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Abstract

When the goal of prevention research is to capture in statistical models some measure of the 

dynamic complexity in structures and processes implicated in problem behavior and its 

prevention, approaches such as multilevel modeling (MLM) and structural equation modeling 

(SEM) are indicated. Yet the assumptions that must be satisfied if these approaches are to be used 

responsibly raise concerns regarding their use in prevention research involving smaller samples. In 

this manuscript we discuss in nontechnical terms the role of sample size in MLM and SEM and 

present findings from the latest simulation work on the performance of each approach at sample 

sizes typical of prevention research. For each statistical approach, we draw from extant simulation 

studies to establish lower bounds for sample size (e.g., MLM can be applied with as few as 10 

groups comprising 10 members with normally distributed data, restricted maximum likelihood 

estimation, and a focus on fixed effects; sample sizes as small as N = 50 can produce reliable SEM 

results with normally distributed data and at least three reliable indicators per factor) and suggest 

strategies for making the best use of the modeling approach when N is near the lower bound.
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This manuscript focuses on sample size considerations in applications of two statistical 

methods of particular relevance to prevention research questions—multilevel modeling 

(MLM) and structural equation modeling (SEM). MLM and SEM are used to fullest 

advantage when the goal is to model a structure or process as opposed to isolated tests of 

individual parameters such as correlation coefficients or mean differences. Models of 

structure focus on the nature of the relations between variables that define a complex 

construct (e.g., impulsivity, Whiteside & Lynam, 2001) or domain (e.g., problem behavior, 

Gillmore, Hawkins, Catalano, Day, & Abbott 1991). Models of process focus on causal 

relations and the mechanisms that account for them as specified by theoretical models (e.g., 

Shiyko, Lanza, Tan, Li, & Shiffman, 2012). The value of such models to the work of 

prevention scientists is clear. The suitability of data from small-sample prevention studies 

for evaluating such models is not always clear.
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Our central concern in this manuscript is the use of MLM or SEM with small samples. There 

is no absolute definition of “small” in the area of statistical analysis; thus, a primary issue is 

what is considered a small sample when using these statistical methods. Elsewhere, we have 

defined small samples as “samples that are near the lower bound of the size required for 

satisfactory performance of the particular statistical model chosen to address the questions 

that motivated the research” (Hopkin, Hoyle, & Gottfredson, 2013). With regard to MLM 

and SEM, the question of whether performance is satisfactory concerns multiple features of 

the analysis. The most basic is whether the model can be estimated at all (i.e., 

nonconvergence, inadmissible solutions). If the model can be estimated, attention turns to 

evaluations of the degree to which the model accounts for the data (i.e., fit), and estimates 

and tests of parameters in the model.

Beginning with MLM, we integrate information from a thorough review of existing 

simulation studies to touch on each of these concerns for these promising approaches to 

modeling prevention data. The reason for drawing from simulation studies to provide 

guidance on the use of MLM and SEM in small samples is the following: Inferences drawn 

from statistical models depend on a number of assumptions that are likely to be violated to 

some degree in real data. For instance, the validity of calculated p-values depends on the 

existence of large sample size. Simulations provide a method for assessing the practical 

impact of violating assumptions to varying degrees by giving researchers experimental 

control over features of the data such as sample size. We synthesis results and 

recommendations from the relatively small census of published studies that have used 

simulation methodology to evaluate MLM and SEM performance as a function of sample 

size.

The performance of estimators and tests in modeling frameworks such as MLM and SEM 

typically are evaluated by simulation studies (Bandalos & Gagné, 2012). These studies 

begin with one or more models for which population values of the parameters are set by the 

investigators. Many samples are drawn from the population(s); these data sets reflect 

characteristics on which the performance of estimators or fit statistics are to be evaluated. 

For example, a simulation study focused on the performance of an estimation method at 

different sample sizes and degrees of nonnormality might simulate 200 data sets for all 

combinations of three sample sizes (100, 200, and 400) and three levels of nonnormality 

(none, moderate, severe). Parameters would be estimated and fit statistics generated for the 

population model for each of the 1800 data sets. Means for each of the conditions would 

then be compared in order to determine the effects of sample size, nonnormality, and their 

interaction.

