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Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) has been linked to Kaposi sarcoma and

B-cell malignancies. Mechanisms of KSHV-induced oncogenesis remain elusive, however,

in part due to lack of reliable in vivo models. Recently, we showed that transgenic mice

expressing the KSHV latent genes, including all viral microRNAs, developed splenic B cell

hyperplasia with 100% penetrance, but only a fraction converted to B cell lymphomas, sug-

gesting that cooperative oncogenic events were missing. Myc was chosen as a possible

candidate, because Myc is deregulated in many B cell lymphomas. We crossed KSHV

latency locus transgenic (latency) mice to CαMyc transgenic (Myc) mice. By itself these

Myc transgenic mice develop lymphomas only rarely. In the double transgenic mice (Myc/

latency) we observed plasmacytosis, severe extramedullary hematopoiesis in spleen and

liver, and increased proliferation of splenocytes. Myc/latency mice developed frank lym-

phoma at a higher rate than single transgenic latency or Myc mice. These data indicate that

the KSHV latency locus cooperates with the deregulated Myc pathways to further lym-

phoma progression.

Author Summary

Kaposi’s sarcoma-associated herpesvirus (KSHV) is associated with Kaposi sarcoma as
well as the B-cell malignancies primary effusion lymphoma (PEL) and multicentric Castle-
man’s disease (MCD). Only a few KSHV genes, including all micro RNAs, are expressed
in latent infection of B cells. We already showed that KSHV latency locus transgenic mice
consistently develop B cell hyperplasia. To find out possible host contributions to lympho-
magenesis we evaluated the Myc oncogene. Compound KSHV latency locus and Myc
mice developed plasmacytosis exemplified by increased frequency of plasma cells in the
spleen, a high accelerated lymphoma development, and severe extramedullary hematopoi-
esis. These data show that the KSHV latency locus can cooperate with Myc activation in
viral lymphomagenesis.
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Introduction
Myc encodes a multifunctional protein which is involved in many biological functions, includ-
ing transcriptional control, cell cycle, signal transduction, oncogenesis, and development
(reviewed in [1]). Recurrent deregulation of c-Myc (Myc) is a hallmark of many lymphoma
such as Burkitt lymphoma (BL) and a fraction (~20%) of diffuse large B cell lymphomas
(DLBCL), including post-germinal center (GC), non-Hodgkin’s lymphoma [1,2]. The most fre-
quent chromosomal translocation is t(8;14)(q24;q32) found in BL, which relocates Myc from
8q24 to the immunoglobulin heavy chain (IgH) locus on 14q32. Some cases of DLBCL, such as
anaplastic lymphoma kinase (ALK) positive large B-cell lymphoma do not carry Myc translo-
cation per se, but overexpress Myc protein [3,4]. This suggests that deregulated expression of
the Myc protein by any means contributes to B cell lymphomagenesis.

Over the years, multiple mouse models of Myc-driven lymphomas have been developed [5–
12]. The first and most aggressive transgenic model used the mouse Myc gene, driven by the
IgH μ enhancer (EμMyc mouse); here the transgene induced tumors, expansion of lymph
nodes, and lymphoid malignancy within 6–15 weeks [5]. Transgenic mice expressing a translo-
cated Myc gene from a human BL cell line under the Igλ light chain regulatory sequences also
readily developed lymphomas [8], whereas transgenic mice with a specific, single copy targeted
insertion into the Cα of the IgH locus (iMycCαmouse), which mimic the t(8;14) in BL, devel-
oped B cell lymphomas with very low incidence [7]. In sum, the phenotypes of Myc mouse
models range from moderate to fully penetrant, aggressive lymphomagenesis depending on the
particulars of the transgene regulatory context, each mimicking different types and/or stages of
lymphomagenesis.

Using these mouse models, many factors were uncovered that cooperate with Myc. Targeted
overexpression of N-ras in B cells promoted B cell neoplasia in conjunction with Myc [13].
There is also evidence for cooperation of interleukin-6 (IL-6) with Myc in plasma cell tumor
development [14]. Furthermore, B cell receptor (BCR) activation was shown to promote B cell
lymphomagenesis in conjunction with Myc [15]; and using a CD19 knockout mouse model,
the CD19 signaling loop was revealed to promote development and progression of B cell lym-
phoma [16]. CD19 is an essential accessory to the BCR signaling leading to phosphoinositide-
3-kinase (PI3K) activation [17]. Myc itself was shown to synergize with PI3K signaling to pro-
voke BL [18].

Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic human γ-herpesvirus.
KSHV is implicated in the pathogenesis of Kaposi sarcoma, primary effusion lymphoma
(PEL), multicentric Castleman’s disease (MCD), and some instances of DLBCL (reviewed in
[19]). Whereas MCD is a pre-malignant, relapsing-remitting-type GC hyperplasia, PEL is a
highly aggressive post-GC DLBCL. An association between KSHV and microlymphoma has
been suggested as well [20,21]. Typically KSHV persists in the B cell compartment for many
years prior to overtly symptomatic MCD or lymphoma.

