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Abstract
Psychosocial prevention research lacks evidence from intensive within-person lines of research to
understand idiographic processes related to development and response to intervention. Such data
could be used to fill gaps in the literature and expand the study design options for prevention
researchers, including lower-cost yet rigorous studies (e.g., for program evaluations), pilot studies,
designs to test programs for low prevalence outcomes, selective/indicated/ adaptive intervention
research, and understanding of differential response to programs. This study compared three
competing analytic strategies designed for this type of research: autoregressive moving average,
mixed model trajectory analysis, and P-technique. Illustrative time series data were from a pilot
study of an intervention for nursing home residents with diabetes (N=4) designed to improve
control of blood glucose. A within-person, intermittent baseline design was used. Intervention
effects were detected using each strategy for the aggregated sample and for individual patients.
The P-technique model most closely replicated observed glucose levels. ARIMA and P-technique
models were most similar in terms of estimated intervention effects and modeled glucose levels.
However, ARIMA and P-technique also were more sensitive to missing data, outliers and number
of observations. Statistical testing suggested that results generalize both to other persons as well as
to idiographic, longitudinal processes. This study demonstrated the potential contributions of
idiographic research in prevention science as well as the need for simulation studies to delineate
the research circumstances when each analytic approach is optimal for deriving the correct
parameter estimates.
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Prevention science focused on psychosocial outcomes has relied almost exclusively on large
sample randomized designs, consistent with its traditional emphasis on universal
intervention (Biglan et al. 2000; Ennett et al. 2003). These methods have been used well to
advance prevention in certain ways such as estimating the efficacy of a prevention program.
Further diversification of prevention methodologies could facilitate much needed statistical,
theoretical, and applied innovations (Biglan et al. 1996; Kazdin and Blase 2011; Molenaar
2004). This paper demonstrates three analytic strategies with promise for rigorous
prevention research that uses within-person, small sample or case study methods. Each
strategy can be used in tandem with innovative designs recently introduced to prevention
science such as adaptive designs or Systems Dynamics modeling. These small sample
designs offer low-cost alternatives to large sample studies, filling a critical need in
prevention science during economic downturns and in settings with tight budgets (e.g.,
schools). To underscore a distinguishing emphasis of these designs compared to traditional
large-sample clinical trials, the term “impact” herein refers to the response to an intervention
observed in an individual or homogeneous group (in contrast to efficacy, the average
population outcome from an intervention).

Need for Small Sample, Intensive Intraindividual Designs
Recent studies illustrate the range of applications, potential, and need for small sample study
designs in prevention. Microtrials hold promise for elucidating genetic, and complex non-
genetic, mechanisms within prevention research (Howe et al. 2010). Medium-sized or larger
intervention effects can be detected using small samples (e.g., N<15) with as few as three
time points and conservative statistical tests (Ridenour et al. 2009). Policy and media studies
have demonstrated prevention program impact using low-cost, single case studies (e.g., one
state or community) (Biglan et al. 1996; Maldonado Molina and Wagenaar 2010). Some
specific needs for small sample, intensive within-person designs in prevention science
include rigorous designs for testing selective/indicated/tailored intervention, pilot studies,
identification of “active ingredients” and mechanisms of prevention programs, differential
intervention response, and testing efficacy of programs to avert low prevalence pathologies
(e.g., suicide attempts).

Failing to assimilate intensive within-person research impedes prevention science in
fundamental ways. To illustrate, psychological characteristics have been nearly always
analyzed as if they are invariant, fixed-effect traits, until acted upon by intervention. One
example is using a single wave of baseline data to test whether pre-intervention
characteristics predict intervention outcomes. This approach assumes that within-person
variability in risk factors is uninformative when in fact patterns in pre-intervention
variability of characteristics are probably equally (and maybe more so) predictive of
response to an intervention (Hintze and Marotte 2010). The most critical effect of an
intervention may be to alter the within-person variability of an outcome rather than the
average level. A key barrier to testing pre-intervention variability and trends as predictors of
efficacy is the prohibitive cost to collect multiple waves of baseline data in large samples.
Yet, personal and environmental risk factors are rarely, if ever, static including personality
traits and psychiatric disorders (Boker et al. 2009; Borkenau and Ostendorf 1998; Molenaar
2004).

The Ergodicity Assumption
Nearly all extant psychosocial prevention research assumes ergodicity (between-person
variation generalizes to longitudinal within-person variability), which is rarely tenable in
any social or health science (Molenaar 2004). Thus, the current prevention science literature
that focuses on program efficacy (consisting almost entirely of large sample studies with few
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waves of data per person), may generalize well to the corresponding populations
(demarcated by sample age, gender, region, etc.) but lacks generalization to longitudinal
processes that occur within individuals who receive an intervention (Boker et al. 2009).
Small sample designs permit delineation of the size and mechanisms of a prevention
program impact on specific types of persons and well-specified variation between
subgroups. In lieu of intensive within-person designs to elucidate developmental and
intervention mechanisms, theory regarding prevention program efficacy must currently rely
largely on conjecture rather than evidence-based grounding.

