuracy of RNA secondary structures for E. coli 23S rRNA as a
function of AGsyape pseudo-free energy change parameters.

conditions (Fig. 24), the deproteinized 16S rRNA clearly refolds
in some regions (Fig. 5 and ref. 18). Many base pairs predicted
by our algorithm are, in fact, strongly supported by SHAPE data.
For this target, we thus allow alternative base pairings in regions
where a well-defined local RNA refolding is more consistent
with the experimental SHAPE reactivity than are the base pairs
in the comparative structure. There are 43 such base pairs,
corresponding to 6% of the nucleotides in 16S rRNA (in green,
Fig. 5). We also allow local refolding at the 4-helix junction
spanning positions 139-224 because direct experimental analysis
supports the alternate model (Fig. S3).

Taking the secondary structure model established by comparative
sequence analysis as the target structure (target 1), sensitivity and
PPV for SHAPE-directed prediction of E. coli 16S rRNA are
84.2% and 80.9% (Table 1). The overall topology is also good: 90%
of all helices are identified correctly.

If regions for which SHAPE reactivities are clearly incompatible
with the comparative structure or for which no data could be
obtained are omitted (target 2), sensitivity and PPV are 91.1% and
83.1%, respectively (Table 1). Moreover, the topology is almost
exactly right: 95% of helices outside of the omit regions are
predicted correctly.

Allowing for experimentally supported refoldings (target 3;
identified with green dots and boxes, Fig. 5), sensitivity and PPV are
972% and 95.1%. Sixty-eight of the 69 helices are predicted
correctly and thus the topology of the RNA is correct (Table 1 and
Fig. 5).

Structure Determination for Nonribosomal RNAs. To assess the gen-
erality of the SHAPE-directed approach, we also determined

Deigan et al.
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Fig. 5.

Accuracy of SHAPE-directed secondary structure determination for E. coli 165 rRNA. AGsuape parameters were intercept and slope of —0.8 and 2.6

kcal/mol, respectively. Missed base pairs are indicated by red x’s; incorrectly predicted base pairs are represented by purple lines. Nucleotides are colored by their
SHAPE reactivities. Regions where SHAPE reactivities are not consistent with the accepted phylogenetic structure are indicated with blue boxes. Regions and
specific base pairs where the experimental SHAPE information supports local refolding are indicated with green boxes and spheres, respectively.

secondary structures for 3 smaller, pseudoknot free, RNAs: yeast
tRNAAP, domain II of the HCV internal ribosome entry sequence
(HCV IRES), and the P546 domain of the bI3 group I intron.
Inclusion of SHAPE constraints yields accurate structures in all
cases. The structure of tRNAA is well predicted by thermody-
namics parameters alone (95% sensitivity), but SHAPE data still
provide sufficient information to yield a perfect prediction (100%
sensitivity). The HCV IRES and bI3 intron RNAs are, like 16S
rRNA, poorly predicted by thermodynamic information alone;
critically, inclusion of SHAPE information results in nearly perfect
predictions (Table 2; structures are provided in Fig. S4).

Discussion

By incorporating experimental SHAPE information as a pseudo-
free energy change term in RNAstructure, we determine the
structures of E. coli 16S tRNA and of 3 smaller RNAs almost
perfectly (Fig. 5, Tables 1 and 2). Differences between the SHAPE-
directed structures and the accepted target structures are usually

Deigan et al.

small and short-range. At this level of difference, it is not clear
whether the error lies in the predicted structure or in the accepted
structure. SHAPE-directed secondary structure determination
also gives excellent results for wide choices in the 2 free AGspyape
parameters and is thus tolerant of experimental and procedural
variability (Fig. 4).

16S rRNA is among the most comprehensive structure predic-
tion challenges available. The secondary structure for 16S rRNA

Table 2. Prediction accuracies for nonribosomal RNAs

No constraints SHAPE

RNA Nucleotides Sensitivity PPV Sensitivity PPV

Yeast tRNAAP 75 95.2 95.2 100.0 100.0

HCV IRES domain Il 95 56.5 59.1 95.7 100.0

P546 domain, group | 155 42.9 44.4 96.4 98.2
intron
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was established by comparative sequence analysis and 97% of the
predicted base pairs are visualized in the crystal structure of intact
30S ribosomal subunits (15). This modeling accuracy required
analysis of 7,000 sequences and refinement over 20 years. The 97%
sensitivity obtained here for deproteinized 16S rRNA based on a
single SHAPE analysis is comparable to that achieved by covaria-
tion analysis. We find that SHAPE-directed folding also yields
excellent results for RNAs whose structures cannot be determined
by covariation analysis such as folding intermediates (27-29) and
intact viral genomes (25).

The simplicity of SHAPE chemistry and the availability of
appropriate data analysis tools (this work and refs. 11 and 26) make
this technology amenable to a wide variety of problems. There
remain 2 major, addressable challenges. First, none of the 5 RNAs
studied here form pseudoknots in their deproteinized forms and
our algorithm does not allow this structure. In the future, experi-
mentally based AGsuape pseudo-free energy approaches can
clearly be incorporated into algorithms that predict secondary
structures with pseudoknots. Second, extensions of the current
experimental approach will be required for RNA regions in which
base pairs either form only in context of higher-order tertiary
interactions (24) or are so tightly constrained by such interactions
that few nucleotides are reactive.

The high level of confidence demonstrated by SHAPE-directed
RNA structure determination now makes it possible to analyze the
plurality of RNA secondary structures that cannot be gleaned from
comparative sequence analysis or that are changing in response to
dynamic cellular processes. Such RNAs include authentic viral
genomes, intact messenger RNAs, and noncoding RNAs in distinct
functional states.
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Materials and Methods

SHAPE Analysis of Native E. coli RNA. Total RNA was isolated under nondena-
turing conditions from midlog phase E. coli (DH5«) cultures and equilibrated in
folding buffer [50 mM Hepes (pH 8.0), 200 mM potassium acetate (pH 8.0), and
5 mM MgCl,]. SHAPE experiments were initiated by addition of 1/10 vol of
1-methyl-7-nitro-isatoic anhydride in DMSO (1M7, 60 mM) (24). 2'-O-adducts
were detected by primer extension. Fluorescently labeled cDNA products were
quantified by using ShapeFinder, as described (25, 26). SHAPE reactivities from
each primer read were placed on a normalized scale by dividing by the average
intensity of the 10% most highly reactive nucleotides, after excluding outliers,
identified by using a box plot analysis as reactivities >1.5x the interquartile
range (31).

Incorporation of SHAPE Pseudo-Free Energy Change Terms into a Dynamic
Programming Algorithm. All structure calculations were performed using RNA-
structure (11). AGsuape free energy change values were added to the free energy
change for each nucleotide in a nearest neighbor stack, as described in ref. 16.

Software Availability. ShapeFinder, used to process capillary electrophoresis
data, is freely available to academic researchers at http://bioinfo.unc.edu. RNA-
structure, which implements the AGsuape pseudo-free energy change term, is
freely available at http:/rna.urmc.rochester.edu. RNA secondary structure dia-
grams are based on models developed by comparative sequence analysis (15, 32)
and were composed using xrna (http:/rna.ucsc.edu/rnacenter/xrnal).

Additional details regarding the methods for RNA isolation, data processing,
and structure calculations are available in the S/ Text.
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