Multilevel Modeling

Multilevel data might occur by design as a result of a multi-stage sampling technique or as a 

result of a repeated measures design.1 Data such as these should be modeled using a 

1Nested data may also emerge from analyses aimed at accounting for unobserved heterogeneity in outcomes such as in latent class 
analysis or growth mixture models with longitudinal data. Relatively little is known about sample size requirements for analyses of 
these types but they almost certainly require samples that are large. For that reason, those models fall outside the scope of this 
manuscript.
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statistical technique that accommodates non-independent observations.2 Failure to account 

for non-independence of observations leads to incorrect standard error estimates and a Type 

I error rate that is either too conservative or too liberal (Raudenbush & Bryk, 2002). Because 

multilevel models (MLM; Breslow & Clayton, 1993; Goldstein, 1986; Raudenbush & Bryk, 

2002) allow researchers to separate contextual effects from intra-individual effects, this is 

often the preferred technique for modeling nested data (e.g., Aitkin & Longford, 1986).

In this section, we begin with an overview of our notation, which is primarily adapted from 

Raudenbush and Bryk (2002). After describing a standard two-level model, we briefly 

discuss issues of sample size that are unique to MLM as they relate to study design. We then 

move to issues involved in data analysis, describing simulation research that sheds light on 

performance with small samples. We conclude with practical suggestions for improving 

power and reducing bias with a small sample of multilevel data.

Notation and Model Overview

Let yij be an outcome that contains variance that can be decomposed into two levels: the 

Level 1 or within portion of the variance (i) and the Level 2 or between portion of the 

variance (j). For example, yij might be a measure of alcohol involvement that varies across 

individuals, but that also varies across neighborhoods within a study (e.g., Duncan, Duncan, 

& Strycker, 2002). Between-group (e.g., between-neighborhood) variance in yij is only 

accounted for by predictors that vary across these independent sampling units (e.g., 

neighborhood crime rates). Predictors that are measured at Level 1 may contain variance at 

both the within and between levels (Bollen & Curran, 2006; Kreft, de Leeuw, & Aiken, 

1995). Thus, these predictors may explain both group-level variation and within-group 

variation. Continuing with our example, Level 1 predictors might include gender or having 

an alcoholic parent. Both of these variables reflect information about the neighborhood 

(proportion male and alcoholism rates) as well as information about individuals independent 

from the neighborhood context (e.g., having an alcoholic parent in a neighborhood with 

lower rates of alcoholism is different from having an alcoholic parent in a neighborhood in 

which alcoholism is normative).

A generalized two-level MLM with two additive predictors, one varying within group (xij), 

and one varying between group (xj), can be written as follows:

(1)

Here, y*
ijis used in the place of yij to add flexibility to the model so the outcome variable is 

not restricted to a normal distribution (Breslow & Clayton, 1993; Raudenbush & Bryk, 

2002). In the generalized model, y*
ij is associated with yij, the outcome of interest, via a link 

function whose form depends on the distribution of yij. If yij is normally distributed, then it 

is assumed that the residual term rij is also normally distributed with a mean of zero and 

variance σ2. In this case, yij is related to y*
ij via the identity link. If yij is not normally 

distributed, then a variety of link functions may be used, and the assumed distribution of rij 

changes accordingly. For instance, if yij is dichotomous, then yij may be linked with y*
ij via 

2A number of software packages can handle such analyses, including (but certainly not limited to): HLM, Mplus, R, SAS, and Stata
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a logit or probit link function, and is rij is assumed to be distributed as logistic (0, ) or 

normal (0,1), respectively (Bauer & Sterba, 2011). If yij is ordinal, then each category 

thresholds is typically modeled using a cumulative logit or cumulative probit function.

In Equation (1), β coefficients represent fixed effects, or the effect of a predictor on y*
ij for 

an average independent sampling unit. That is, fixed effects are the expected predictor 

effects when the random effects (u), which represent systematic variation of independent 

sampling units around the average, are equal to zero. In the alcohol example, the fixed effect 

of having an alcoholic parent represents the expected consequence of having a parent with a 

history of alcoholism on a child’s problematic alcohol involvement if it were possible to 

measure the counterfactual within an individual. By contrast, random effects represent the 

degree to which independent sampling units deviate from the average. For instance, some 

neighborhoods are characterized by higher rates of problematic alcohol involvement than 

others (a random intercept), and the effect of having an alcoholic parent might be worse in 

some neighborhoods than in others (a random effect of parent alcoholism).

Multilevel data are unique in that they involve two distinct sample sizes: the number of 

independent sampling units (i.e., groups), and the number of secondary sampling units. We 

call the number of independent sampling units N. Because the number of Level 1 units may 

vary over groups, we will refer to the average number of secondary units per group as n̄.

As a general rule, a researcher concerned about power should focus on maximizing N to the 

extent possible because independent sampling units are, by definition, uncorrelated with one 

another and thus provide more total information than secondary sampling units which are, 

by definition, correlated with one another. Researchers wishing to draw inferences about 

contextual or group effects, and particularly about variation in group effects, should be 

especially concerned with maximizing N (Raudenbush & Liu, 2000).