Early within-subject experimental designs that did not assume ergodicity were used in
psychology and education (Hoyle 1999). These lines of investigation lost prominence partly
due to the decline of the subdisciplines in which they were used (e.g., behaviorism), but also
because of statistical shortcomings such as failing to account for serial dependency. Since
then, in fields mostly outside of psychology and education, analytic methods have been
developed and widely used to overcome statistical shortcomings of conducting rigorous case
or small sample studies using time series data (Boker et al. 2009; Hoyle 1999; Molenaar
2004). Herein, three such analytic methods were demonstrated for small sample prevention
experiments: time series analysis (specifically ARIMA), mixed model trajectory analysis
and P-technique.

Foci of the Present Study
Each analytic strategy was evaluated in terms of statistical power to detect intervention
effects, relative strengths and limitations and potential uses to address prevention-oriented
research questions. The strategies differ in how intervention effects are estimated, method to
account for serial dependency, and modeling of non-intervention variables (e.g., personal
characteristics such as age or gender).

A secondary goal was to illustrate the potential utility of these techniques for applied uses
and expansion of the scope of prevention science. Consistent with this special issue theme,
the outcome consisted of blood glucose level (mg/ dL), a well-documented biological
mediator of medical complications from diabetes. Conducting this study using a large-scale,
randomized clinical trial would be logistically formidable, costly and time consuming.
Moreover, the intervention was designed for a well-specified group of persons, an ideal
scenario for a small-scale pilot study.

Diabetes in the Elderly
Diabetes is generally characterized by either a deficiency of (Type I) or an insensitivity to
(Type II) insulin, a hormone which facilitates transfer of glucose from blood plasma into
cells. Organ damage (visual loss, stroke, heart attack, kidney disease, nerve damage, etc.)
results both from sustained high blood glucose levels and because cells lack glucose. Acute
spikes in glucose levels also can cause alterations in cognition including loss of
consciousness. Normal fasting blood glucose ranges from 70 to 125 mg/dL (serving the role
of a universal screener). Two random non-fasting sugars over 200 mg/dL is diagnostic for
diabetes. Ketoacidosis (accumulation of acid or ketones in the blood stream consequent to
poorly controlled Type I diabetes) occurs at a blood glucose of 240 mg/dL or greater which,
if untreated, can lead to diabetic coma or even death.

As with psychosocial prevention programs, alternative interventions exist to control blood
glucose by targeting different risk factors or mechanisms. Compared to psychosocial
prevention, greater delineation of matching treatment to types of persons with diabetes has
occurred (largely due to small sample studies). In the elderly, many treatments for diabetes
have iatrogenic side effects (e.g., metformin may cause diarrhea, exenatide and liraglutide

Ridenour et al. Page 3

Prev Sci. Author manuscript; available in PMC 2013 September 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



may cause vomiting) or become ineffective over time (other noninsulin medications).
Although a carbohydrate consistent diet keeps meal size constant (while allowing for
variability in glucose levels), nursing home residents are rarely able to adhere long-term to
this inflexible regimen. The “sliding scale” is a commonly used insulin regimen consisting
of a basal insulin dosage supplemented with bolus doses that are often adjusted every 2
weeks, based on the patient’s average glucose level. Because the sliding scale fails to
account for a patient’s meal size (Pickup and Keen 2002), it has been criticized for its lack
of prospective dosing. A popular alternative is the insulin pump which is convenient,
portable, and provides prospective insulin dosing based on meal size and glucose reading.
Nursing home residents are often treated using a sliding scale due to a variety of factors
including practitioner preference and habit, ease of sliding scale use, and staff or practitioner
discomfort with insulin pumping technology. Use of the insulin pump with nursing home
residents also is limited by patient factors (inability to purchase the expensive equipment,
confusion leading to misuse of equipment, risk of infusion site dislodgement, unpredictable
eating patterns) or lack of insurance coverage.

Tested herein was a novel “manual pancreas” intervention, consisting of nurses manually (a)
reading glucose levels, (b) using algorithms to compute needed adjustments to insulin
dosing (e.g., Bolderman 2002), and (c) delivering bolus doses of insulin. Manual pancreas
was expected to reduce average glucose levels and frequency of glucose spikes compared to
care as usual (sliding scale). Accordingly, the first hypothesis was that clinically important
differences between interventions for the sample (N=4) and for each individual patient (n=1)
would be statistically detected.

Each of the three analytic strategies offers an advantage for the purpose of modeling how
glucose levels vary over time and may (not) respond to an intervention. Glucose levels
follow a circadian rhythm and are affected by many other factors with food intake
considered the most influential. ARIMA is most adept for modeling the cyclic patterns in
glucose (e.g., circadian rhythm, nutritional content of break-fasts may vary less than suppers
from day-to-day). P-technique offers the advantages of statistical control of circadian
rhythm and other forms of serial dependency, convenient tests for whether intervention
changes variance in an outcome, and the option of modeling change in outcome as a latent
variable. Accordingly, the second hypothesis was based on the expectation that ARIMA is
best able to handle the high intrapersonal variability in glucose patterns. Specifically,
modeling of observed glucose levels was hypothesized to be most accurate for ARIMA, less
accurate for P-technique and least accurate for trajectory analysis.

