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Abstract
Agent Based Models (ABMs) are powerful tools for population-environment research but are subject
to trade-offs between model complexity and abstraction. This study strikes a compromise between
abstract and highly specified ABMs by designing a spatially explicit, stylized ABM and using it to
explore policy scenarios in a setting that is facing substantial conservation and development
challenges. Specifically, we present an ABM that reflects key Land Use / Land Cover (LULC)
dynamics and livelihood decisions on Isabela Island in the Galápagos Archipelago of Ecuador. We
implement the model using the NetLogo software platform, a free program that requires relatively
little programming experience. The landscape is composed of a satellite-derived distribution of a
problematic invasive species (common guava) and a stylized representation of the Galápagos
National Park, the community of Puerto Villamil, the agricultural zone, and the marine area. The
agent module is based on publicly available data and household interviews, and represents the
primary livelihoods of the population in the Galápagos Islands – tourism, fisheries, and agriculture.
We use the model to enact hypothetical agricultural subsidy scenarios aimed at controlling invasive
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guava and assess the resulting population and land cover dynamics. Findings suggest that spatially
explicit, stylized ABMs have considerable utility, particularly during preliminary stages of research,
as platforms for (1) sharpening conceptualizations of population-environment systems, (2) testing
alternative scenarios, and (3) uncovering critical data gaps.

Keywords
Galápagos Islands; Invasive Species; Land Use/Land Cover; Livelihoods; NetLogo

Introduction
Nearly a decade ago the US National Research Council identified an environmental research
agenda that was published as the Grand Challenges in Environmental Sciences (2001). Central
to the Council's research recommendations are the interactions of people, place, and
environment. Human populations impact and respond to their environment in a variety of ways,
and understanding these complex interactions is crucial to improving human and environmental
well-being. More recently, the Millennium Ecosystem Assessment Report (2005) described the
ways in which humans have transformed ecosystems, and how changes in ecosystem goods
and services have affected human welfare and behavior. In the process, it drew attention to the
feedbacks between people and the environment that operate across a range of scales in space
and time.

Differences in the scale and measurement of social and ecological features are considerable
obstacles to studying these complex interactions (Mather et al. 1998), making interdisciplinary
work a challenge (Davis 1990). In response to this challenge, there has been a call to create a
new interdisciplinary science devoted strictly to population-environment interactions,
complete with its own standards and methods of inquiry (Lutz et al. 2002). Agent-based models
are useful tools for advancing this interdisciplinary science due to their ability to integrate
spatially explicit population and environmental data with information on how individual people
make decisions.

In this paper, we draw on the insights and methods of complexity science to develop a stylized,
spatially explicit agent-based model, which we use to investigate a set of population-
environment interactions. The model incorporates feedbacks between alternate household
livelihood strategies and land use/land cover (LULC) on Isabela Island in the Galápagos
Archipelago of Ecuador. We develop a baseline model that resembles current trends in
livelihood choice and guava cover on the Island, and then use it as a virtual laboratory to test
a set of hypothetical interventions intended to decrease the percent of land cover occupied by
an invasive species (common guava). We report the outcomes of these hypothetical
interventions, and comment on how a stylized environment and simulated household agents
that maintain key characteristics as well as social and spatial connections can guide the study
of population-environment systems more generally.

Background
Complexity science provides unique and powerful insights for investigating population-
environment interactions; in particular, the methodological approaches founded in the study
of complex systems are directly relevant to this research. Broadly defined, a complex system
is one that exhibits nonlinearity, heterogeneity, self-organizing properties, emergence of
aggregate trends, interactions across scales, and sensitivity to initial conditions (Malanson et
al. 2006; Portugali 2006). These systems self-organize to produce aggregate patterns that
emerge from simple interactions between individual components (Holland 1996, Manson
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2001; Abel and Stepp 2003). Complex systems can reproduce their state or transition between
states due to interactions between individuals and positive and negative feedbacks with their
environment (Blackman 2000).

Complex systems approaches have been applied in disciplines as diverse as climatology (Rind
1999), biology (Farmer et al. 1986), evolution (Kauffman 1993), and economics (Anderson et
al. 1988, Arthur 1999, Beinhocker 2006), but it has particular relevance for the study of
population-environment interactions (e.g., see the special issue on population-environment
interactions in GeoForum (Walsh and McGinnis 2008)). The approaches of complexity science
have informed studies of global environmental change (Janssen 1998), protected areas and
their impact on human communities (Roberts et al. 2002), tropical deforestation (Soares et al.
2002; Deadman et al. 2004), climate change (Solecki and Oliveri 2004), and LULC change
(Messina and Walsh 2001; Lambin et al. 2003; Evans and Kelley 2004). The varied applications
of complexity science have underscored the importance of initial conditions, feedbacks, and
interactions between heterogeneous agents.

Recognition of these key characteristics has spurred the development of computer-based
research tools. Spatially explicit computer models built within the framework of complexity
science generally consist of two main components: (1) a landscape or environment that
represents the relevant physical and ecological aspects of the system, and (2) agents that act
within that environment according to behavioral rules (Parker et al. 2003). These models are
generally known as agent-based models (ABMs). With ABMs, the interactions between agents
and the environment can be reproduced in order to examine the complex patterns that emerge,
and to understand the processes that drive system dynamics (Axelrod 1997). ABMs have been
promoted as viable tools for examining population-environment interactions (Hare and
Deadman 2004; Batty and Torrens 2005; Rindfuss et al. 2007; Auchincloss and Diez Roux
2008; Evans and Kelley 2008; O'Sullivan 2008), as they are capable of modeling feedbacks
among environmental conditions, human actions, and processes that change over time through
agent learning and adaptation (O'Sullivan 2008). Unlike analytical or “state-variable” models,
ABMs can incorporate individual variation that more effectively captures the heterogeneity in
human-environment interactions (DeAngelis and Mooij 2005). Moreover, ABMs are capable
of modeling spatially explicit phenomena. Overall, agent-based modeling has proven itself as
a powerful tool for exploring interactions between people and the environment and for
identifying ways in which systems may respond to human- and environmentally-induced
perturbations (Bolte et al. 2007; Parker et al. 2003).