Even though it is important to sample as many Level 2 units as possible, there are many 

reasons to maximize n̄ as well. First, many research questions focus on within-group 

processes. Longitudinal research designs are an example of this: in longitudinal designs, 

Level 1 units represent time and Level 2 units represent people. For a researcher wishing to 

draw inferences about longitudinal processes that occur within individuals (that is, to make 

claims about development rather than about age/cohort effects), is it essential to have 

enough over-time information (i.e., a relatively large n). Second, some research questions 

about between-group processes rely on aggregate within-group information for proxy 

measures of inter-group differences (Snijders & Bosker, 2004). For the latter type of 

analysis, the Level 1 sample size is important for reliably estimating group-level measures 

(Lüdtke, Marsh, Robitzsch, Trautwein, Asparouhov, & Muthén, 2008). Third, and most 

practically, it may be more cost effective to sample Level 1 units than to sample Level 2 

units. Raudenbush (1997) presented a sample equation that might be used to optimize the 

sample sizes at each level given the following information: a) the total monetary resources 

available; b) the cost of sampling a unit at Level 1; and c) the cost of sampling a unit at 

Level 2. Raudenbush, Spybrook, Congdon, et al. (2011) provide freely downloadable 

software for researchers to use when designing longitudinal or cluster-based studies.
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Multilevel data differ with respect to the degree to which within-group sampling units 

correlate with one another. For example, we might expect that children who are nested 

within the same family will be more correlated with one another than children who are 

nested within a classroom. Less dependency among Level 1 units is associated with a higher 

payoff from sampling them (Raudenbush, 1997). The degree of dependency can by 

computed by calculating the intra-class correlation (ICC; see Raudenbush & Bryk, 2002, or 

Snijders & Bosker, 2004, for formulae). These values range from zero (no dependency) to 

1.0 (total dependency). Because statistical power in MLM partially depends on the ICC, it 

can be useful to estimate the expected ICC during the study design, relying on extant studies 

similar to the planned study.

Estimation Considerations

MLM estimation entails a number of important decision points for the data analyst. Whereas 

estimation is fairly straightforward when yij is normally distributed (Demidenko, 2004), 

estimates are less clear-cut when yij is non-normal. We first describe estimation with a 

normally distributed outcome variable and then move to the more complex scenario.

If yij is normally distributed then the only estimation decision involves whether to rely on 

full maximum likelihood (FML; Anderson, 1957) or restricted maximum likelihood (REML; 

Dempster, Laird, & Rubin, 1977).3 FML was designed to be unbiased when sample size is 

large; this method inherently results in downwardly biased estimates of random effect 

variances and in confidence intervals that are too narrow around the fixed effect estimates 

when the sample is small (Raudenbush & Bryk, 2002; Singer & Willet, 2003). REML was 

designed to correct for this bias and thus it is a natural choice when small samples are a 

concern. There are two caveats to this conclusion. First, Kreft and deLeeuw (1998) 

illustrated a trade-off between bias and precision with small samples: FML estimates are 

downwardly biased but more precise; REML estimates are unbiased but less precise. 

Second, FML is the only approach that can be used for constructing likelihood ratio tests to 

compare nested models. An analyst wishing to compare models should rely on alternative 

model comparison techniques if REML is used for model estimation (e.g., Bayesian 

Information Criterion, Schwarz, 1978).

Maas and Hox (2005) presented a simulation study testing REML performance as a function 

of sample size. They tested bias, efficiency, and coverage of fixed effects and random effect 

variances using with 30, 50, or 100 groups.4 They found that REML estimates were always 

unbiased but that standard error estimates for variance components were downwardly biased 

when 30 groups were present. Given these findings, an analyst with a normally distributed 

outcome variable should use REML estimation and trust that all point estimates are unbiased 

and that inference around fixed effects is correct. However, inference about random effects 

should be approached with caution.

3We omit a discussion of least squares approaches because these tend to be less efficient than maximum likelihood (Singer & Willet, 
2003).
4We recognized that 30 groups is unrealistic for many prevention studies. This simulation study did not consider fewer than 30 groups 
given that the results were already somewhat problematic for that number. Findings from work considering 10 Level 2 units is 
presented below.
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If yij is not normally distributed, then the maximum likelihood solution cannot be found 

analytically because it is not in closed form, and so it must be approximated in one of two 

ways. Either the likelihood function itself must be approximated (e.g., by using a Taylor 

series to approximation to the likelihood function that can itself be maximized directly; 

Rodriguez & Goldman, 2001), or the maximum of the likelihood function must be found 

computationally (e.g., Rabe-Hesketh, Skrondal, & Pickles, 2002). The former method is 

referred to as Quasi-Maximum Likelihood. Computationally intensive estimation techniques 

can be implemented using SAS Proc NLMIXED, SAS Proc GLIMMIX, xtlogit or gllamm in 

STATA, or the glmer routine in the lme4 package in R (Austin, 2010). It is generally 

accepted that the true FML estimates found using this exact technique are superior to the 

alternative when yij is binary or when it is ordinal with relatively few response categories. 