Latency is the default replicative pathway of KSHV in B cells (reviewed in [22]). Only very
few of the more than 80 viral genes are expressed [23,24]. Those, which are consistently detect-
able in every single infected B cell, include the latency-associated nuclear antigen (LANA), a
viral homolog of cellular cyclin D2 (vCYC), a viral FLICE inhibitory protein (vFLIP), K12
(kaposin), all viral micro RNAs (miRNAs), and v-IRF3/LANA-2 [24,25]. Many of these genes
have been implicated in B cell signaling in tissue culture, but only few have been explored in
vivo. This represents a gap in our understanding and a barrier towards pre-clinical testing of
targeted anti-KSHV lymphoma agents.

Expression of LANA alone in B cells resulted in hyperplasia, low-penetrance lymphoma,
and drastically increased BCR responses to a T cell-dependent (TD) antigen. Analogous to the
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transgenic Myc models, this phenotype was dependent on CD19 [26–28]. Mice expressing the
entire KSHV latency locus, including all viral miRNAs, in a pure C57BL/6 background exhib-
ited even more increased BCR responses to TD antigen, and also displayed marginal zone
(MZ) enlargement, as well as plasmacytosis and frank lymphoma [29]. Whereas these KSHV
latency mice exhibited GC and MZ hyperactivity akin to MCD with 100% penetrance and at a
normal age, long latency was needed for lymphoma development with incomplete penetrance.
This suggested that additional, cellular driver events would accelerate lymphomagenesis.
Recent studies suggested that Myc is frequently deregulated by KSHV latent proteins such as
LANA and vIRF3 [30–32]. Though structural abnormalities involving Myc translocations are
not seen in PEL [30,33], this does not mean that Myc couldn’t be activated at the transcrip-
tional and post-transcriptional level either by viral or cellular events.

To test the hypothesis that Myc was one of the host factors, which can augment KSHV-
driven B cell lymphomagenesis, we utilized transgenic mice carrying the very weak IgH Cα
Myc allele. As mentioned above this particular Myc allele on its own induced hyperplasia, but
not lymphoma [7]. We found that the KSHV latent genes synergized with Myc to drive lym-
phoma in vivo.

Results

Generation of double transgenic, Myc/latency mouse line
We had previously reported the KSHV latency locus transgenic mouse line, which expresses
the KSHV latent genes and all miRNAs in B cells, albeit at low levels [29]. In the latency mice,
the MZ and plasma cell frequencies were increased and frank tumors developed (~16% / 300
days) [29]. We chose Myc transgenic mice, where a Histidine-tagged Myc coding region was
inserted into IgH Cα locus under its own promoter and Eα enhancer to mimic the Myc-activat-
ing chromosomal translocation t(12;15). T(12;15) defines 90% of plasma cell tumors found in
pristane-treated BALB/c mice [7,34]. These plasmacytomas develop as liquid ascites in the
body cavities of the animal and represent a phenotype of mouse lymphoma closely resembling
human PEL. However, the tumor incidence rate of the iMycCα single transgenic mice was low
and lymphoma developed only after a long latency period (~9%/ 300 days) [7]. This made
them ideal to uncover synergy between host Myc and KSHV latent genes.

To study the cooperative interaction between the KSHV latency locus and Myc in viral lym-
phomagenesis, the latency mice were crossed to iMycCαmice to generate a double-transgenic
mouse line, which expresses the KSHV latency locus in the context of activated Myc, termed
Myc/latency. Genotyping for the KSHV transgene was done as previously described [29]. The
presence of the Myc transgene was confirmed by allele specific PCR (S1 Fig). We confirmed
that the KSHV miRNAs and mRNAs of KSHV latent genes were expressed in the presence of
the Myc transgene similarly as in the latency mice line (S2 Fig; see also reference [29]).

Higher plasma cell frequency in the Myc/latency mice
The KSHV latency locus alone induced plasmacytosis [29], and this phenotype was maintained in
the compoundMyc/latency mice, though other phenotypes of original latency mice, such as
increased frequency of mature andMZ B cells, were not recapitulated in theMyc/latency mice
(S1 Table). Plasmablasts (PBs; CD19-B220+CD138+) and plasma cells (PCs; CD19-B220-CD138+)
were increased in the spleens of Myc/latency mice compared toMyc mice (Fig 1A and 1B). This
increase was statistically significant to p� 0.03 by ANOVA (Fig 1E). The increased numbers of
PCs were confirmed in situ using Igγ chain immunohistochemistry. The intensity and prevalence
of the staining was more robust in spleen sections of Myc/latency mice compared to those of Myc
single transgenic mice (Fig 1G–1M). This phenotype was consistently seen in all mice (S3 Fig).
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Fig 1. Increased frequency of PCs in Myc/latency mice.Cells were isolated from spleen or BM from 7–11 week-old Myc (n = 5) or the Myc/latency (n = 5)
mice and analyzed using flow cytometry. Lymphocytes in spleen or BM were pregated based on CD19 expression. CD19- cells were further gated using
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Next, the frequencies of PBs and PCs in Myc/latency mice were compared to those of the latency
mice. PBs were increased significantly in the Myc/latency mice compared to the latency mice
(p� 0. 001 by ANOVA), while PCs were not augmented obviously (p� 0.08 by ANOVA, Fig 1F).
The direct comparison of splenic PBs and PCs from the latency, Myc, andMyc/latency mice
strongly suggests that the additive effect of KSHV latency locus andMyc overexpression induces
higher PC and PB frequencies (Fig 1F). These data demonstrate that increased frequency of PCs in
the Myc/latency mice is not a single effect of the KSHV latency locus, but the result of cooperation
between the KSHV transgene and the Myc transgene. Thus, activatedMyc may cooperate with
KSHV latent genes to drive plasma cell proliferation/activation.