The proliferation of ABMs in recent decades has yielded models that range from abstract
representations of reality to highly specified, place-specific models. Schelling's (1971)
segregation model and Epstein and Axtell's (1996) Sugarscape exemplify the utility of abstract
models as virtual laboratories for exploring the simple rules that underlie complex social
patterns. In recent years, researchers have built increasingly complex models that attempt to
reproduce key population-environment interactions specific to a particular place and time.
These ABMs have provided important insights into the causes and consequences of landscape
change, livelihood decision-making, and system outcomes under a variety of “what if”
scenarios (Parker 2007; Walsh et al. 2006; Walsh et al. 2008b). For example, ABMs have been
developed to examine human vulnerability in the Philippines through the responses of farming
communities to change (Acosta-Michlik and Espaldon 2008); to assess the flows of information
among fishing crews and their vessels in Australia to simulate the dynamics and resource
exploitation of fisheries (Little et al. 2004); and to identify the most important decision-making
inputs that affect land use in Texas and Venezuela (Acevedo et al. 2008). There is a clear and
compelling precedent that justifies the use of ABMs to explore the relationships between
human decision-making and system dynamics.
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To date, there have been two major factors hindering the wider adoption of ABMs in
population-environment research. First, the software environments in which these models have
been developed typically have a steep learning curve. Many popular ABM platforms, including
SWARM (Minar et al. 1996) and REPAST (Collier 2003) require the use of programming
languages such as Java or C++. Researchers without extensive programming experience must
rely on dedicated programmers for model implementation, slowing the model development
process considerably (Railsback et al. 2006). For the present research, we use NetLogo (version
4.0.4), a comparatively user-friendly ABM development platform that integrates a graphical
user interface with an intuitive scripting syntax based on the LOGO language (Papert 1972).

The second hindering factor is the extensive data that oftentimes is required to accurately
represent specific agent and environmental attributes. For instance, ABMs that are used to
evaluate the potential consequences of policy scenarios are often parameterized with
considerable social and ecological data (e.g., Galvin et al. 2006; Brown et al. 2008). However,
the more these models capture the complexity of the real world, the harder they are to develop,
interpret, and validate (Grimm et al. 2005). In the words of Parker et al. (2003: 329): “whatever
the goal of modeling efforts, balancing the utility of abstraction against the need to include the
critical components of the system under study is a major challenge of modeling.”

Our model strikes a compromise between abstract and highly specified models. We develop a
relatively simple, yet realistic, ABM with publicly available data, free software, and limited
technical experience, in order to formulate and refine conceptualizations of an exemplary
population-environment system. Specifically, we examine livelihood decision-making and
LULC change on Isabela Island, Galápagos. We explicitly model inputs to human decision-
making and feedbacks among interacting system components with remotely-sensed LULC
data, demographic data from the Ecuadorian Instituto Nacional de Estadística y Censos (INEC),
and with qualitative information about livelihood decision-making based on a small number
of household interviews with Galápagos residents. We develop a baseline model in NetLogo
that broadly reflects key patterns and processes of LULC dynamics and livelihood choices,
and then perturb it by implementing two different hypothetical scenarios, which mimic two
potential policies aimed at controlling the spread of invasive species.

The structure of the paper is as follows: first, we describe our study area and motivation for
exploring population-environment interactions and hypothetical policy scenarios in this
setting; second, we present a conceptual model of population-environment interactions on
Isabela Island; third, we discuss the design, parameterization, verification, and validation of
the Isabela Livelihoods and Land Use Model (ILLUM); fourth, we describe the fundamental
characteristics of the baseline model; fifth, we present the results of different hypothetical
policy scenarios implemented in our model; finally, we comment on model limitations and on
the utility of ILLUM, and ABMs more generally, for sharpening conceptualizations of
population-environment systems, and highlighting data and knowledge gaps.

Study Area
The Galápagos Archipelago is situated in the Pacific Ocean 600-miles off the western coast of
South America. This archipelago straddles the equator and consists of 13 main islands, 113
smaller islands, islets and rocks, and the second largest marine reserve in the world. The largest
(4,588 km2) of these islands, and the focus of our model, is Isabela Island, located in the western
region of the archipelago. Our study area is in the southern portion of Isabela Island (Fig. 1)
and encompasses a rainfall gradient that extends south from the southern flanks of Sierra Negra
Volcano within Galápagos National Park (GNP) through the humid highland zone, including
the household farms and the agricultural community of Santo Tomás, to the dry coastal
lowlands where the community of Puerto Villamil is located. This site was selected for three
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main reasons: 1) it contains human communities whose livelihoods are intertwined with
environmental conservation efforts and the maintenance of protected lands that are of
international significance; 2) it exhibits relatively simple, large-scale spatial organization of
the three primary economic sectors (i.e., tourism, fishing, and farming) and; 3) its relative
isolation facilitates the identification of distal and proximate factors related to population-
environment interactions (see Conceptual Framework). The demand for information on
population-environment interactions, the importance of spatial structure, and the ability to
identify the key system components make Isabela Island an attractive study site for exploring
the utility of stylized ABMs. The Galápagos Islands have experienced significant social and
ecological changes during the past 20-years as a result of human pressures on the fragile
terrestrial and marine ecosystems of the archipelago (e.g., Ospina-Peralta 2004;Grenier
2007;Ospina and Falconí 2007;Watkins and Cruz 2007). Until recently, the Galápagos Islands
remained relatively untouched by human influence, due in part to their geographic isolation
from mainland South America. This geographic isolation has created a unique setting for the
evolution of endemic species, many of which persist today (Gonzalez et al. 2008). In the past
three decades, migration to the Galápagos Islands has increased, principally from the
Ecuadorian mainland due to the relative economic prosperity of the Islands (INEC 1998).

