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Abstract

The mechanisms of chronic HBV infection and immunopathogenesis are poorly understood due to a lack of a robust small
animal model. Here we report the development of a humanized mouse model with both human immune system and
human liver cells by reconstituting the immunodeficient A2/NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice with human HLA-A2
transgene) with human hematopoietic stem cells and liver progenitor cells (A2/NSG-hu HSC/Hep mice). The A2/NSG-hu
HSC/Hep mouse supported HBV infection and approximately 75% of HBV infected mice established persistent infection for
at least 4 months. We detected human immune responses, albeit impaired in the liver, chronic liver inflammation and liver
fibrosis in infected animals. An HBV neutralizing antibody efficiently inhibited HBV infection and associated liver diseases in
humanized mice. In addition, we found that the HBV mediated liver disease was associated with high level of infiltrated
human macrophages with M2-like activation phenotype. Importantly, similar M2-like macrophage accumulation was
confirmed in chronic hepatitis B patients with liver diseases. Furthermore, gene expression analysis showed that induction
of M2-like macrophage in the liver is associated with accelerated liver fibrosis and necrosis in patients with acute HBV-
induced liver failure. Lastly, we demonstrate that HBV promotes M2-like activation in both M1 and M2 macrophages in cell
culture studies. Our study demonstrates that the A2/NSG-hu HSC/Hep mouse model is valuable in studying HBV infection,
human immune responses and associated liver diseases. Furthermore, results from this study suggest a critical role for
macrophage polarization in hepatitis B virus-induced immune impairment and liver pathology.
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Introduction

Chronic hepatitis B virus (HBV) infection results in liver

fibrosis/cirrhosis and development of hepatocellular carcinoma

(HCC) [1,2]. Establishment of chronic HBV infection is inversely

associated with patient’s age with neonatal and infants most

susceptible, while adults are mostly resistant to chronic infection

[3,4]. Chronic HBV infection is associated with impaired immune

responses to viral antigens and chronic inflammation in the liver,

leading to progressive liver diseases. Though HBV-induced liver

disease is predominately a chronic disease, requiring decades of

chronic infection and liver inflammation [5,6,7], HBV infection

occasionally results in accelerated liver disease and liver failure

during acute infection [8,9]. The development of preventive

vaccines and therapeutics using chimpanzees and surrogate

hepatitis virus-small animal models has played a significant role

in preventing new infections and controlling HBV-induced liver

diseases. However, HBV is endemic in many developing countries

with over 350 million people worldwide chronically infected [10].

Delineation of the mechanisms by which HBV evades host

immunity to establish chronic infection and promote liver disease

is hampered by the lack of robust animal models [11,12,13].

HBV and other human hepatotropic pathogens including HCV

have host species restriction, namely humans and chimpanzees.

To overcome host species restriction barrier for in vivo infection

and disease modeling, several human-murine chimeric liver

models have been developed [14]. The Alb-uPA/SCID human-

ized mouse with high human adult hepatocyte repopulation can be

infected with HCV/HBV [14]. Additionally, the fumarylacetoa-

cetate hydrolase (Fah)-Rag2-cC-null mice also allow human

hepatocytes engraftment and HCV infection [15,16,17]. However,

these human-murine chimeric liver models lack a functional

human immune system, thus it is not possible to study host

immune response and hepatitis virus-induced immunopathology

[14,17]. To overcome the limitations associated with current

chimeric human-murine liver mouse models, we have recently
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developed a humanized mouse model with both human immune

system and liver cells (AFC8-hu HSC/Hep mice) [18,19]. AFC8-

hu HSC/Hep mice can support HCV infection in the liver and

generate human T-cell response to HCV. Additionally, HCV

infection induces liver inflammation and fibrosis, correlated with

activation of human hepatic stellate cells and expression of human

fibrogenic genes [18].

Chronic liver inflammation and associated pathology in chronic

HBV infection is characterized by infiltration of various leukocyte

populations including activated macrophages. Several reports

suggest that HBV promotes macrophage activation and M2

polarization [20,21,22]. Macrophages play a critical role in

modulating pathogen clearance, chronic inflammation and

associated liver pathology; with M1 polarized macrophages

promoting pathogen clearance, and M2-like polarized macro-

phages impairing host immunity and promoting tissue fibrosis/

remodeling [23,24,25,26,27].