A similarly increased frequency of PBs was not observed in bone marrow (BM) (Fig 1C and
1D) rather, PCs in BM of the Myc/latency mice was considerably decreased compared to that
of Myc mice (Fig 1E; p� 0.002 by ANOVA). This suggests that the KSHV latency locus
induces PBs, short-lived PCs, and some long-lived PCs in GC of the spleen, but interferes with
homing of long-lived PCs and migratory PBs to BM in the presence of deregulated Myc.

We observed elevated peripheral blood IgG1 levels, while IgA and IgG3 levels were decreased
in the Myc/latency, compared to the Myc mice (Fig 1N). The elevation was consistent and pro-
nounced enough in the absence of any specific antigenic stimuli to be diagnosed as hyperglobu-
linemia. KSHV latency transgenic mice alone also displayed hyperglobulinemia of IgG1, IgG3,
and IgM [24], while no significant difference in Ig levels has been reported for Myc mice com-
pared to wild-type mice [7]. As before [29], the phenotype of the KSHV latency locus mani-
fested itself in the context of forced Myc expression.

Increased proliferation, GC formation and antigen responsiveness in
Myc/latency compound transgenic mice
Peanut agglutinin (PNA) is a known activation marker for the GC [26,29]. Enlarged PNA-posi-
tive patches in the GC of spleen is a phenotype of the KSHV latency locus [29], but not of this
particular strain of Myc transgenic mice. PNA-positive foci were significantly larger in the
Myc/latency double transgenic mice than those of either the latency or Myc mice (Fig 2A–2C).
The area of PNA-positive foci in spleen was larger in the Myc/latency than in the Myc mice
(Fig 2J). This data evidences KSHV-Myc cooperation in GC expansion.

The increased proliferative phenotype was confirmed using another clinically validated
marker, Ki-67. The Myc/latency mice exhibited striking reactivity for Ki-67 in the red pulp
region of spleen, where extramedullary hematopoiesis occurs in rodents. By contrast, the
KSHV latency single transgenic and Myc single transgenic mice showed weak expression of
Ki-67 (Fig 2D–2I). The difference in Ki-67 staining was significant to p�0.0004 by ANOVA
(Fig 2K). The higher degree of Ki-67 positivity was verified in all mice per genotype (S4 Fig).

One hypothesis to explain how viral infection can facilitate B cell hyperplasia and lym-
phoma, is that the viral latent genes render infected B cells hyperresponsive to BCR and Toll-
like receptor (TLR) signaling. We showed earlier that purified B cells from KSHV latency mice
respond better to lipopolysaccharide (LPS), anti-IgM, and anti-CD40 [29]. As a polyvalent

CD138 and B220. Representative FACS plots of PBs and PCs were shown. (A-B) Splenic PBs (CD19-B220+CD138+) and PCs (CD19-B220-CD138+). (C-D)
PBs and PCs in BM. (E) The percentages of PBs or PCs are shown. Splenic plasmacytosis induced by increased PCs was further confirmed by
immunostaining with γ heavy-chain. (F) Comparison of splenic PBs and PCs frequencies from the latency (n = 5), Myc (n = 5), and Myc/latency (n = 5) mice.
Splenic cells were isolated from 7–11 week-old mice and analyzed by flow cytometry. Igγ chain staining was performed for spleen sections from the latency
mouse (n = 5; G-H), single transgenic Myc mouse (n = 5; I-J), and double transgenic Myc/latency mouse (n = 5; K-L). Representative images were shown.
(M) The number of Igγ chain positive cells from 400X images (n = 5 for all genotypes) was counted and plotted. (N) Isotype-specific Ig regulation by KSHV
latency locus in overexpressed Myc background. Levels of Igs were measured by ELISA and plotted from the Myc mice (n = 6), and Myc/latency (n = 5). *,
**, and *** represent significant difference with p� 0.05, p� 0.005, p� 0.0005 by ANOVA, respectively.

doi:10.1371/journal.ppat.1005135.g001
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antigen, LPS activates both TLR and BCR signaling [35]. To test the hypothesis that the KSHV
latency locus conferred a similar hyperresponsiveness in the Myc background, ex vivo prolifer-
ation of splenic B cells was assessed. Splenic CD19+ cells from the Myc/latency mice showed
dose-dependent hyperresponsiveness to LPS, but no longer to anti-IgM or anti-CD40 or a
TLR7 agonist, loxoribine or a TLR9 agonist, CpG-containing oligonucleotides (Fig 3). In the
case of the LPS response, the difference between Myc and Myc/latency was significant to
p� 0.05 by ANOVA. The presence of the KSHV transgene increased the response to LPS. The