This influx of migrants and visitors in recent years has been accompanied by many introduced
plants and animals (Mauchamp 1997; Kerr et al. 2004; Watkins and Cruz 2007), some of which
have become invasive and not only threaten endemic species, but also affect the local human
population through changes in land use and shifts in livelihoods. The problem has become so
widespread in the archipelago that introduced plants have been deemed one of the greatest
threats to the terrestrial ecosystem of the islands (Kerr et al. 2004). One introduced species of
particular interest, due to its introduction into protected areas and human-use zones alike, is
common guava (Psidium guajava). Guava was introduced to the Galápagos for cultivation in
1858 and now covers more than 40,000 ha of land on Isabela Island, mostly within the
agricultural zone and the adjacent protected area of GNP, nearly completely replacing a fern-
sedge zone on the flanks of Sierra Negra Volcano (Hamann 1981; Walsh et al. 2008a). The
spread of common guava in the agricultural zone can be an obstacle to cultivation and
substantially reduce farm productivity. As a consequence, some households have decided to
alter their land use patterns by allowing infested fields to lie fallow, effectively abandoning
portions of the farm that are dominated by guava. These abandoned fields and farms act as
source populations that promote the spread of guava into neighboring farms and the GNP. The
spread of guava depresses household wealth and assets related to agriculture, and necessitates
contract labor from the Ecuadorian mainland to eradicate problem populations in farm fields,
as well as control measures within the GNP itself.

Farm abandonment is also related to the lucrative potential of tourism and fisheries for
Galapagueños. These livelihood options can be seen as factors that “pull” people away from
agricultural livelihoods. As more people switch from agrarian livelihoods to other opportunities
with greater economic return, maintenance of land, usually driven by investment in the
agricultural potential of farms, is at risk. The control of invasive species, particularly guava,
is dependent upon farmers eradicating the guava that occupies their land, and diminishing the
threat of invasion to adjacent farms and GNP. If the number, impact, and areal extent of non-
native species in the Galápagos Islands continue to grow, the tourism industry, which relies
heavily on continued conservation of the archipelago as a draw for visitors, could be negatively
impacted through the loss of native and endemic species, abrupt changes in ecosystem goods
and services, and increased vulnerability of local livelihoods.

The pattern-process relations and the feedback mechanisms between demographic,
socioeconomic, and ecological sub-systems in the Galápagos Islands are driven in part by the
livelihood and resource-use choices of individual residents. These choices play out in a
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landscape where outside entities (chiefly the GNP administration) exert strong regulatory
control over land use, and residents make livelihood choices in the face of year-to-year
uncertainty in the availability of resources (e.g., fish, precipitation, and tourists). Understanding
these interactions between population and environment has immense consequences for
articulating and mediating the often conflicting objectives of economic development and
resource conservation in Galápagos. For these reasons, we use our ABM as a virtual laboratory
for testing two hypothetical policy interventions (i.e., scenarios) aimed at reducing the percent
of land covered by invasive species.

Conceptual Framework
We developed a conceptual framework (Fig. 2) to identify key population-environment
interactions and to aid in operationalizing the model. This framework both guided model
creation and was refined throughout the model development process. It proposes that distal
factors influence more proximate, local landscapes, which affect agent characteristics,
livelihood decisions, and ultimately land use patterns. Feedbacks among many of the factors
are present in this framework and are specified in our model, which emphasizes the interactions
between livelihoods and land use.

More specifically, distal factors such as global markets, public policies, and environmental
variation influence agent characteristics by acting through more proximate or local factors. For
instance, shifts in global markets could create a decline in tourism, or ocean-scale
overexploitation could lead to a decline in fisheries productivity. Both of these events would
affect the demand and earning potential for the associated livelihoods. The influence of global
markets in our model is operationalized through the relative earnings potential of each of the
different livelihoods. Also built into the model are policies dictating the fixed boundaries of
the agricultural zone. Policy change is implemented by the model user through the introduction
of different types of agricultural subsidization aimed at eradicating guava (described in detail
below). We also include interannual variation in agent incomes in order to mimic variability
in economic markets (e.g., tourist numbers) and environmental conditions (e.g., fish
populations and rainfall).

We conceptualize the important proximate factors, or local environments as political-
economic, socio-cultural, and biophysical landscapes. Encompassed in the political-economic
landscapes are local markets and the earning potential for each economic sector. We
operationalize each of these in our model mainly through the random assignment of a livelihood
and appropriate income, and through the cost of switching occupations. The local socio-cultural
landscape includes aspects such as values and norms. We attempt to indirectly model values
and norms in our model through the “costs” associated with switching livelihoods, and through
behavior rules that incorporate occupational experience. Experience is modeled as the number
of consecutive years in an occupation, and is viewed as an asset due to the knowledge and
social capital gained through time in a particular livelihood. The local biophysical landscape
includes LULC, which we explicitly model as changes in guava land cover.