For the purpose of testing the manual pancreas intervention (expected to consist of a mean
difference between baseline and intervention phases), cyclical variation in glucose is largely
a nuisance factor to be parsed out of the analysis. Mixed model trajectory analysis can
control for a range of patterns of serial dependency while offering statistical power for
detecting change over time (phase differences, slopes, etc.). The third study hypothesis was
that estimates of intervention effect size would differ little among the techniques. This
hypothesis implies that for simple efficacy studies (e.g., mean differences between study
phases that are conducted within persons), mixed model trajectory analysis sufficiently
epitomizes data, even for outcomes with large and seasonal intrapersonal variability.

Methods
Sample

Consistent with university IRB approval, participants were from a single nursing home in a
medium-sized northeastern town. The inclusion criterion was having Type I diabetes or
Type II diabetes severe enough to require both basal and bolus dosages of insulin. Data were
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from medical charts. Study data consisted of gender, age and blood glucose levels at
7:30am, 11:30am, 4:30pm and 8:30pm. Blood glucose circadian rhythms typically peak
between noon and 6pm, but vary considerably between persons.

Procedures and Intervention
Data were collected between August 1st, 2005 and April 30th, 2007. Each participant
experienced a baseline phase of sliding scale followed by a manual pancreas phase. An
intermittent baseline design was used to greatly reduce potential for spurious effects (Biglan
et al. 1996; Cook and Campbell 1979) and attain important strengths above and beyond
conventional pre/post quasi-experimental evaluations. Strengths include additional
assurance that conditions preceding the intervention were not atypical (e.g., reducing the
potential for regression-to-the-mean effects), increased control over contemporaneous
unanticipated events during study implementation, and an opportunity to examine the
functional form of intervention effects. Study timeline and patient intervention phases
appear in Fig. 1.

Nursing home staff was trained to compute algorithms to determine bolus insulin doses
based on the insulin sensitivity factor and carbohydrate to insulin ratio (available from the
2nd author). Training lasted 1 h, detailed the protocol for computing insulin dosage and was
videotaped for subsequent staff review. The physician trainer and nurse manager were
available daily for consultation, direct patient care and random checking of insulin dosing
calculations.

Analyses
Data analyses included autoregressive moving average (ARIMA) analysis (with Proc
ARIMA, SAS 9.1), mixed model trajectory analysis (MMTA) (with Proc Mixed, SAS 9.1),
and P-technique (with AMOS 17.0). Software packages were chosen because they are easily
accessed by prevention researchers. Each method has an established literature, but has rarely
been used for small sample prevention efficacy research. Following are succinct descriptions
of each method as they were used herein with references to thorough overviews. For
simplicity, statistical notation assumes the use of standardized variables (means = 0; SDs
=1).

Exploring the functional form of a time series helps detect such trends as step functions
(sudden mean shifts such as might be expected from implementing an intervention) vs.
linear slopes vs. exponential changes as well as longer-term asymptotic effects. Overall, a
time-series design permits evaluation of (1) long-term manifold, even hundreds of, repeated
measures; (2) a broad range of resolutions of data (e.g., annual to multiple times daily); (3)
comparisons between study groups; and (4) within-person intervention phases. The
competing analytic techniques were compared statistically in terms of (a) accuracy of
predicted glucose levels in terms of correlation with observed glucose levels, (b) consistency
among techniques for estimating intervention effect size, and (c) consistency in predicted
glucose levels among techniques.

Autoregressive Moving Average (ARIMA) Analysis—Glucose levels have seasonal
variation due to circadian rhythm and weekly diet patterns. A strength of ARIMA is
adeptness at testing and accounting for all aspects of cyclic patterns and stochastic
autocorrelation structure (serial dependency) of a time series (Velicer and Colby 1997). By
first accounting for serial dependency, a benchmark is provided for testing an intervention.
The general multiplicative seasonal model was considered for each patient’s time series. For
an outcome variable, Yt, a seasonal ARIMA model with structure (0,1,1)(0,1,1)4 is:
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(1)

where Yt is an outcome (i.e., glucose level) from the first, t=1, to last observation; α is a
constant; ω represents the effect of intervention; It is a time-varying step function that equals
0 for baseline observations and 1 during intervention; Θ is the first order seasonal moving
average parameter; ut is random error, and B is the backshift operator such that B4(Yt)
equals Yt-4. A backshift operator transforms an observation of a time series to the previous
observation to account for seasonality. An ARIMA model is appropriate only after the series
is stationary (has a constant mean, variance, autocorrelation) which typically requires
hundreds of observations.