Both techniques perform well when yij is Poisson distributed or when it is ordinal with many 

response categories (Rabe-Hesketh et al., 2002). However, as is the case with 

straightforward linear mixed models (i.e., with normally distributed yij), estimates generated 

using FML are biased in small samples, particularly as the number of parameters increase 

(Bauer & Sterba, 2011; Raudenbush & Bryk, 2002). REML corrections for generalized 

linear mixed models have not yet been perfected or implemented in standard MLM software 

packages.5

Modern software programs that rely on approximation estimations, such as HLM 

(Raudenbush, Bryk, & Congdon, 2004), SAS Proc GLIMMIX, and the glmmPQL function 

in R use the widely accepted approach of penalized quasi-likelihood (PQL) or a variant 

thereof. An advantage of PQL estimation relative to true FML is that it enables the 

implementation of a REML correction to the quasi-likelihood function (Schabenberger, 

2005).

Bauer and Sterba (2011) challenged the widely held belief that computationally intensive 

estimation techniques are superior to the approximation technique. In a simulation study 

with ordered categorical items, Bauer and Sterba found that PQL estimates were more 

biased but were also much more efficient than FML estimates when the number of groups 

was small (i.e., between 25 and 50 groups), particularly if the number of response categories 

was also small.6

In order to provide practical advice to applied researchers with non-normal outcomes, 

Austin (2010) compared estimator performance with a binary outcome and relatively small 

samples using six software packages that implement generalized MLM. All of the packages 

using the estimators described above recovered fixed effects well when there were at least 

20 Level 1 units per group. All except for the PQL estimators recovered fixed effects well 

with more than 10 groups. Mirroring the findings of Bauer and Sterba (2011), Austin found 

that confidence interval coverage for fixed effects was accurate with quasi-likelihood 

estimators used by Proc GLIMMIX and in HLM (even though the point estimates were 

5However, progress is being made on this front. See Noh & Lee (2007) for an example.
6Bauer and Sterba (2011) also found that increasing the number of response categories resulted in less bias and greater efficiency. 
This result is not surprising given the well-known consequences of dichotomization (MacCallum, Zhang, Preacher, & Rucker, 2002). 
Whenever possible, researcher should maximize the number of response categories or use a continuous response scale to maximize 
power.
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biased). FML methods used in xtlogit and glmer also resulted in correct confidence interval 

coverage. For variance component point estimates, Austin found that, as expected, most of 

the software programs had difficulty estimating these parameters with fewer than 10 units 

per group. The quasi-likelihood estimators in Proc GLIMMIX, the adaptive quadrature 

technique in Proc NLMIXED, the Gauss Hermite estimator in xtlogit, and the adaptive 

quadrature estimator glmer performed reasonably well as the number of units per group 

increased. HLM performed well only as the number of groups reached 15 or higher. 

Random effect confidence intervals were not assessed. Austin concluded that it is generally 

safe to rely on generalized MLM estimates with at least 10 groups, or with fewer than 10 

groups as long as there are at least 30 within-group units. His findings also suggest that it is 

not safe to rely on estimates if there are 5 or fewer units per group.

Summary of MLM estimation

When yij is normally distributed, REML is the preferred estimator and inferences about 

fixed effects can be trusted. Inferences about random effects can be trusted only if the 

number of groups is moderate.

When yij is not normally distributed, there is no clear-cut choice between using 

computationally intensive FML methods and using quasi-likelihood approximations. 

Austin’s 2010) simulation work suggests that the quasi-likelihood estimator used by SAS 

Proc GLIMMIX is a good choice, and that the FML estimators used in STATA xtlogit, and 

R glmer are best for small samples. Whereas inference about fixed effects can generally be 

trusted with 10 or more groups or with fewer than 10 groups and 30 or more Level 1 units 

(e.g., Simon et al., 2008), inference about random effects is unstable with small samples and 

non-normal outcomes. Even when yij is not normally distributed, meaningful variation in yij 

should be maximize through the use of as many response categories as are reasonable 

(Bauer & Sterba, 2011).