Agent characteristics influence both the livelihood options that are available and the livelihood
decisions individuals make. The characteristics that we incorporate into the model are agent
income dynamics, cost of living, wealth and assets, and experience as an indication of learning
and the ability to adapt in the face of uncertainty and economic opportunities. The distal factors
and proximate local landscapes affect livelihood decisions through agent characteristics and
social-spatial interactions. Livelihood decision-making is limited to the selection of one of
three options: agriculture, fisheries, or tourism. We focus on these three activities because they
are the largest economic sectors on Isabela Island (Ospina-Peralta 2004) and they are tied to
LULC change and environmental feedbacks. If the agent chooses to participate in the
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agricultural sector, the agent must decide whether or not to clear guava from the farm parcel,
which directly influences LULC. There is a cost of eradicating guava from a farm, but
eradication restores land productivity and land value, thus reducing the “push” to select another
livelihood and potentially abandon one's land. Non-agricultural sectors also act as factors that
“pull” agents away from farming; hence, off-farm employment, in this case through a full-time
livelihood choice, indirectly influences LULC through farm abandonment and subsequent
guava spread. In the resulting ABM, total guava coverage is the primary output that is used to
measure land cover change. We include feedback mechanisms from the livelihood strategies
and LULC conditions to the agents; these factors affect the decision-making of individuals via
their changed wealth, assets, and land values.

Although this conceptual framework and model does not incorporate the entire suite of
interactions among household livelihoods and LULC types on Isabela Island, we argue that it
incorporates the key structural elements of the system necessary to explore livelihood decision-
making and land use change on household farms in the highlands.

Model Design
We implemented our conceptual model as an ABM using NetLogo version 4.0.4
(http://ccl.northwestern.edu/netlogo/). NetLogo is a high-level platform that provides a user-
friendly programming environment, without the need for expertise in standard programming
languages such as Java or C++ (Railsback et al. 2006). NetLogo is designed to be an educational
tool, readily implemented by researchers with little modeling background. While NetLogo
lacks some of the speed, power, and extensibility of other ABM software, we chose the platform
because of its ease of use and potential to support future modeling participation (e.g., model
operation and extension through the development of new modules, scenarios, and agent
characteristics and interactions) by various stakeholders, including park managers, researchers,
and NGO representatives. NetLogo has been used previously to model a limited set of
operations for a group of heterogeneous agents and to explore system processes (Le et al.
2008; An 2001; West 2009).

The ABM developed for Isabela Island, referred to as the Isabela Livelihoods and Land Use
Model (ILLUM), is comprised of a “landscape” module and an “agent” module (Fig. 3) and
is parameterized by a variety of social and biophysical data (Table 1). The landscape module
consists of a stylized raster (gridded) representation of important landscape features such as
land tenure, land cover, elevation, and guava distribution for a section of Isabela Island. The
agent module consists of a collection of individual decision-making units (i.e., agents) that are
a highly simplified characterization of the human inhabitants of Isabela. The model operates
on an annual time-step. Each year every agent chooses a primary occupation, generates income,
and makes land use decisions. The aggregate outcomes of these decisions influence LULC in
the study area, which in turn affects decision-making and LULC for the following year.
Controls and outputs are unified in a graphical display.

Landscape Module
We developed a stylized landscape in raster format to represent the four geographic zones of
the southern portion of Isabela Island: the agricultural, urban, marine, and national park areas.
A stylized farm parcel layer was created to approximate the number, size, and distribution of
farms within the agricultural zone. Vector data for the agricultural zone boundary were
converted into a raster format using ArcGIS 9.3. We also model the location and spread of
guava in the agricultural zone and adjacent protected areas using an underlying cellular
automata grid. The initial spatial pattern of guava is based on an analysis of satellite imagery
and ground data described by Walsh et al. (2008a). Because the Walsh et al. analysis was
performed at a much finer resolution than our modeled landscape (30m vs. 200m) we
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introduced limited local randomness into the distribution of guava in our model runs to account
for uncertainty in how guava is represented. Elevation is based on a 90-meter spatial resolution
digital elevation model (DEM) acquired by the Shuttle Radar Topography Mission (SRTM).
This elevation surface constrains the spread of guava within appropriate elevation zones.

There are several factors that influence guava spread during each time-step. First, guava spreads
by long-distance dispersal events and a neighborhood rule. Non-guava cells have a 10% chance
of becoming guava if one of the adjacent cells is guava, and the probability of long distance
dispersal events are inversely related to distance from the agricultural zone. These dispersal
rates are also influenced by elevation, whereby guava spreads more readily in the wetter, higher
elevations. Lacking data on the spread rate of guava on Isabela, this spread rate was calibrated
to mirror observed rates of guava spread on the island. Farmer agents can remove guava during
each time-step at a cost to their accrued wealth; this decision-making process is described in
the agent module below. Park manager agents clear guava within in the GNP when they move
within two cells of a guava cell. They move only within the GNP, but “patrol” near the
boundaries of the agricultural zone.

Agent Module
Four different types of agents populate the four geographic zones of the stylized landscape:
farmers act within the agricultural zone, fisher folk act within the marine zone, tourist industry
workers act within the urban zone, and park employees act within the park zone. Farmers,
fisher folk, and tourist industry workers make livelihood decisions, whereas park employee
agents are only responsible for clearing guava from the park area that borders the agricultural
zone. The initial number of agents in each of the three livelihoods is taken from the 2006
population census for the Galápagos.

The income of each agent is randomly selected from a livelihood-specific truncated normal
distribution based on the 2006 census. Their gross income (Igross) is a product of these values
(Eq. 1).

(1)

Where Ibase is drawn from a livelihood-specific truncated normal distribution for each agent,
Vo is random interannual variation that affects all agents in a particular occupation, and E is
the occupational experience of each agent. Each agent's occupational experience (i.e.,
consecutive number of years in an occupation) is initially drawn from a truncated normal
distribution; the mean, standard deviation, and shape of which are derived from the age
distribution of working-age (i.e., 15 to 65 years old) residents of Isabela Island. Additionally,
farmers' incomes are scaled in proportion to the amount of guava on their farm. Their income
is multiplied by: 1 minus half of the proportion of guava on their farm. For instance, if 60% of
a farm is covered in guava, then the farmer's income is multiplied by 0.70. Based on field
observations and interviews, this is a conservative estimate of the effect of guava on farmer
incomes; the proportional effect of guava on incomes would likely be larger if farmers' incomes
were not also subject to a lack of reliable markets and other environmental risks (e.g., birds,
rats, extreme rainfall events).