Mixed Model Trajectory Analysis (MMTA)—Whereas ARIMA detects well the error
covariance structure(s) of time series, MMTA offers (a) statistical and logistical parsimony,
(b) modeling flexibility, (c) statistical power, and (d) familiarity to clinical researchers
(Hedeker and Gibbons 2006). For within-person analyses, individuals’ outcomes occurring
over time are analyzed at level 1 which are clustered in persons at level 2 (where individual
differences are tested). Ridenour et al. (2009) demonstrated using MMTA for small sample
randomized clinical trials having few waves, including for cross-over and intermittent
baseline designs. Within-person MMTA can be represented using a single regression
equation:

(2)

where Yit is an outcome for individual i at time t; the intercept for individual i (outcome for
the observation at which time is centered, typically the first of the study) is a function of the
average sample intercept (β0, a constant) plus the individual’s deviation from this average
(u0i); change in the outcome over time is modeled as a function of the sample average trend
(β1) plus the individual’s deviation from that trend (u1i); baseline vs. intervention phases
were modeled as differences between means (β2Intxit) and trends (change over time or
β3(Intx*Time)it); and eit denotes random error. When modeling a trend for a single person,
β1 model the average for that person over time, u0i is dropped from the model (i.e., equals
zero), and u1i models the deviation of specific observations from the person’s trend.
Intervention phases were dummy coded as 0 (sliding scale) and 1 (manual pancreas) and
tested as fixed effects. Maximum likelihood estimation was used to test fit of the overall
model, specific predictors and error covariance structures (using likelihood-ratio χ2,
Akakie’s Information Criterion, Bayesian Information Criterion fit statistics) with restricted
maximum likelihood used to acquire parameter estimates.

When the error covariance structure of a time series is misspecified in MMTA, the analysis
likely generates biased estimates of parameter variance and random effects and possibly
biased estimates of fixed effects (Kwok et al. 2007; Sivo et al. 2005). Several error
covariance structures were tested (autoregressive, heterogeneous autore-gressive,
autoregressive moving average, and factor analytic, each with a lag 1 per the proc mixed
options) to account for the greatest amount of variance due to serial dependence. To reduce
potential for Type I error, the Kenward-Roger adjusted F-test for small samples was used
(Littell et al. 2006).

P-technique—P-technique models latent-level within-person longitudinal processes based
on multivariate time series data (Molenaar and Nesselroade 2009). For instance, P-technique
studies (and meta-analysis thereof) identified core processes of client and therapist
contributions to psychotherapy (Russell et al. 2007). P-technique uses an equivalent
covariance structure as factor analysis, thereby providing an analytic paradigm which is
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familiar to many prevention researchers for longitudinal, within-person, small sample
research. Although P-technique has evolved in the form of dynamic factor models, the two
methods perform equivalently for modeling simple latent within-person processes (Molenaar
and Nesselroade 2009). A general P-technique model for yt, similar to traditional factor
analysis, is:

(3)

where yt denotes a person’s value at time t over the course of a (p-variate) time series; Λ
represents a vector of factor loadings; η comprises a corresponding vector of latent factors;
and ε represents random (measurement) error.

Glucose levels at different times of day were analytically handled as indicators of a single
latent construct (daily glucose level). Multiple glucose measures were needed per day
because of circadian rhythms. An important assumption of P-technique which held for the
present data, but often does not in time series data, is that the time series is weakly stationary
(in effect, that within an individual, the mean and variance of a time series are constant and
finite).

Integrated Method—A novel approach tested herein was an attempt to capitalize on the
strengths of ARIMA and MMTA to potentially surmount each of their limitations. ARIMA
is more adept for elucidating error covariance structure than MMTA. However, ARIMA is
more sensitive to missing data and outliers than MMTA and offers less power. Thus,
MMTA was conducted a second time, using the error co-variance structure detected in
ARIMA; results of the first and second MMTA were then compared.

Results
The sample of four European-American nursing home patients ranged in age from 72 to 85
years and included three males. Patients A, C and D had Type 1 diabetes; B had poorly
controlled Type II diabetes. Consistent with the population with diabetes, patients’ glucose
was above the normal range on average. Patient A’s X¯ = 153:7 (SD=55.7); sliding scale X̄ =
192:6 (SD=72.8, n=37) and manual pancreas X¯ = 150:0 (SD=52.4, n=338). Patient B’s X̄ =
190:2 (SD=93.5); sliding scale X ¯ = 262:0 (SD=109.5, n=196) and manual pancreas X̄ =
155:2 (SD =58.7, n=403). Patient C’s X¯ = 221:3 (SD=103.5); sliding scale X̄ = 253:7
(SD=126.0, n=157) and manual pancreas X̄ = 209:0 (SD =90.7, n=413). Patient D’s X¯ =
183:7 (SD=81.1); sliding scale X ¯ = 232:1 (SD= 87.6, n=151) and manual pancreas X̄ =
170:5 (SD=74.04, n=554). As the large SDs suggest, extreme glucose spikes were observed
in each patient with maximum glucose of 355 for A and near 550 for patients B, C and D.
Few missing observations occurred: 0.7 % for Patient A, 1.5 % for B, 2.8 % for C and 2.7 %
for D.