Fig 2. Augmented proliferation inMyc/latencymice. (A-C) PNA staining of spleen sections from the latency (n = 5) or the Myc (n = 5) or the Myc/ latency
(n = 5). Ki-67 staining of spleen sections from the latency (D, G; n = 5) or the Myc (E, H; n = 5) or the Myc/ latency (F, I; n = 5). Representative images are shown.
(J) The area of PNA-positive foci from panels A-C was plotted. (K) The number of Ki-67 positive cells from panels G-I was plotted. * and *** represent
significant difference with p� 0.05, and p� 0.0005 by ANOVA, respectively.

doi:10.1371/journal.ppat.1005135.g002
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presence of the KSHV transgene dampened the response to BCR crosslinking by anti-IgM anti-
body. This suggests that the KSHV latency locus augments TLR but not BCR-only or CD40L-
only signaling pathways in the context of activated Myc.

Fig 3. KSHV latency locus confers hyper-responsiveness to LPS in the environment of forced Myc overexpression. Proliferation was evaluated by
incorporation of 5-ethynyl-2'-deoxyuridine (EdU) into DNA. Splenic B cells from the transgenic (n = 5) and wild-type mice (n = 5) were cultured with varying
doses of LPS (A), or anti-IgM (B), or anti-CD40 antibody (C), or loxoribine (D), or CpG (E), or non-CpG (F) for 72 hours. Relative fluorescence unit (RFU) was
measured and is expressed as ex vivo cell proliferation.

doi:10.1371/journal.ppat.1005135.g003
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Lymphomagenesis in Myc/latency mice
The most stringent test for the presence of fully transformed B cells is the ex-vivo outgrowth
assay in the absence of supportive growth factors. To examine the outgrowth potential of the
Myc/latency mice, primary cells from spleen or BM in 9–11 week-old Myc (n = 6) or Myc/
latency (n = 6) mice were seeded on methylcellulose media without B cell growth factors, and
the number of colonies was counted. With the exception of one animal, splenocytes of the
Myc/latency or the Myc mice did not produce colonies (S2 Table), though we routinely
observed colonies from BM derived cells which were not significantly different between both
genotypes (32.3 ± 14.3 for 6 Myc mice, 38.3 ± 9.0 for 6 Myc/latency mice; p� 0.41).

To formally test the hypothesis that Myc and KSHV latent genes cooperate to induce lym-
phoid hyperplasia and neoplasia, Myc transgenic (n = 42), the KSHV latency locus transgenic
(n = 41), and Myc/KSHV latency locus double transgenic mice (n = 40) were monitored for
500 days (Fig 4A and 4B). Wild-type B6 mice were tumor-free for 500 days. Single transgenic
Myc mice remained tumor-free until 200 days, while both latency and Myc/latency mice
started to develop tumors around 130 days. The overall survival rate was significantly lower in
the Myc/latency mice, when compared to that of Myc mice (p� 0.021 by log-rank test) (Fig
4B). Given the weak tumor phenotypes of these particular Myc transgenic mice [7], we surmise
that the increased rate of tumor incidence is attributable to cooperation of KSHV latent genes
and Myc.

Pathological evaluation was performed on all mice. 11 (27.5%) and 20 (50.0%) out of 40
Myc/latency mice developed frank lymphoma and lymphoid hyperplasia in the spleen, respec-
tively (Table 1). The lymphoma incidence rate of Myc/latency mice was marginally higher than
that of the single KSHV transgenic mice, which was 17.1%, but significantly higher than in the
Myc mice (4.8%, p� 0.016 by F-test). Lymphoid hyperplasia can progress to frank lymphoma
[36–38]. The combined rate for incidence of lymphoma and lymphoid hyperplasia was higher
in Myc/latency mice (77.5%) than latency (69.1%) or Myc mice (43.9%). Examples of severe
splenomegaly are shown in Fig 4C and an example of pathology for Myc/latency mice com-
pared to normal spleen architecture in Fig 4D–4G. Mitotic figures were found in spleen from a
mouse diagnosed as lymphocytic lymphoma (Myc/latency), while none were found in spleen
diagnosed as lymphoid hyperplasia (Myc) (Fig 4E and 4G). The number of mitotic figures was
significantly higher in the Myc/latency than the Myc mice (p� 0.002 by ANOVA) (Fig 4H).

Lymphoma observed in the Myc/latency mouse cohort is summarized in Table 2. Mice with
early lymphoma or lymphocytic lymphoma exhibited disrupted splenic architecture and white
pulp expanded by large lymphocytes with frequent mitotic figures, whereas mice diagnosed as
normal had regular splenic architectures with clearly defined GCs. Mice with lymphoma also
displayed severe extramedullary hematopoiesis, showing augmented frequency of megakaryo-
cytes in spleen (Fig 5A and 5B) and elevated numbers of erythroid precursors in portal area of
liver (Fig 5C and 5D). BM was examined to see if a failure in hematopoiesis from the Myc/
latency mice may induce severe extramedullary hematopoiesis (EMH) in the spleen and liver
for compensation (Fig 5E and 5F). Frequencies of myeloid and erythroid precursors were not
significantly different between the Myc and the Myc/latency mice. However, the number of
megakaryocytes was decreased in the Myc/latency mice (Fig 5G; p� 0.017 by ANOVA), sug-
gesting that inadequate hematopoiesis in BM from the Myc/latency mouse drives severe EMH
in the spleen and liver. Mice diagnosed with lymphoid hyperplasia retained normal splenic fol-
licular architecture, but lacked discernible GCs with pale MZ (Table 2; mouse #176). In sum,
even the weak CαMyc allele can cooperate with the KSHV latent locus to foster lymphoma
development in vivo.
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Discussion
Chromosomal translocation of Myc has been identified as the defining cellular driver mutation
in BL [1]. Deregulated Myc activity is seen in the majority of DLBCL, though in PEL the myc