At every time-step, a baseline living cost (L, determined from Luna 2008) is deducted from
each agent's income. For income greater than the baseline living cost, we assume that 95% of
it is spent on maintaining the household across all occupations (Eq. 2).
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(2)

Net savings rates in developing countries vary widely over time (Hamilton and Clemens
1999), but here we assume a very conservative constant savings rate of 5%. Each agent retains
this additional income as wealth, which can then be used to pay the costs of switching
livelihoods or clearing guava.

Farmer agents evaluate a utility function to decide whether or not to clear guava on their parcel
within each annual time-step (Fig. 4a). Farmers clear guava if the total control cost (proportion
of the farm covered in guava multiplied by the control cost per hectare) is less than their wealth
and is less than the expected income from their farm when guava is not present. Expected
income is calculated in the same manner as Igross but omits the influence of guava on income.

During each time-step, all agents evaluate their livelihood options and decide whether to stay
in their current livelihood or switch livelihoods (Fig. 4b). First, agents evaluate whether they
have the option to switch livelihoods. Agents must be able to afford the switching costs
associated with a change in livelihoods based on their accumulated wealth. The cost of
switching to each livelihood was estimated based on direct observation and interviews with
household representatives of each sector living on Isabela Island. The switch to fisheries and
farming is additionally constrained by the number of vacancies available, simulating the limited
availability of fishing licenses (as determined by GNP regulations of the number of fisher folk
and boats) and farm parcels (as determined by the constraint on agricultural land area)
respectively. We do not set vacancy limits on the tourism sector, because at present tourism
growth is encouraged on Isabela Island. If an agent meets the switching cost and vacancy
requirements, and has also been in its current occupation for more than 5 years, then it has a
one-third probability of considering switching sectors in any given time-step. This rule ensures
that the number of sector transitions is limited to a realistic proportion of the total population
and mirrors rates of livelihood change observed on Isabela. If an agent is unable to maintain a
livelihood or switch to a new one, then the agent exits the system.

If an agent has met the criteria to switch livelihoods, the agent chooses the new livelihood
based on a series of functions that evaluate the utility of each livelihood option, including their
current livelihood. The utility of staying in the current livelihood is calculated as a function of
the past two year's net income in that occupation. The error terms are specified to incorporate
non-economic factors and allow for “non-rational” decision-making. The utility of switching
to one of the two other livelihoods (Uswitch) is a function of the mean net income (Inet) of the
alternative livelihood plus normally distributed error (Eq. 3).

(3)

The switching options are ranked according to the calculated utility functions and the agent
chooses the livelihood option with the highest utility. After choosing to switch or remain in
the current livelihood, the wealth, income, and experience of the agents are updated. If an agent
switches livelihoods, their occupational experience is set to zero, and the experience level will
iterate the following year. Agents do not retain experience values from a previous livelihood
for the sake of model simplicity and speed. Their income is also adjusted by drawing a value
from the sector-specific income distribution of their new occupation.
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Verification and Validation
Our verification and validation procedures follow those of An et al. (2005). We verified realistic
model function both during and after model building, and then conducted validation to ensure
that model outputs correspond to our conceptual model as well as real-world patterns.
Specifically, verification involved model debugging, parameter calibration, and tests of
extreme values, and validation included sensitivity analysis and pattern evaluation.

The development of ILLUM involved a progressive increase in model complexity, starting
from a basic model involving one type of agent (i.e., farmers) with one task (i.e., clearing
guava). We then added parameters with values based on available data (e.g., agents per sector),
and values that were calibrated to match observed patterns on Isabela Island (e.g., guava spread
rate). Probabilistic controls on agent livelihood switching were established in order to
approximate observations of population shifts between sectors. We recognize that probabilistic
controls are not ideal solutions for controlling agent behavior, but they are sometimes necessary
to avoid extreme results and abnormal model operation. Attempts to remove the probabilistic
control of livelihood switching through alterations of other model functions were met with
limited success: increasing the cost of switching livelihoods was unrealistically selective of
which agents could switch; lowering the experience requirement made the model more static;
and the maximum capacity of each livelihood sector could not be changed because they match
observed conditions. This process indicated that there is a need for further field-research on
livelihood decision-making on Isabela Island.

Validation of ABMs remains a significant research challenge (Windrum et al. 2007),
particularly for population-environment models that incorporate many parameters and
integrate data from a variety of sources that contain various degrees of uncertainty. Our
validation effort was limited by the stylized nature of ILLUM and by the lack of consistently
collected social, ecological, and geographic data for the Galápagos. This paucity of data
precluded empirical validation using outside data (i.e., data not used to parameterize the
model); however, we implemented sensitivity analysis and pattern evaluation to check the
validity of our model.

To test the robustness of ILLUM to parameter uncertainty, we performed sensitivity analysis
by iterating the model with different parameter values. Following An et al. (2005) we perturbed
parameter values by 50% and compared the resulting values of our primary outcome of interest,
guava cover at time-step 50, to those of the baseline model. Guava cover was calculated as the
mean of 100 model runs. The sensitivity index (Jørgensen 1986) is calculated as:

(4)

where p is the value of the independent variable, dp is the value for a change of p, x is the value
of the dependent variable, and dx is the corresponding change in x in response to the change
in p.

Varying one parameter at a time does not capture the full range of parameter uncertainty in
complex models such as this one. To more fully explore the “parameter space” of these models
we selected two extreme values (±100% variation from baseline) for three parameters that were
identified in the sensitivity analysis as having a strong influence on model outcomes. We then
ran 100 replicate models incorporating all possible combinations of extreme parameters (8
unique combinations).
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Grimm et al. (2005) stress the importance of using ABMs to reproduce empirical patterns in
real data at multiple spatial and temporal scales. In model development and testing we sought
to reproduce the recent large-scale dynamics of population and environment interactions with
the minimum number of assumptions about agent behavior and livelihood decision-making.
The primary patterns of interest were the progressive increase in guava cover over time, and
the switching of farmers to alternative livelihood options. These patterns are described in
further detail in the Baseline Model section.