Figure 2 illustrates the time series data as well as certain challenges of analyzing them.
Visual inspection of Panel a reveals neither when the intervention was initiated nor its
impact for Patient C at 11:30am. Yet, manual pancreas was associated with lower blood
glucose on average (p<.001) (Table 1). For comparison, Patient D’s data at 8:30pm (Panel b)
and the superimposed trend line demonstrates an effect size that resembles the effect hidden
in Panel a. Neither linear nor nonlinear trends occurred in the data aside from a phase shift
associated with intervention, so results focus on mean differences between study phases.

ARIMA
Autoregression is present for each patient (unconditional AIC for patient A=4,917; B=7,849;
C=7,483; and D=8,889). A model with lag of 1 (autocorrelation with the preceding glucose
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level) improves overall fit to the data (AIC for patient A=4,935; B=7,390; C=7,241; and
D=8,397), but fails to account for all serial dependence of any patient. Additional modeling
of autocorrelation for time of day, via lag 4 autocorrelation (AIC for A=4,949; B=7,069;
C=7,261; and D=8,501) and moving average of 4 (AIC for patient A=4,459; B=6,472,
C=6,719, and D=7,902), accounts for remaining autocorrelation of residuals (p>.05) for all
patients, except D. A strict significance criterion of p<.001 was used to evaluate all models
for effects of outliers; no outliers are included in the results for ARIMA.

A reduction in blood glucose of 52.2 mg/dL (se=22.6) associated with manual pancreas is
estimated via ARIMA for the sample in aggregate (t=2.31, p=.021). In N-of-1 analyses, for
patients A and C, manual pancreas does not statistically reduce overall glucose levels vs.
sliding scale (t=−1.47, p=.15 for A; t=−0.72, p=.48 for C), although the effects are in the
hypothesized direction: −25.2 for A and −47.9 for C. Patient B’s glucose is significantly
reduced (t=−2.11, p=.04) by 62.5 units. Patient D’s results are confounded by (a) missing
data immediately preceding implementation of manual pancreas (Fig. 2, Panel b) due to
patient hospitalization and (b) outlier levels of high blood glucose during the few days
preceding hospitalization. Omitting patient D’s missing data points permits the model to fit
patient D’s data; under this condition, glucose is reduced by 61.5 (t=−5.42, p<.001).
ARIMA models of outcomes for specific times of day are too unstable to provide estimates
of intervention impact because of needing more observations and the missing data.

MMTA
Using MMTA, two error covariance structures best fit the data, depending on which subset
of data was analyzed (see Table 1; fit statistics are not presented due to space restrictions but
are available from the 1st author). Analyses were repeated for each time of day to: control
for circadian rhythm variation (cf. ARIMA lag 4 autocorrelation), clarify between-patient
differences and elucidate mealtime-specific intervention impact. The factor analysis lag 1
covariance structure best fits glucose time series for 7:30am, 4:30pm and 8:30pm;
heterogeneous autoregression lag 1 (which does not require variances to be approximately
equivalent) best fits the 11:30am time series.

Table 1 summarizes MMTA results. In aggregate, manual pancreas is associated with
reduced blood glucose (by 49.4 mg/dL, se=9.2; p<.001). This effect is statistically
significant only at 7:30am and 4:30pm (due to large standard errors at other times), but
increases throughout the day. Patient-specific analyses suggested a reduction in overall
blood glucose for patients A, B and D but not C (also partly due to a larger standard error).
Within-patient results differ appreciably among them, including the times of day at which
manual pancreas is associated with decreased blood glucose. No significant interaction
between study phase and time occurs.

As noted earlier, analyses were repeated using the error covariance structure identified in
ARIMA analyses. To replicate the ARIMA lag 4 structure for entire patient time series
(rather than time-specific series), a Toeplitz lag 5 error structure is required in Proc Mixed.
Results for these replicated analyses differed little from those reported earlier.

P-technique
Figure 3 presents the P-technique model with lag 1 autocorrelation at the latent level and lag
4 autocorrelation for specific times of day. Fit to data is best by freeing parameters to allow
for between-patient and between-intervention differences (Table 2). The aggregate estimate
of intervention efficacy from P-technique is a reduced blood glucose level of-64.3 mg/d
(se=6.8; p<.001). Patient-specific analysis does not generate stable estimates of intervention
effect because the large number of model parameters (and subsequent low ratio of number
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of parameters to observations). Time-specific analysis replicates the aggregate result that
lower blood glucose is associated with manual pancreas (Table 1); standard errors for these
analyses consist of a pooled standard error based on the corresponding parameters from
sliding scale and manual pancreas estimates. The reduction in blood glucose associated with
intervention is least for 7:30am and greatest at 4:30pm.

“Outliers” as Outcomes
The term “outlier” appears in quotation marks because glucose outliers are nuisance values
only in terms of statistical modeling. To the health of patients, they are of utmost
importance, as blood glucose spikes suggest poor diabetes control and reductions in their
frequency is a clinical goal. Statistical “outliers” also are frequently targets of psychosocial
prevention programs (e.g., aggression, suicide attempts).