Rules of Thumb

A number of rules of thumb about sample size with MLM are available in the literature. 

Many of these are based on sound simulation or analytical work. Although we present some 

findings and rough guidelines from the literature, we do not advocate strict adherence to 

rules of thumb. Multilevel models are complex and each study has a unique combination of 

features that influence inferential ability. Instead of relying on rules of thumb, we encourage 

analysts with small samples to do the following: 1) consider conducting a power analysis 

that incorporates information about data features for your study (Optimal Design software is 

a good place to start; Raudenbush, et al., 2011); 2) maximize inferential precision through 

study design and statistical analysis; and 3) consider which point estimates and standard 

errors are likely to be biased or unbiased and limit inference to those estimates that you trust.

Structural Equation Modeling

Structural equation modeling (SEM) is a very general statistical approach for modeling 

multivariate data. Evidence of its generality is the observation that any of the analyses 

discussed in the previous section could be accomplished using SEM. For instance, latent 
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curve modeling (Bollen & Curran, 2006; McArdle & Nesselroade, 2003; Meredith & Tisak, 

1990) permits growth modeling of longitudinal data using SEM that can produce equivalent 

results to MLM (Bauer, 2003; Curran, 2003), but that also provides the analyst with more 

flexibility in modeling choices (e.g., Curran, Lee, Howard, Lane, & MacCallum, 2012). 

Importantly, SEM can also be used to model certain types of relations that cannot be 

modeled using MLM or other methods commonly used by prevention scientists. Perhaps 

most prominent among these is the relations between observed variables and the underlying, 

or latent, construct they were intended to measure. Somewhat like embedding a factor 

analysis in a multiple regression model, relations can be modeled between constructs rather 

than variables. In addition, SEM is useful when the model prescribes multiple dependent 

variables that are themselves directionally related to each other. A simple example is the 

three variable mediation model, in which an independent variable influences both a mediator 

and an outcome, which are related to each other through a directional path from the mediator 

to the outcome. The ability to model latent variables, the relations between them, and 

directional relations between dependent variables makes SEM an attractive analytic option 

for many prevention research questions and designs.7

Yet, the generality and flexibility of SEM come at a price. The estimators typically used to 

derive parameter estimates, standard errors, and model fit statistics are asymptotic in nature; 

that is, they are unbiased and efficient when sample size is large (Bollen & Noble, 2011). 

Given the constraints on sample size that are typical of the behavioral and health sciences, 

the question of how large a sample is necessary for valid estimation and testing has received 

considerable attention (e.g., Tanaka, 1987). Addressing the question is complicated by the 

fact that the minimum sample size varies as a function of a number of data and model 

features.

In this section, we summarize a rich and growing literature on sample size considerations in 

SEM. We begin with an overview of estimation and testing in SEM. We then review the 

research to date on the performance of estimators and test statistics at different sample sizes.

Overview of SEM

SEM analyses concern the correspondence between observed data and the data implied by 

one or more models, which typically reflect a set of logic- or theory-based relations between 

variables (for overviews, see Hoyle, 2011; Weston & Gore, 2006). The values of free 

parameters (e.g., factor loadings, regression weights, error variances) are estimated from the 

observed data, after which the estimated and fixed parameters can be used to generate a 

theoretical matrix. This implied covariance matrix contains the data we would expect to 

observe were the specified model correct in the population. A comparison of the observed 

and implied covariance matrices is the basis for a goodness of fit test, reflected in the null 

hypothesis,

(2)

7Software packages that can estimate SEMs include, but are not limited to: EQS, LISREL, Mplus, R, and STATA.
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where Σ corresponds to the population data and Σ(θ̂) to the population data implied by the 

model. Although the test of this multivariate hypotheses seems straightforward—consult a 

reference distribution given the model degrees of freedom and interpret p values greater 

than .05 as indicative of fit—it is fraught with problems ranging from questions about the 

reference distribution to concerns about a null hypothesis of exact fit. As a result, a large 

number of indices have been developed to index goodness (or badness) of fit, with 

performance when sample size is small varying from one to the next

Sample Size Considerations in SEM

Although statistical power is a significant concern for SEM analyses, other concerns related 

to sample size are also important. Perhaps the most basic of these concerns is the degree to 

which the observed covariance matrix, S, reflects the population covariance matrix, Σ. 

Strategies that ensure representativeness and retention of all participants sampled are basic 

concerns that apply regardless of sample size. Yet, assuming these concerns are adequately 

addressed, the likelihood of a departure of S from Σ increases with smaller sample sizes. To 

the extent that S is not representative of Σ, a model that offers a satisfactory account of the 

data in one study might not do so for data from a different sample from the same population. 