Results
Our primary outcome of interest is the percentage of land occupied by guava. We also assess
the number of agents in each of the sectors and the median net income levels of each livelihood
sector. We first present the results of the verification and validation tests, then describe the
patterns of baseline model function to provide context for description of model behavior under
hypothetical agricultural subsidy scenarios aimed at controlling guava spread.

Verification and Validation
Sensitivity analysis was used to evaluate the sensitivity of guava cover and the farming
population to changes in other model parameters, including guava spread rate, cost of living,
costs associated with switching livelihoods, guava control cost, occupational experience, the
number of park rangers, and the income savings rate. We did not test model sensitivity to
changes in the initial number of agents in each sector because this is currently unrealistic in
the face of restrictions on fishing permits, as well as laws limiting immigration. Exploration
of the parameter space of agent incomes is implemented in the agricultural subsidy scenarios.

The sensitivity analysis results (Table 2) demonstrate that guava cover at time-step 50 was
highly sensitive to variation in the spread rate of guava on the landscape, the cost of its
eradication, and the number of park rangers. The farming population was also marginally
sensitive to the change in park rangers. Altering the cost of switching livelihoods significantly
changed the number of farmer agents. The model was relatively insensitive to changes in
baseline living cost, occupational experience, and savings rate. The fact that ILLUM was
especially sensitive to guava spread rate and control measures indicates a need for more detailed
data on guava spread and eradication patterns. These sensitivities also underscore the notion
that the specific model results presented below, particularly those regarding projected
parameter values, should not be interpreted as predictions of system outcomes; rather, we
attempt to evaluate broad population and environment trends in the study area, as well as the
utility of stylized ABMs for population-environment research in general.

Guava cover and farming population outcomes (at time-step 50) from the extreme parameter
combinations are reported in Table 3. The parameter combinations are reported as a string of
uppercase and lowercase letters. Uppercase letters indicate positively exaggerated extreme
values (+100% of baseline), and lowercase letters indicate negatively exaggerated extreme
values (0% of baseline). The parameters used are the number of park rangers (r,R), the control
cost of guava(c,C), and the spread rate of guava (s,S). For instance, “rCs” indicates a small
value for the number of park rangers, a large value for control cost, and a small value for spread
rate.

The model produces sensible results for combinations of extreme parameter values. For the
most guava-promoting scenario (rCS) with no park rangers, $800 per hectare control costs,
and a spread probability of 20%, the extent of guava is nearly doubled compared to the baseline
scenario. For the least guava-promoting scenario (Rcs) with 24 park ranger agents, $0 per
hectare control costs, and a spread probability of 0% the cover of guava is dramatically reduced.
Notably, however, guava is not eradicated in this scenario, and the number of farmer agents
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increases only modestly. Overall, the number of farmer agents at the end of the scenario is
relatively insensitive to even dramatic changes in the selected parameters.

Baseline Model
We ran the baseline model for 50 time-steps and averaged the values for each time-step over
1000 model runs. The baseline model broadly reflected current trends in livelihood choice and
guava spread on Isabela Island (Fig. 5). When ILLUM ran unperturbed the number of farmers
in the system declined as they transitioned to the other two sectors, particularly the tourism
sector. The population of fisherfolk did not rise substantially due to limits on the vacancies in
the fishing sector. The farming sector retained a small proportion of agents, and a small number
of the farmer agents exited the system due to low accumulated wealth.

Mean agricultural guava cover increased during the period, also matching observed trends.
Upon visual inspection of model output, much of the guava persisted in and dispersed beyond
the agricultural zone. Guava spread in GNP remained stable due to the simultaneous processes
of guava clearing by park rangers, and repopulation of guava from the agricultural zone. As
evidenced by the sensitivity analysis results, this outcome is dependent on the number of park
rangers and the spatial patterns of their activity. In reality, guava may be spreading between
the two zones due to inadequate control in both areas.

Agricultural Subsidies
Given current trends on Isabela, it is reasonable to imagine a Galápagos future in which farming
is an uncommon livelihood because of a lack of access to agricultural markets and the expansive
nature of invasive species, such as guava, which effectively debilitate the ecological
productivity of farms and further reduce the propensity of farmers to work the land and sustain
an agrarian life-style. One proposed means of creating a more sustainable archipelago would
be to provide subsidies that increase the maintenance of agricultural land by farmers and
thereby control the spread of invasive guava. We take subsidies to mean the investment of non-
household resources, generally by government and NGOs, to increase the productivity of the
land. These subsidies could take many forms, but we focus on two potential scenarios: (1)
direct income support for farmers; and (2) reduced guava eradication cost for farmers. These
are expected to reverse the decline in farmer populations and concurrently decrease the areal
extent of guava.

We separately tested four levels of direct income subsidy (increasing annual farmer incomes
by $500, $1000, $1500, and $2000) and four levels of control cost subsidy (reducing the guava
control cost per hectare by $25, $50, $75, and $100). The maximum income subsidy brought
farmer incomes approximately in line with the other two economic sectors, and the maximum
control cost subsidy eliminated the cost of clearing guava. Similar to the baseline model, we
ran the model for 50 time-steps and averaged the outcome values for each time-step over 1000
model runs. The following comparisons refer to the mean guava cover and population values
at the last time-step.