Thus, for rigorous small sample prevention research, change in frequency of such outliers
can be central to testing a program’s impact on an individual as well as the program’s
efficacy (and requiring their omission to analyze data may be a critical limitation). Using
McNemar’s χ2, the following changes in frequency of occurrences of glucose >240 are
associated with sliding scale vs. manual pancreas, respectively. (Phase marginal values for
2×2, cross-tabulation tables appear earlier in Results section “n”s.) In aggregate, a reduction
in spike frequency of nearly 2/3 is associated with manual pancreas (43.8 % vs. 14.2 %, p<.
001). This result also is observed per patient (all χ2 tests p<.001): A had 15.0 % vs. 4.6 %; B
had 54.6 % vs. 7.7 %; C had 48.4 % vs. 30.3 %; D had 32.5 % vs. 13.5 %. To estimate the
effect of omitting outliers in MMTA and P-technique (to which ARIMA is sensitive), a
sensitivity analyses was conducted comparing results with all data to results when outliers
were omitted. Virtually identical results were found, thus only results for the full dataset are
reported for each strategy.

Comparisons Among Techniques
Regarding hypothesis two, observed glucose levels were predicted by ARIMA with r=.57,
by MMTA with r=.43 and by P-technique with r=.65 (all p<.01, using Pearson r).
Additionally, the r between predicted glucose values of ARIMA and MMTA was .53,
between ARIMA and P-technique was .66 and between MMTA and P-technique was .56.
For hypothesis three, Cohen’s d was 1.28 for ARIMA, 0.84 for MMTA and 1.34 for P-
technique (due to larger standard deviations for MMTA).

Discussion
Results were generally consistent with the hypotheses. Each analytic method led to similar
overall conclusions. First, manual pancreas is associated with healthier glucose levels than
sliding scale. Second, large variability occurs between patients in terms of average glucose
levels, daily patterns, and response to intervention. Third, in spite of meaningful impacts
attributable to manual pancreas, greater glucose control is needed for each patient.

Comparison Among Techniques
Nevertheless, for this particular study each method offered a unique benefit. ARIMA best
detected serial dependency (e.g., thus reducing the denominator for estimation of Cohen’s
d). MMTA estimated the intervention effect with the least difficulty and for the smallest
segments of data (i.e., per time of day for each patient). The P-technique model (modeling
error covariance as detected by ARIMA) replicated the time series data most accurately. If
the study purpose had been to determine the reduction in glucose level (as opposed to
Cohen’s d), either overall or for specific patients’ mealtimes, MMTA would have best
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served the study. Otherwise, P-technique or ARIMA would have been the most
advantageous technique.

Estimates of effect size differed between the analytic techniques, a result that was not
surprising given their differing approaches to modeling phases of the time series. The most
conservative efficacy estimate was from MMTA, which was more similar to the estimate of
ARIMA than P-technique. Given the range (11 to 549 mg/dL) and high variance of
observations, the three estimates of efficacy were similar. Not surprisingly, estimates of
intervention outcome become less similar at lower levels of data analysis, such as for
individuals or specific times. Compared to single cases, it appears that samples consisting of
a few persons greatly improve accuracy (and generalizability) of effect size estimates in
intensive within-person studies. Although evidence is lacking to determine which technique
provides the most accurate estimates, this study clearly demonstrated the need for simulation
data with known correct results to learn which technique is optimal under specific
circumstances.

The three methods handled serial dependence differently. Within MMTA, covariance
within-persons is handled as nuisance variability, controlled for with an error covariance
structure. ARIMA not only conveniently tests for and explicitly models within-person
autocorrelation and cyclical patterns (seasonality), it can capitalize on such trends to forecast
outcomes occurring subsequent to the study data (Chatfield 2004). In contrast, software
programs in which P-technique could be conducted require the statistician to explicitly
model an error covariance structure (as opposed to providing code to add the structure to an
analysis).

Finally, the three techniques offer differing strengths which may be leveraged for answering
different prevention-related research questions. Illustrated herein were the strengths of
MMTA for testing intervention impact, specifically statistical power, robustness to missing
data and outliers, as well as an elegant modeling approach that requires fewer parameters
and observations than ARIMA or P-technique. MMTA can facilitate comparisons between
nomothetic studies (generalizations across people) and idiographic studies (within-person
processes) because the exact same techniques and estimates can be derived from both
studies.

A strength of ARIMA that was illustrated was detection of error covariance structure. For
instance, this strength permitted analytic control of within-person variability, leading to a
larger estimate of intervention efficacy (in the form of Cohen’s d). A feature of ARIMA that
was not illustrated herein is forecasting outcomes (widely used in business). Potentially, an
ARIMA model could warn of high probability for a clinical event (e.g., suicide attempt)
which could then be averted with intervention.