Put differently, as N gets smaller, the confidence interval around the observed covariances 

gets larger. The more observed covariances to be estimated the greater this concern, leading 

to rules of thumb based on the ratio of participants to variables—10:1 is a commonly 

proposed ratio (Tanaka, 1987). This logic suggests that, with smaller sample sizes, the 

number of observed variables should be small. In short, a fundamental consideration is 

whether the observed covariances are a valid reflection of the covariances in the population 

so that the target of fit reflects the assumption evident in the null hypothesis (Eq. 2).

As noted earlier, estimation in SEM analyses yields parameter estimates, standard errors, 

and test statistics that have asymptotic properties. That is to say, their values do not depend 

directly on sample size as do, for example, the components of the F and t statistics used in 

general linear modeling analyses. Instead they assume a sample that is sufficiently large to 

ensure the theoretical properties of the estimates and tests. Related to this concern is the 

influence of sample size on estimation. Estimators such as maximum likelihood, the most 

widely used method in applications of SEM, are iterative. They begin the search for 

parameter estimates that minimize the difference between the observed and implied data 

with a set of starting values. These are updated after each iteration until it is no longer 

possible to improve the quality of the parameter estimates. At this point, the estimation is 

said to have converged. As discussed later in this section, small sample data are associated 

with nonconvergence. In such cases, the parameter estimates and/or standard errors cannot 

be interpreted. The likelihood of nonconvergence when N is small is increased by 

nonnormal data and misspecified models.

Beyond these sample-size concerns specific to estimation in SEM analyses is the typical 

concern regarding statistical power. The challenges associated with power analysis in SEM 

are numerous. First is the distinction between overall, or omnibus, fit and the significance of 

specific parameter estimates. Focusing first on tests of individual parameters, there is the 

problem that parameter estimates in models are interdependent—the magnitude of each is, to 
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some degree, contingent on the magnitude of the others (Kaplan, 1995). Thus, the evaluation 

of statistical power for a given parameter must account for other parameters in the model. 

The challenges are greater still for evaluations of omnibus fit. Returning to the null 

hypothesis discussed earlier, because the goal is to not reject the null hypothesis, the 

investigator would appear to benefit from low power. Of course, the problem with this logic 

is that low power may lead to the equivalent of a Type I error by failing to detect meaningful 

differences between the observed and implied data. An additional problem is that, because 

the null hypothesis specifies a perfect match between the observed and implied data, it is 

always the case that, with a sufficiently large N, this hypothesis would be rejected, resulting 

in the equivalent of a Type II error. As noted earlier, these drawbacks to the straightforward 

goodness-of-fit test led to the development of a number of alternative indices for judging 

omnibus fit. Sample size also is a concern when using these indices, affecting their 

performance in direct and indirect ways (Bollen, 1990).

Estimation problems associated with small Ns—As noted earlier, the estimators 

typically used in SEM analyses are iterative, updating parameter estimates after each 

iteration until the difference between the observed and implied data is at its minimum given 

the model. On occasion, iteration is unable to reach a minimum, resulting in 

nonconvergence and a set of parameter estimates and tests that cannot be interpreted. 

Convergence does not always guarantee an interpretable solution, as estimation sometimes 

yields out of range values for parameters (e.g., variances less than zero) or implausible 

values for standard errors. Each of these undesirable outcomes of estimation is more likely 

with data from small samples. For example, in a simulation study of the effects of sample 

size, unreliability, and specification strategy (composites vs. latent variables) on models of 

simple mediation, Hoyle and Kenny (1999) found that 14% of solutions were problematic 

when N was very small (25 or 50) and reliability was low (α = .60). With a minimum N of 

100 and moderate reliability (α = .75), problematic solutions were very rare. Marsh, Hau, 

Balla, and Grayson (1998) showed that sample size and number of indicators per factor 

could each compensate for small size of the other, leading to the surprising conclusion that, 

when N is small, more, not fewer, indicators are to be preferred. Focusing specifically on the 

smallest size they considered, N = 50, the percentages of proper solutions were 14, 55, 87, 

and 100 for 2, 3, 4, and 6 indicators, respectively. Improper solutions were very rare at N = 

100 with four or more indicators per factor. In short, at sample sizes under 100, 

nonconvergence and improper values are frequent occurrences. For these small sample sizes, 

more highly reliable indicators can improve, but not eliminate, the likelihood of estimation 

problems (Gagné & Hancock, 2006; Jackson, Voth, & Frey, 2013).