Compared to the baseline model, guava cover was reduced in all subsidy scenarios (Table 4).
Total guava cover was inversely related to the level of subsidization, but this relationship was
non-linear as evidenced by a non-significant reduction in guava between the $1000 and $1500
income subsidy levels, as well as the relationship between control cost and total guava cover
shown in Fig. 6. Control cost subsidization yielded the greatest gains in guava control, both in
terms of guava cover and the cost per hectare cleared. Compared to the baseline output at time-
step 50, the elimination of guava clearing cost yielded a 59% decrease in total guava and 98%
decrease in guava within the agricultural zone, with an associated cost of about $2000 for each
hectare of guava reduction over the observation period. Even the second highest control cost
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subsidy led to a 91% decrease in agricultural guava cover. Combining the largest control cost
subsidy with the highest income subsidy yielded an additional 26% decrease in guava within
the agricultural zone (compared to only eliminating the control cost), but only decreased total
guava by an additional 1% (9.68 hectares), with an associated increase in cost of $7,190,682
over the 50-year period.

Even under the most successful guava eradication subsidies, guava was not entirely eliminated
from the landscape. This was due to the persistence of guava within the park zone, where a
limited number of park agents were unable to eradicate it from the landscape. These guava
reservoirs then repopulated the agricultural zone, possibly increasing the average per hectare
cost of reducing guava cover over the 50-year period.

In all scenarios, the overall population of farmers increased (Table 4), largely due to agents
coming from the tourism sector. The annual income subsidy scenarios had a larger effect on
the farmer population compared to the control cost scenarios, with the $2000 income subsidy
yielding a 141% increase in farmer population from baseline. Even when clearing costs were
eliminated there was a relatively small (18%) increase in the number of farmers from the
baseline population. Overall, the hypothetical intervention of reducing the cost of clearing the
guava was not as effective for keeping farmers on the land but had the greatest impact on guava
cover.

Discussion and Conclusions
Understanding the drivers of environmental change and the ways in which human populations
impact and respond to the environment are central to the interdisciplinary study of population-
environment interactions. Spatially-explicit models, particularly ABMs, are valuable
analytical tools for the study of these and other complex systems. A wide variety of studies
using ABMs with diverse model structures, inputs, processes, and outcomes have set the stage
for our research; however, substantial challenges remain in finding compromise between
abstraction and specificity.

In response to this challenge, we developed a stylized ABM that captures key interactions and
feedbacks between human livelihood decisions and LULC change in the Galápagos Islands.
Population-environment interactions were represented in ways that resemble current and
projected conditions in guava cover and the farming population. We then used ILLUM as a
virtual laboratory for exploring hypothetical interventions to control invasive species growth
on Isabela Island.

Through model development we refined our conceptualization of the complex dynamics that
emerge from the interactions of individual agents and a changing environment; in particular,
the hypothetical scenarios highlighted the importance of interactions between livelihoods and
LULC. Despite the real-world linkages between the farming population and guava cover,
scenario testing demonstrated that they may not be dependent on one another: the control cost
subsidies yielded the greatest decrease in guava, while the income subsidies yielded the greatest
increases in the farming population. This result may be due to the ability of farmer agents' to
maintain relatively high incomes without clearing guava when income subsidization is in place.
The finding that large increases in farmer incomes had relatively little influence on the total
area covered by the invasive plant indicates that factors other than income and the maintenance
of agrarian populations are important aspects of invasive species control. Also, we found that
guava persisted in the landscape, especially within the park zone, even under our largest and
most effective control cost subsidy. Coordinated programs that link the protected area and farm
households in a common goal of species control would likely be most effective means of
reducing guava cover. Moreover, the complete elimination of control costs may not be
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necessary in order to achieve meaningful and cost-efficient gains in invasive species
management, as even the second highest control cost subsidy eliminated over 90% of the guava
in the agricultural zone. Assuming that ILLUM's decision-making rules and the parameters for
guava spread sufficiently capture the key decision-making preferences of Galapagueños, this
would suggest that reducing control costs – rather than an augmenting farmer incomes – would
be a more effective intervention for controlling invasive guava. However, we acknowledge
that current understandings of livelihood decision-making and guava spread are limited.

Although we believe that ILLUM is a useful analytical tool, like all models it suffers from
simplifying assumptions that can lead to unreasonable system behavior and constrain the model
in unintended ways. For instance, ILLUM does not include dynamic features of the socio-
cultural environment such as cultural norms, values, social networks, status, and skills.
Although we attempt to account for these factors through the use of occupational experience
and the cost associated with switching occupations, we recognize that this is a limitation of our
model. Further model development would benefit from better specification of switching costs,
especially in light of the sensitivity analysis results. Other important features that we do not
model are detailed demographic processes such as immigration/emigration, income sharing,
household structure, age, and gender. We also acknowledge that the residents of the Galápagos
often maintain more than one occupation, and livelihood diversification allows them to mitigate
risk and avoid radical fluctuations in income or wealth. Modeling agent decision-making and
livelihood choices would benefit from better information about the important factors that affect
these decisions, and from detailed demographic, income, and standard of living information.
Similarly, we were unable to include more nuanced treatments of LULC beyond guava. This
was in part due to a general lack of available data with which to parameterize the model to
reflect these complexities.

We view the limitations of our model as indicative of potential avenues for future data
collection, research, and model extension. There is clearly a demand for more extensive data
on the behavior and feedback effects of the environmental aspects of our model. The finding
that the modeled system was highly sensitive to the rules of guava spread, the cost of its control,
and the control measures of park personnel demonstrates the need for more detailed information
on this invasive species. Not only is there a demand for research on guava's rate of spread over
the landscape, but the spatial patterning of this species' dispersal patterns warrants further
research as well. Our identification of these avenues for future research indicates that stylized
models are useful during preliminary stages of research projects. In other words, ABM's are
not only useful as tools for exploring population-environment interactions through the
integration of large and varied datasets, but they can also serve as tools for directing data
collection. The next iteration of ILLUM will be informed by more precise data on guava spread
and by more household interviews and socioeconomic data to better capture human decision-
making processes.