Fig 4. Augmented tumorigenicity by cooperation of KSHV latency locus and Myc. (A-B) Survival plot of
the wild-type (C57BL/6) and latency, and the Myc and Myc/latency mouse cohorts. (C) Splenomegaly was
observed in the Myc/latency mice. (D-E) Spleen section was shown and mitotic figures (black arrows) were
found in the Myc/latency mouse. H&E staining. (F-G) Normal splenic architecture was presented in the Myc
mouse. H&E staining. Representative images are shown. (H)Mitotic figures were counted for 5 high power
field images (400X) per sample (42 for Myc and 40 for Myc/latency mice). ** represents significant difference
with p� 0.005 by ANOVA.

doi:10.1371/journal.ppat.1005135.g004
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locus appears to be normal [33,39]. Previous studies identified a number of chromosomal loca-
tions that were reproducibly amplified in PEL, such as FHIT andWWOX [40,41]; as well as
activation of the BCR/PI3K and TLR/MyD88/IRAK signaling pathways [40,42,43]. Based on
the biology of B cell lymphoma and the broad transcriptional phenotype of activated Myc, we
hypothesized that deregulated Myc signaling can cooperate with BCR/TLR activation and
KSHV latent genes to drive lymphomagenesis.

These experiments are not trivial, since the most penetrant Myc single-transgenic mice
already exhibit a strong tendency towards multiple types of lymphoma. This made it difficult
to detect cooperation of moderate human oncogenes. The one exception is BCL-2, which dra-
matically accelerates tumor development in the context of the Eμmyc mice [44]. BCL-2 is a
broad-spectrum apoptosis suppressor, which counteracts the apoptosis signaling that emerges
from many oncogenes, including heavily overexpressed Myc (reviewed in [1]). Myc is known
to induce apoptosis by repressing the activity of Bcl-XL, an anti-apoptotic factor of BCL-2 fam-
ily; mice expressing Myc and Bcl-XL developed plasma cell tumors with a higher incidence rate
and shorter onset time than single transgenic Myc mice [7].

Table 1. Lymphoma development.

Latency Myc Myc/latency

No. mice rate (%) No. mice rate (%) No. mice rate (%) P (vs Myc)* P (vs Latency)*

lymphoma 7 17.1 2 4.8 11 27.5 0.016 0.035

lymphoid hyperplasia 11 26.8 27 64.3 20 50.0 1 0.005

normal 23 56.1 13 31.0 9 22.5

total 41 42 40

severe EMH 11 26.8 17 40.5 26 65.0 0.029 0.001

*: Data were analyzed using Fisher’s exact test. A p value � 0.05 was regarded as significant.

doi:10.1371/journal.ppat.1005135.t001

Table 2. Pathology on spleen fromMyc/latencymice diagnosed with lymphoma.

Mouse
#

Spleen Length of
spleen (cm)

Diagnosis

3 Disrupted normal architecture of spleen. No distinctive white pulp and red pulp. White pulp is
expanded by large lymphocytes (blast type) with frequent mitotic figures.

2 lymphocytic
lymphoma

170 White pulp nodules are composed of pale large lymphocytes and lack dark zone of small
lymphocytes and discernible follicle structures. Severe splenic EMH

1.7 early lymphoma

176 Normal architectures are retained. White pulp nodules are composed of dark zone of small
lymphocytes and pale marginal zone. No discernible germinal centers observed. Severe splenic

EMH

1.8 Lymphoid
hyperplasia*

192 White pulp nodules are composed of dark zone of small lymphocytes and pale marginal zone. No
discernible germinal centers observed. Severe splenic EMH

1.8 early lymphoma

577 White pulp nodules are composed of pale large lymphocytes and lack dark zone of small
lymphocytes and discernible follicle structures. Severe splenic EMH

3.2 lymphocytic
lymphoma

591 Disrupted normal architecture of spleen. No distinctive white pulp and red pulp. White pulp is
expanded by large lymphocytes (blast type) with frequent mitotic figures. Severe splenic EMH.

2.5 lymphocytic
lymphoma

854 Normal architectures are retained. White pulp nodules are composed of dark zone of small
lymphocytes and clear marginal zone. Clear germinal centers observed. Severe splenic EMH.

1.5 normal*

911 Disrupted normal architecture of spleen. No distinctive white pulp and red pulp. White pulp is
expanded by large lymphocytes (blast type) with frequent mitotic figures. Severe splenic EMH.