Statistical power and sample size—If estimation results in a proper solution, the 

concern shifts to evaluation of fit. As noted earlier, the evaluation of fit, though 

straightforward in a conceptual sense, is quite complex in a technical sense. The chi-square 

test of the null hypotheses presented earlier does not perform well in realistic modeling 

situations (e.g., Bearden, Sharma, & Teel, 1982; Tanaka, 1987). As a result, a large number 

of alternative fit indices have been developed. As most are indices rather than statistics, 

there is no strong basis for particular cutoff values that would serve as targets for evaluations 

of power (Hu & Bentler, 1999). Moreover, simulation studies of power that use popular 
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rule-of-thumb cutoffs find that the magnitude of these indices is influenced by factors other 

than model fit such as estimation method (e.g., Fan, Thompson, & Wang, 1999). These 

caveats aside, we can draw some general conclusions from the simulation work on sample 

size and statistical power in SEM.

In the simulation study of simple mediation models referenced earlier, Hoyle and Kenny 

(1999) found the power to detect the indirect effect through a single mediator of a single 

predictor on a single outcome to be unacceptably low at Ns of 100 or less, peaking at .65 for 

N = 100 and α = .90. At N = 200, power exceeded the standard target of .80 when indicators 

were at least moderately reliable (α = .75). Kim (2005) examined the power of several fit 

indices as a function of sample size, number of variables, and the magnitude of the relations 

between variables. Kim’s results give a general sense of the degree of power typical for 

confirmatory factor models at different Ns. For the comparative fit index (CFI; Bentler, 

1990), acceptable power was evident for Ns of about 70 when factor loadings were high (λs 

= .8) but rose to more than 200 when factor loadings were moderate (λs = .6). Power for the 

root mean square of approximation (Steiger & Lind, 1980) varies as a function of both 

sample size and the number of degrees of freedom, which is related to the number of 

variables. For the hypothesis of close fit (see MacCallum, Browne, & Sugawara, 1996), Ns 

required to achieve acceptable power were 294, 147, and 73 for models with 6, 9, and 15 

variables, respectively. Although these values are within the range of typical prevention 

studies, the optimism they bring must be tempered by the knowledge that substantially 

larger Ns are required for more complex models (e.g., Kim, 2012).

A more general treatment of power for the omnibus test of close fit was offered by 

MacCallum et al. (1996). Their power tables (e.g., Table 2, p. 142) show clearly the power 

advantage achieved by reducing the number of parameters to be estimated in a model and, in 

so doing, increasing the number of degrees of freedom. For example, at N = 100, the 

likelihood of detecting close fit is .65 for a model with df = 100 but only .13 for a model 

with df = 5. In general, their work suggests the need for samples of size 200 or greater with 

at least 50 degrees of freedom for ample power.

Mplus softeware now has a MonteCarlo feature that permits users to conduct their own 

power analysis, both for individual effects and for omnibus model fit. Examples of power 

calculations are available on the Mplus website

Validity of fit indices when N is small—Power considerations notwithstanding, the 

performance of some fit indices is problematic at small, or even modest, sample sizes. The 

literature on this topic is large and far ranging, but an example will serve to illustrate the 

point. Bentler (1990) evaluated the performance of five comparative fit indices under a 

variety of data and model conditions, including sample size, which ranged from 50 to 1600. 

To reinforce the point addressed earlier, he observed about 12% improper solutions at N = 

50, a trivial number at N = 100, and none at all at Ns larger than 200. Although the 

performance of the CFI was acceptable at N = 50, the nonnormed fit index (also referred to 

as the Tucker-Lewis index) was highly variable at Ns of 400 and lower. These findings point 

to the need to carefully consider which fit indices to use when N is small. Some indices are 
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unreliable at low Ns and may lead to rejection of a model that is satisfactory or acceptance 

of a model that is not.

Using SEM When N is Small

Our review of the simulation work on SEM and sample size offers a mixed message. The 

performance of some fit indices and the power of tests of some parameters within models 

may be acceptable with samples as small as 50 when the variables are normally distributed 

and the reliability of indicators at least moderate in magnitude. Yet, the performance of 

estimators with samples in the 50-100 range can be problematic, and to achieve desired 

levels of power for models of typical complexity requires samples sizes of 200 or more. We 

recommend that reports of uses of SEM for modeling data from samples smaller than 200 

include a justification and reference to limitations given the findings from the simulation 

research we have summarized.

General Recommendations

Although any recommendation regarding sample size when using MLM or SEM must 

account for features of the data and the model, we can offer some general recommendations 

for maximizing the yield of these analyses when N is small.