Models like ILLUM could be made more relevant to real-world problems by conducting
exchanges between modelers and stakeholders (Ramanath and Gilbert 2004). Discussing the
model and its findings with the residents of Isabela might be particularly informative. For
instance, asking farmers about their views of, and probable reactions to, control cost subsidies
would be a useful way to evaluate the accuracy of our modeling results. Participatory
approaches have been considered problematic due to time, cost, stakeholder bias, and
validation difficulties (Matthews et al. 2007); however, the refinement of participatory
modeling approaches and the development of methods to allow non-specialists to participate
in the modeling exercise is a promising area of research (Parker et al. 2003). The present study
reinforces this optimism and indicates that stylized models may provide a particularly useful
platform for combining local and scientific knowledge. In particular, the NetLogo software is
consistent with this goal insofar as it is a free program with intuitive coding language that

Miller et al. Page 14

Popul Environ. Author manuscript; available in PMC 2011 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



supports a user-friendly graphical interface. The benefits of stylized modeling outlined here,
in combination with the NetLogo modeling platform, present a promising framework for
implementing participatory modeling in the Galápagos and elsewhere.

This research demonstrates that even simple, stylized ABMs based on publicly available data
can generate meaningful output that captures key patterns and processes of population-
environment interactions. We suggest that stylized ABMs have considerable utility, even
during preliminary stages of research, as platforms for (1) exploring alternative scenarios, (2),
sharpening conceptualizations of complex systems and population-environment interactions
and (3) uncovering critical data gaps. Such models can be implemented by non-specialists and
they provide visual results that allow for discussions about population and environment
interactions between multiple stakeholders, including researchers, policy-makers, and land
managers (Erlien et al. 2006).
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Fig. 1.
Map of the Galápagos Islands highlighting the study area on Isabela Island
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Fig. 2.
Conceptual framework for modeling livelihood decisions and land use/land cover processes
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Fig. 3.
Flowchart of the Isabela Livelihood and Land Use Model setup and operation. The shaded
boxes indicate the sub-models that are illustrated in detail in Fig. 4
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Fig. 4.
(a) Guava clearing and (b) livelihood choice sub-models. Livelihood options are limited by the
availability of vacancies in the fishing and farming sectors, and switching is additionally
constrained by a probabilistic control
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Fig. 5.
Baseline model output for (a) the total and agricultural guava cover, and (b) the human
population in each economic sector. Points designate the means of 1000 model runs for each
time-step and lines designate the bounds of 95% of the values from these runs
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Fig. 6.
Total guava cover (solid black symbols) and agricultural guava cover (hollow grey symbols)
at time-step 50 under five separate reductions in the per hectare guava control cost (circles=
$0; diamonds=$25; squares=$50; triangles=$75; points=$100). “Total Control Cost Subsidy
(USD)” represents the sum of 50 years of subsidization
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Table 1

Descriptions and sources of parameters of the Isabela Livelihoods and Land Use Model

Parameter Description Source

Landscape Module Inputs

Elevation 90m Digital Elevation Model (DEM) from
the NASA Shuttle Radar Topography
Mission (SRTM) V4 data

Available from http://srtm.csi.cgiar.org

Farm parcels Farm parcel boundary layer based on actual
land parcel data. Stylized to represent the
number, size, and spatial distribution of
farms.

Instituto Nacional Galápagos (INGALA)

Guava Cover Raster layer of guava patches. LULC maps
derived from 2.4m spatial resolution
QuickBird Imagery acquired on October
2005

Details described in Walsh et al. 2008a

Guava Spread Rate The probability of guava spreading to
another cell

Estimated based on observed patterns of guava spread

Agent Module Inputs

Cost of living Annual cost of living Derived from study of standard of living and costs by Luna 2008

Experience Initial values of agent experience in an
occupation are based on the age distribution
reported in the 2006 Census of the
GalápagosMean (s.d.): 19 (12) years

Ecuador National Institute of Statistics and Censuses (INEC; available
from http://www.inec.gov.ec/)

Guava Control Cost The cost per hectare of clearing guava from
a farm: 100 USD

Estimated based on field observation and interviews

Income Initial incomes by economic sector.
Mean (s.d.) in USD:
Farming = 3300 (1800)
Fishing = 4200 (3000)
Tourism = 3600 (4200)

INEC, 2006 Census of the Galápagos

Number of agents The numbers of farmers (86), fisherfolk (63),
and tourism workers (140) are derived from
the 2006 Census of the Galápagos

INEC, 2006 Census of the Galápagos
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Table 3

ILLUM extreme parameter combination results

Parameters Guava Cover, Hectares Guava Cover Standard Deviation,
Hectares

Farming Population Farming Population Standard
Deviation

rcs 1,419.7 (-35.7) 115.7 (-5.8) 28.0 (17.6) 7.0 (8.2)

rcS 2,303.5 (4.3) 138.8 (13.1) 26.7 (12.4) 6.4 (-0.1)

rCs 2,847.4 (29.0) 121.6 (-0.9) 23.5 (-1.3) 7.0 (8.3)

rCS 4,405.6 (99.6) 196.9 (60.4) 23.9 (0.3) 5.7 (-11.4)

Rcs 412.0 (-81.3) 411.4 (235.2) 27.4 (15.4) 6.6 (3.1)

RcS 651.3 (-70.5) 75.6 (-38.4) 28.7 (20.8) 7.4 (14.8)

RCs 1,768.7 (-19.9) 156.0 (27.1) 23.3 (-2.1) 6.2 (-3.4)

RCS 2,687.4 (21.7) 154.4 (25.8) 24.2 (2.0) 5.7 (-11.5)

Guava cover and farming population values are means of 100 model runs, measured at time-step 50. Percent changes from the baseline model are
shown in parentheses
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