Most of the strengths which P-technique and dynamic factor models offer for prevention
research were not highlighted herein. One strength that was demonstrated was that P-
technique most closely modeled the observed levels of glucose. P-technique also allows
within-person developmental processes (including response to combinations of
interventions) to be investigated at the latent level. To illustrate how useful this feature is,
consider that ratings of a child’s antisocial behavior are well-known to be inconsistent
between the child, parent and teacher and there is no agreed upon method for culling data
from each rater (de los Reyes and Kazdin 2005). These methods offer a data-driven method
for aggregating ratings from different sources. Additionally, interactions over time between
dyads could be modeled.
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Study Limitations
Comparisons between the analytic strategies require replication. This study provided
working hypotheses that should be tested using simulation studies with known correct
results. The scenario investigated herein consisted of a simple mean comparison between
interventions. While consistent with emphases in prevention science, how well these study
results generalize to more complex scenarios (e.g., modeling error covariance, testing
interactions) needs clarification. Data analysis packages can be improved upon by adding
features specifically for the small sample strategies considered herein or which can be
programmed to specifically handle the features of a particular time series (e.g., a unique
error covariance structure). Finally, this study illustrated an important limitation of each
technique; they could not statistically test the reduced frequency of outlier clinical events
(glucose spikes) associated with the intervention.

Implications and Future Steps
One needed future step is to determine how the strengths of each technique might be used in
complementary ways to analyze intensive within-individual analyses. An example alluded to
earlier applies ARIMA to identify the error co-variance structure and then including that
structure in MMTA or P-technique. Potentially, each method is optimal for analyzing
different developmental processes within persons or research conditions. Exactly when each
technique provides the optimal analytic strategy could be determined in simulation studies in
light of varying sample sizes, numbers of observations, effect sizes and serial dependence.
Also needed is rigorous simulation work to determine sample sizes needed to generalize
parameter estimates to populations of varying homogeneity (e.g., elderly in nursing homes
vs. all retired persons).

Regarding the study design, opportunities abound for using small sample designs in the
context of prevention. At first, the task of collecting manifold data points for each person
may appear onerous. However, this task frequently already occurs in settings where
participants receive intervention (Velicer and Colby 1997). Teachers, especially special
education teachers, collect outcomes data on students and recently do so more frequently to
record student response to intervention (Burns et al. 2010). Any locale in which people
come into regular contact with health or education professionals (e.g., hospitals, schools,
residential or inpatient units, institutional leisure activities) provides an opportunity for
intensive within-person data collection. Logistical obstacles notwithstanding, the
intervention goals of professionals in these settings generally align with the goals of
prevention science, providing foundations for collaborating with them.

As illustrated herein, coupling the interrupted time-series design with these analytic
techniques provided statistical power to detect effects in very small samples and generates
estimates of intervention impact. Such designs offer high external validity to future
observations of the patients who are studied as well as other patients who resemble the study
sample. Indeed, they could be used by clinicians to monitor a patient’s progress and inform
clinical decisions (Kazdin and Blase 2011). The between-person variability shown herein
illustrates a need for simulation research to determine adequate sample sizes for generalizing
results to other persons. To date, generalizability has been addressed adequately in intensive
within-person research using replication studies. Having statistically grounded guidelines to
determine sample size could improve this aspect of a-priori study design.

The analytic techniques used herein can be coupled with adaptive designs such as Sequential
Multiple Assignment Randomized Trial (Murphy et al. 2007). By not requiring large
samples, such complex designs would be neither cost prohibitive nor logistically
burdensome (by offsetting fewer persons with greater number of observations to attain
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power), two barriers that have impeded wide use of these designs (Murphy et al. 2007).
Using adaptive designs in applied settings (schools, residential units, probation visits,
inpatient hospitals) where data could be (and frequently are) collected at least daily (e.g.,
attendance, behavior problems, monitoring response to treatment) permits evaluation of
intervention phases in terms of trends as well as the traditional mean efficacy.

Research methods shown herein could also be useful in System Dynamics studies to address
complex and dynamic prevention science problems (Hassmiller Lich et al. 2012). In System
Dynamics projects, a model or “dynamic hypothesis” is built to represent the key
components of a system in which a documented and dynamic problem is occurring, so that
the effects of individual and combined complexities (e.g., mediating factors, delays,
interactions, non-linearities) can be understood within the context of the entire system.
Alternate intervention scenarios can be developed and simulated, and their behavior could
be compared virtually. To illustrate, Panel A in Fig. 4 presents a causal loop diagram
depicting basic dynamics of diet, exercise and insulin within the glucose metabolism system
largely inspired by a diagram developed by Gaynor (1998, p. 121). Panel b presents an
expanded diagram depicting the three common clinical strategies for managing Type I
diabetes (using two mechanisms of diet, exercise and insulin) (Lehmann et al. 2011).
Arrows between variables should be interpreted as “an increase/decrease in the first variable
causes an increase/decrease in the second variable, all other things being equal.” A “+” on
an arrow indicates that the two variables move in the same direction (that is, an increase in
the first variable leads to an increase in the second variable while a decrease in the first
variable leads to a decrease in the second variable, all other things being equal; a “−” notes
that the variables move in the opposite direction. Dashed arrows in Panel B illustrate
potential interventions, adding additional balancing loops that will bring system behavior
(here, blood sugar) under control over time.