3.3 lymphocytic
lymphoma

939_02 Disrupted normal architecture of spleen. No distinctive white pulp and red pulp. White pulp is
expanded by large lymphocytes (blast type) with frequent mitotic figures. Severe splenic EMH.

2.8 lymphocytic
lymphoma

*: One case of lymphoid hyperplasia or normal was included.

doi:10.1371/journal.ppat.1005135.t002
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By contrast to BCL-2, the KSHV latency locus seems to modulate B cell development more
modestly with the aim of fine-tuning signals from exogenous antigens. Fine-tuning is the gen-
eral modus operandi of miRNAs, including of viral miRNAs. The KSHV latency mice showed
dramatically increased plasma cell frequency and an increased propensity to respond to TLR4
stimulation in vivo and in vitro [29]. Here we show that these phenotypes were maintained in
the context of activated Myc. These new data informed our working model that the role of
latent viral infection, EBV in the case of endemic BL (but not sporadic BL) and KSHV in the

Fig 5. Severe EMH in the Myc/latencymice. (A-B) Severe EMHwas found in spleen in the Myc/latency
mice. Black arrow represents megakaryocyte. H&E staining. (C-D) Liver from the Myc/latency mice showed
severe EMH. Yellow arrow indicates cluster of erythroid precursors in portal vein. H&E staining. (E-F)
Decreased hematopoiesis was found in femoral BM from the Myc/latency mice. Black asterisk represents
megakaryocyte. (G) The number of megakaryocytes was counted in 5 high field images (400X) per femoral
BM section from 6 mice per each genotype and plotted. H&E staining. Representative images are shown.

doi:10.1371/journal.ppat.1005135.g005
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case of PEL and MCD, is to (i) increase the overall number of hyper proliferative cells in
response to low-level, polyvalent antigen, and (ii) perhaps modulate their B cell fate towards
immediate responder MZ B cells. This would provide a fertile “soil” or cellular environment
into which additional host events, such as Myc pathway activation, can develop their fully
transforming potential [45].

Expression of the KSHV latency genes in the context of activated Myc resulted in drastic
plasmacytosis in the double transgenic mice. The PBs and PCs from spleen and BM in the
latency mice were increased, while only splenic PBs were increased and PC development was
dampened in the Myc mice [7,29,46]. The expansion of both PBs and PCs in the Myc/latency
mice suggests that most of the PBs survived and differentiated terminally into PCs in spleen.
However, the frequency of PCs was decreased in the BM, consistent with the idea that the
some PCs failed to home to the BM after leaving the spleen or failed to survive in the BM. It is
conceivable that the KSHV latency locus promotes the development of PBs into short-lived
PCs in spleen, but not survival and/or homing of long-lived PCs to the BM. Understanding
this aspect of KSHV biology is subject to further study.

Myc/latency compound transgenic mice developed lymphoma around 130 days with an
incidence rate of 28%. In our colony, the iMycCα single-transgenic mice developed neoplasms
at ~200 days with an incidence rate of 5%, which was slightly lower, but within the margin of
error, than that observed in the original report (9%) [7]. KSHV latency single transgenic mice
started to develop neoplasms at ~200 days, and the incidence rate was 17%, which was similar
to our initial cohort (16%) [29]. This provides genetic evidence that the KSHV latency locus
cooperates with Myc to drive B cell lymphoma.

The mechanism by which the KSHV latency locus cooperates with Myc to promote human
PEL is not well understood. Structural deregulation of Myc is not common in PEL; rather vari-
ous KSHV latent proteins have been proposed to deregulate Myc. Post-translational mecha-
nisms typically lead to a lesser degree of oncogene activation than genomic translocation.
LANA activates and stabilizes Myc in certain culture systems [31,39]. Myc also seems to be
required for the maintenance of KSHV latency [47]. In cultured cells, mLANA, the murid her-
pesvirus-4 ortholog of KSHV LANA, stabilizes Myc through heterotypic polyubiquitination
[48]. The KSHV vIRF-3/LANA2 also stimulates the transcription of Myc [32,49].

vFLIP cooperates with Eμ-driven Myc to promote lymphoma in double transgenic mice
[50]. It also upregulates Myc, leading to protection of anti-IgM-induced apoptosis in the
mouse indicator cell line, WEHI-231 [51]. The in vivo experiments reported here support
these prior observations. Recent data suggest that the vFLIP protein is only very inefficiently
expressed in natural infection of B cells [52], suggesting that even minute amounts of viral pro-
teins have potent biological phenotypes. The current in vivo experiments reaffirm the ability of
the KSHV latency locus to confer hyperresponsiveness to naïve B cells, which in the presence
of elevated Myc activity leads to lymphoma. Most likely, KSHV latent genes act on multiple
checkpoints along the pathway: initially by enhancing receptor-initiated signaling, and down-
stream of Myc, by ameliorating Myc’s tendency to induce apoptosis. Rather than dying, the
activated plasmablasts continued to proliferate in the KSHV latency/Myc double transgenic
mice (Fig 2).