Leave no data unmodeled

Because the initial sample size of many prevention studies is near the minimum for effective 

use of these methods, it is essential that all cases be retained in the analysis sample. A 

combination of diligence in retention efforts and the use of missing data methods as needed 

is recommended when the data are to be analyzed using MLM or SEM.

Optimize the observed data

We noted that the estimators typically used in these methods assume multivariate normality 

and made brief mention of the fact that the minimum sample size increases as the data 

depart from normality. Any efforts at achieving normal data are likely to pay off with 

improvements in estimation and testing. These may concern measurement, scoring, or 

transformations. We also highlighted the role of unreliability in estimation problems and 

statistical power for SEM. More reliable indicators of latent variables are associated with 

fewer estimation problems and increased statistical power. When sample size is small, 

reliable, normally distributed variables are critical to success in modeling data using MLM 

or SEM.

Fix and constrain

The power and performance of SEM are improved by increasing the number of degrees of 

freedom associated with a model. Degrees of freedom can be increased by increasing the 

number of variables (e.g., number of indicators per latent variable) and decreasing the 

number of parameters to be estimated. A reduction in the number of parameters to be 

estimated can be achieved by (1) fixing free parameters to a value, (2) constraining 

parameters to equal (or correspond to some other function of) other parameters in the model. 

Because both of these adjustments to a model could lead to a deterioration in fit, they must 
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be used wisely, typically with reference to knowledge gleaned from prior research with the 

variables.

A Note on the Limitations of Simulation Studies

Key concerns associated with simulation studies are the choice of which factors to 

manipulate (e.g., sample size, distribution of the variables, functional form of the model, 

effect sizes) and levels thereof. In reality, the effects of many factors are moderated by other 

factors, and those moderated effects can only be studied when the relevant factors are 

included in the same study. Moreover, conclusions can only be reached regarding the levels 

of the factors included in the study. These concerns are relevant for simulation work on 

sample size in MLM and SEM because the effects of small samples on performance vary as 

a function of various features of model (mis)specification and data; and the performance 

with very small samples can only be evaluated if they are considered when sample size is a 

factor. Fortunately, simulation studies are increasingly likely to include sample sizes that 

historically would have been considered too small to warrant study (e.g., N = 50).

Summary and Conclusions

A primary concern of prevention science is determination of the complex and dynamic 

structures and processes involved in problem behavior and its prevention. Advances in 

measurement and statistical methods now allow for the specification and evaluation of 

models that approximate the complexity of those structures and processes. MLM and SEM 

are two such statistical methods. They share in common is the need for samples of sufficient 

size to ensure valid tests of model fit and estimates and tests of parameters within models of 

adequate fit. Our concern has been the ways in which sample size affects estimation and 

testing in MLM and SEM, lower bounds of sample size for different aspects of data analysis 

using these methods, and strategies for optimizing applications of MLM and SEM when 

samples are small.

We have drawn attention to the sample size considerations for each of these methods in turn. 

To conclude, we turn our attention to considerations that apply to MLM, SEM, and other 

approaches to modeling prevention research data. The first such consideration is whether 

any model beyond a two- or three-variable system should be estimated at all. Clearly there 

are absolute lower bounds for sample size that determine whether any meaningful results 

can be obtained from modeling. We have identified those lower bounds for different 

modeling situations when MLM and SEM are used for estimation and testing. When lower 

bounds cannot be met, the alternatives are simpler analyses that focus on estimating and 

testing parameters in contexts as close as possible to that of the guiding theoretical model. 

Examples include analysis of covariance and multiple regression analysis. When sample size 

is small but larger than the lower bound for use of the modeling method, the considerations 

are for optimization of estimation and testing. We have reviewed the effectiveness of 

different estimation methods at different sample sizes for different types of models. 

Optimization in this way may require moving away from software defaults (e.g., maximum 

likelihood in SEM software) to alternatives that require user specification.
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Beyond this concern is the standard concern in treatments of sample size and statistical 

analyses—statistical power. Our treatment of power in this manuscript has been conceptual 

and strategic, owing largely to the fact that the issue of power in MLM and SEM is 

multidimensional and multiply determined in more ways than is typical of statistical 

analyses in prevention science. We presented findings from simulation work on models of 

general interest to give a sense of the number of cases generally required for adequate 

power. Collectively, these considerations lead to the conclusion that data from a few dozen 

cases, particularly when they are clustered, are not suitable for modeling with MLM or 

SEM. However, in light of the potential MLM and SEM offer for modeling the structures 

and processes implicated in prevention research, when possible, the investment required to 

assemble the larger, though still modest-sized, samples required for responsible use of these 

methods, is well justified.
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