The causal loop diagram provides a medium to conceptualize the actions and interactions of
various agents (e.g., risk factors) upon an outcome, visually organize the leverage points of
intervention, and quantify the relationships among the agents. Virtual simulations based on
the quantified model can then identify which elements of intervention lead to meaningful
change in the outcome. Small sample within-person studies could provide the data for
quantifying parameters and testing the validity of such systems models (a challenge, as each
model represents a single testable hypothesis, and data collection to validate the model can
require substantial effort). When the model focuses on forces affecting outcomes at the
individual level (either person, organization, or community), between-person comparisons
can be made to identify important moderating factors between individual entities.

Panel c of Fig. 4 demonstrates a model boundary chart, an important step in creating causal
loop diagrams. Prevention programs attempt to alter the putatively most critical factors that
contribute to a pathological outcome rather than all of the factors that potentially affect the
outcome. The boundary chart makes explicit which variables are included vs. excluded from
the model (and intervention), thereby compelling justification for each inclusion/exclusion
decision. The chart can inform revision of programs. To illustrate, Zhou et al., Receding
horizon control of Type I diabetes based on a data-driven linear time-varying state-space
model (unpublished) recently showed that glucometer readings and insulin administration
occurring every 30 min. (with feedforward-feedback controls to adjust dosing algorithms
specifically per patient) could result in glucose levels that remain between 70 and 175 mg/
dL. Their report suggests that by adding the previously excluded variable “frequency of
monitoring blood glucose/administering insulin” (Fig. 4, Panel c) to the model/intervention
strategy, individuals’ blood sugar levels could be appreciably improved.

Ridenour et al. Page 12

Prev Sci. Author manuscript; available in PMC 2013 September 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



To summarize, the impact of the manual pancreas intervention was pilot tested using an
intermittent baseline design, time series data and analytic strategies. Not only was manual
pancreas associated with improved glucose control compared to care-as-usual, the
improvement was found for each patient and especially with regard to dangerous spikes in
blood glucose. The study had high external validity and clinical feasibility as it was
conducted in a community nursing home by the nursing home staff. Equally important,
innovative strategies to conduct small sample, intensive within-person clinical research were
compared and demonstrated for prevention in applied settings. By coupling intermittent
baseline designs with techniques to analyze within-individual time series data, highly
applied research strategies can be conducted in clinical settings to address research questions
that traditional nomothetic methodologies cannot undertake. Also demonstrated was the
need for several lines of simulation research to delineate which analytic techniques to use
under varying research circumstances.
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Fig. 1.
Timeline of data collection. Note: s = baseline phase using sliding scale. M = intervention
phase using manual pancreas
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Fig. 2.
Exemplar patient time series data for two patients. Panel a: Time series of blood glucose
levels at 11:30am for Patient C. Panel b: Time series of blood glucose levels at 8:30pm for
Patient D with the trend from results of mixed model trajectory analysis of intervention
impact appearing in bold
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Fig. 3.
P-technique factor model for daily glucose level with Lag 1
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Fig. 4.
Panel a Closed Loop diagram of a healthy blood sugar metabolism system. Panel b closed
loop diagramof common clinical strategies to manage type I diabetes. Panel c model
boundaries chart for panel b diagram. Panel A presents a causal loop diagram illustrating the
putative causal sequences that keep the blood sugar metabolism system balanced, heavily
inspired by a similar diagram developed by Gaynor (1998). An arrow connecting two
variables indicates that a change in the first causes a change in the second, all other things
being equal. A “+” on the arrowhead indicates the variables move in the same direction,
while a “−” indicates they move in opposite directions. Loops are formed when causal
sequences circle back on themselves; balancing loops move a system into equilibrium. Panel
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B presents an expanded causal loop diagram of common clinical strategies to manage type 1
diabetes. Dashed lines suggest potential interventions
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Table 1

Change in blood glucose associated with manual pancreas (compared to sliding scale)

Aggregated timesA 7:30am 11:30am 4:30pm 8:30pm

MMTA

  Entire Sample −49.4a (9.2) −35.9b (9.8) −43.3a* (194.2) −59.4b (9.7) −59.1a* (277.9)

  Patient A −40.9b (10.7) 0.2b* (11.1) 1.8a* (24.4) −50.4b (20.2) −104.2b (19.4)

  Patient B −107.9b (11.8) −32.2b (8.8) −117.3a (23.0) −156.3b (19.3) −122.2b (17.0)

  Patient C −22.6b* (15.3) 11.5b* (27.5) −66.6a (26.8) −35.5b* (25.4) 3.0b* (27.7)

  Patient D −24.6b (10.1) −112.1b (16.0) 26.3a* (17.6) 43.5b (17.7) −57.3b (24.3)

P-technique

  Entire Sample −64.9 (6.8) −32.4 (7.7) −89.3 (7.6) −98.8 (6.5) −83.1 (6.2)

A
intervention effect aggregated over all times of the day for the sample or specific patient.

a
heterogeneous autoregression, lag 2, error covariance structure.

b
factor analytic, lag 2, error covariance structure.

*
Change in glucose was NS (p>.01). Parenthetical values are standard errors. Change attributable to time (slope) and time-intervention interaction

were statistically nonsignificant in all MMTA
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