One limitation of the current model is that it still lacks the contribution of the KSHV recep-
tor homologs K1 and K15. Analogous to the EBV LMP-1 and LMP-2 proteins, these are
believed to have an important role in modulating B cell biology [53–58]. In fact, the phenotypes
seen here with only the nuclear KSHV latent genes are somewhat similar to early experiments
using EBV nuclear latent proteins. The EBV+ eBL shows extremely restricted viral gene expres-
sion, i.e. only the EBV EBNA1 protein and the EBV miRNAs are detectable [59,60]. These
seem, nevertheless, necessary for eBL cell survival [61]. By itself the EBV EBNA1 gene exhibits
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only weak phenotypes in vivo. It is associated with no, low, or late hyperplasia and lymphoma
incidence, if driven by the IgH Eμ enhancer in transgenic mice [62–64]. EBNA-1 and Myc
cooperate in inducing lymphoma [65]. LANA is the homolog of EBNA-1; it alone has only a
minor growth modulating effect; is associated with low and late lymphoma incidence in trans-
genic mice [26,28]. Perhaps the missing factor in the initial LANA and EBNA-1 transgenic
experiments was the absence of the viral miRNAs, which motivated us to use the complete
KSHV latency model rather than the LANA single transgenic mice for our studies.

Taken together, this study reports that KSHV latency locus cooperates with Myc to promote
lymphoma development in vivo. Compared to the low oncogenic potential of the iMycCαmice
[7], this elevated tumorigenicity of the Myc/latency mice demonstrates pivotal roles of KSHV
latency genes in viral lymphomagenesis in vivo.

Materials and Methods

Mice
Transgenic mice which express the KSHV latency locus were previously described [29]. Myc
transgenic mice [C.129S1-Ighatm1(Myc)Janz/J] were obtained from the Jackson Laboratory (Bar
Harbor, ME) [7]. All mice were maintained under pathogen-free conditions using ventilated
cages. All experiments were approved by the Institutional Animal Care and Use Committee
(IACUC) at the University of North Carolina at Chapel Hill (UNC).

Genotyping
Genomic DNA was isolated from mouse tail clipping using a Wizard SV genomic DNA kit
(Promega). qPCR was performed for LANA and ApoB primers as previously described [28].
Mice with overexpressed Myc were typed by PCR according to supplier’s protocol using prim-
ers oIMR8447 & oIMR8448 for wild-type mice and oIMR8450 & oIMR8453 for the Myc mice
(http://jaxmice.jax.org/protocolsdb/f?p=116:2:3011848657952163::NO:2:P2_MASTER_
PROTOCOL_ID,P2_JRS_CODE:5234,008341).

Pathology evaluation
Gross pathology evaluation and tissue extraction were done at the time of euthanization or
death due to serious illness. Pathological diagnosis, including lymphoma and other types of
malignancies, was done by a veterinary pathologist (Y. Kim) based on H&E staining and the
morphological and histological aberrations observed in spleen, liver and bone marrow. Mye-
loid, erythroid precursors, and megakaryocytes were also evaluated on the all tissues. All patho-
logical evaluation was performed using a microscope (Nikon ECLIPSE Ci Y-TV55, Japan).
Images were captured using a camera (Jenoptik ProgRes SpeedXT core 3, Germany), and
acquired using ProgRes CapturePro (Version 2.8, Jenoptik). The magnifications of the objec-
tive lenses were x2 or x10 or x40.

Antibodies
The following antibodies were used for flow cytometry and immunohistochemistry. Polyclonal
anti-mouse CD3 (Abcam); Fluorescein isothiocyanate (FITC)-conjugated anti-mouse IgD
(clone 11-26c.2a), phycoerythrin (PE)-conjugated anti-mouse CD138 (clone 281–2), anti-
mouse CD21/CD35 (clone 7G6), and anti-mouse IgM (clone R6-60.2) (BD Biosciences); bio-
tin-conjugated anti-mouse ki-67 (clone SP6; Fisher); allophycocyanin (APC)-conjugated
anti-mouse CD19 (clone 6D5), anti-mouse CD23 (clone B3B4), and FITC-conjugated anti-
mouse CD45R (clone RA3-6B2) (Invitrogen); goat polyclonal anti-mouse IgG, and biotinylated
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anti-mouse CD45R (clone RA3-6B2) (Southern Biotech); biotinylated peanut agglutinin
(PNA) (Vector Laboratories).

Histology and immunohistochemistry
All tissues were extracted at the time of euthanization or death due to serious illness and were
paraffin embedded and sectioned at the Animal Histopathology Core facility of UNC Lineber-
ger Comprehensive Cancer Center (LCCC). Sections were stained with H&E at the same facil-
ity. Immunohistochemistry was performed as previously described [29]. Formalin-fixed
paraffin-embedded spleen sections were incubated with PNA (1:200 dilution), anti-mouse Ki-
67 (1:200 dilution), or anti-mouse IgG (1:100 dilution). The area of PNA-positive foci was
measured using ImageJ [66]. The staining was visualized using a microscope (Leica DMLS,
Germany) with the magnifications of the objective lenses of x4 or x10 or x40. Images were cap-
tured using a camera (Leica DFC480) and acquired using FireCam (Version 3.0, Leica). Stain-
ing intensity and prevalence was evaluated as previously described [67].

Flow cytometry
Flow cytometry was performed as previously described [28]. Briefly, single cells were isolated
from the spleen or bone marrow in 7–11 week-old Myc or Myc/latency mice. After red blood
cell lysis, one million cells were subject to staining and flow analysis. Data acquisition was per-
formed using a CyAn instrument (Beckman Coulter) at the UNC Flow core and the analysis
was done using Flowjo Ver. 7.6.5 (Tree Star).

B-cell isolation and proliferation
Splenic B cells were purified from 11–13 week-old Myc (n = 5) or Myc/latency (n = 5) mice
using an EasySep Mouse B Cell Enrichment Kit (StemCell Technologies). B cells were cultured
in RPMI 1640 medium supplemented with 20% fetal bovine serum, 2 mM L-glutamine, peni-
cillin (0.05 μg/mL), and streptomycin (5 U/mL) (Invitrogen) with CD40 mAb (clone HM40-3,
Biolegend), F(ab0)2 goat anti-mouse IgM Ab (Jackson ImmnuoResearch Laboratory), LPS
(from Escherichia coli 0111:B4), loxoribine, or Class B CpG oligonucleotide (Invivogen) at
37°C under 5% CO2. The ex vivo cell proliferation rate was determined using a Click-iT EdU
microplate assay kit (Invitrogen) according to the supplier’s protocol. The incorporated EdU
in DNA was conjugated with Oregon Green-azide, and coupled with horseradish peroxidase-
labeled anti-Oregon Green antibody. The relative fluorescence unit (RFU) at 485 nm excita-
tion/585 nm emission was measured using a Fluostar Optima instrument (BMG, Inc.), and
expressed as the ex vivo proliferation rate of the B cells.

Colony-forming cell assay
Ten million splenic B cells from each mouse (7–11 weeks old) were cultured on semisolid
methylcellulose media (M3134 from StemCell Technologies) supplemented with 20% fetal
bovine serum, 2 mM L-glutamine, penicillin (0.05 μg/mL), streptomycin (5 U/mL), 7.5%
sodium bicarbonate, and 55 mM 2-mercaptoethanol (all from Invitrogen). The number of col-
ony-forming cells (CFC) was counted on 14 days after culture. One half million bone marrow
(BM) cells from each mouse (7–11 weeks old) were cultured on semisolid media (M3630 from
StemCell Technologies) and the number of CFC was counted on 9 days after culture.
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IgG isotyping by ELISA
Serum was collected from both the Myc and the Myc/latency mice (7–10 weeks old). Igs were
measured as previously described [29].

Statistical analysis
Data in figures and text were represented as mean ± standard deviation. Continuous data were
analyzed using ANOVA and adjusted for multiple comparisons by Dunnett method using R
version 3.1.1 (2014-07-10). Incidence data were analyzed using Student’s t-test or Fisher’s
exact test. A p value� 0.05 was regarded as significant. For box plots, the box represents the
interquartile range and the line within the box represents the median. The lower limit of a
lower vertical segment points 5% percentile and the upper limit of an upper vertical segment is
95% percentile.

Ethics statement
All animal work was approved by the IACUC committee of the University of North Carolina
at Chapel Hill under #13–219.0/KSHV latency mice. All work has been conducted in accor-
dance with the Public Health Service (PHS) policy on Humane Care and Use of Laboratory
Animals, the Amended Animal Welfare Act of 1985, and the regulations of the United States
Department of Agriculture (USDA).

Supporting Information
S1 Table. B cell populations in the Myc and Myc/latency mice.
(DOCX)

S2 Table. The number of colonies found in methylcellulose culture by splenocytes from the
Myc or Myc/latency mice (n = 12).
(DOCX)

S1 Fig. Genotyping of the Myc mice. Primer pair (oIMR8447 and oIMR8448) was used for
genotyping wild-type mice (lanes 5 and 7; 1300 bp) and oIMR8450 and oIMR8453 for the Myc
mice (lanes1-4, 6; 700 bp). MW represents a molecular marker.
(TIF)

S2 Fig. Transcription of KSHV latent genes and miRNAs. Total RNA from splenocytes were
analyzed using RT-qPCR. GAPDH was used as a positive control and NTC means non-tem-
plate control.
(TIF)

S3 Fig. Consistent splenic plasmacytosis in the Myc/latency mice.Higher staining intensity
and prevalence of anti-mouse γ-chain was observed in spleen sections of all Myc/latency mice
(n = 40) than the Myc mice (n = 42). Representative images are shown. Magnification X400.
Igγ-chain positive cells were counted in spleen section from 42 Myc and 40 Myc/latency mice
and plotted. � represent significant difference with p� 0.05 by ANOVA.
(TIF)

S4 Fig. Augmented proliferation was consistent in the Myc/latency spleen. Ki-67 was used
to assess proliferation in spleen from all Myc (n = 42) and Myc/latency (n = 40) mice. Repre-
sentative images are shown. Magnification X400. Ki-67 positive cells were counted in spleen
section from 42 Myc and 40 Myc/latency mice and plotted. ��� represent significant difference
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with p� 0.0005 by ANOVA.
(TIF)
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