In this study, we developed a humanized mouse model by

injecting human liver progenitor cells (Hep) and CD34+ human

hematopoietic stem cells (HSC) directly into the liver of newborn

A2/NSG (HLA-A2 transgenic NOD scid IL2 receptor gamma

chain knockout mice [28,29,30]). The A2/NSG mouse lacks NK

cells and T/B-lymphocytes. They support efficient development

of a functional human immune system after injecting CD34+
human hematopoietic stem cells (HSC) into the liver of newborn

mice [30,31]. Furthermore, the A2/NSG mouse carries the

human HLA-A2 transgene, which enhances development of

human MHC-restrict T lymphocytes [30]. To promote human

liver cell repopulation, A2/NSG-hu HSC/Hep mice were treated

with a murine specific anti-Fas agonistic antibody (Jo2)

[32,33,34,35,36]. The A2/NSG-hu HSC/Hep mouse model

enabled human liver and immune system development and

supported long-term HBV infection, anti-HBV human immune

response and HBV-induced liver diseases including hepatitis and

fibrosis. Interestingly, we also observed accumulation of activated

human M2-like macrophages in the HBV-infected humanized

liver. Importantly, similar M2-like macrophage accumulation was

confirmed in chronic HBV patients and HBV-induced acute liver

failure patients. Importantly, inoculation of human macrophages

culture with HBV positive supernatant resulted in M2–like

activation.

Results

The A2/NSG-hu HSC/Hep mouse model supports
persistent HBV infection

We utilized the murine Fas activating antibody (Jo2

antibody) to induce murine-specific hepatocytes death in order

to promote human hepatocytes repopulation. We confirmed

the specie-specificity of Jo2 antibody [32] by incubating human

liver cell line (HepG2) with Jo2 antibody. Jo2 antibody did not

stain the human hCD95+ hepatocyte cell line (Figure S1A).

Furthermore, human fetal liver progenitor cells were resistant

to Jo2 antibody - mediated apoptosis, while A2/NSG mice

were susceptible to Jo2 - induced liver damage (Figure S1B,

S1C). Jo2 antibody treatment of mice transplanted with CD34+
HSCs and liver progenitor cells resulted in a significant

increase in Hep Par1 positive human hepatocytes compared

to vehicle treated animals at approximately 3 months post

transplantation (Figure 1A, 1B). No significant liver disease was

observed in Jo2 antibody treated animals at termination, thus

confirming that low dose Jo2 mediated liver damage is

transient and does not induce long-term liver damage

(Figure 1A). Human serum Albumin levels were significantly

elevated in Jo2 antibody treated transplanted animals com-

pared to vehicle treated animals at 3 months post transplan-

tation (Figure 1C). Additionally, Jo2 antibody treated A2/NSG

animals transplanted with CD34+ HSCs and liver progenitor

cells supported robust human immune cells repopulation

(,75% PBMCs are human CD45+), which was comparable

to A2/NSG animals transplanted with HSCs only and not

treated with Jo2 (Figure 1D). Human immune reconstitution

resulted in the repopulation of blood, lymphoid tissues and

liver with human leukocytes (hCD45+) including T cells

(hCD45+ hCD3+), B cells (hCD45+ hCD19+), monocytes/

macrophages (hCD45+ hCD32 hCD192 hCD562

hHLADR+ hCD14high hCD11chigh), myeloid dendritic cells

(hCD45+ hCD32 hCD192 hCD562 hHLADR+ hCD14low

hCD11chigh) and plasmacytoid dendritic cells (hCD45+
hCD32 hCD192 hCD562 hHLADR+ hCD123high

hCD4high) (Figure 1E, Figure S2).

To determine if the A2/NSG-hu HSC/Hep mouse can

support HBV infection, humanized and non-humanized mice

were inoculated with HBV patient isolates at 1610e3, 10e5 or

10e7 genome copies per mouse (Figure 2A). HBV viral infection

was examined by measuring serum levels of HBV genome and

HBsAg. At 10e5 HBV genome copies/mouse, HBV replication

was detected at 4 weeks post-infection (wpi), whereas low levels of

HBV genomes were detected at 2 wpi (10e4 copies/ml) and

reached higher levels at 4 wpi (4610e5 copies/ml) in mice

inoculated at 10e7 HBV/mouse (Fig. 2A). Serum HBs antigen

was persistently detected in approximately 75% of HBV

inoculated humanized mice (HBV), but not in non-transplanted

control mice inoculated with HBV (NTP-HBV) or mock

inoculated humanized mice (Mock) (Figure 2B, Table S1).

Additionally, serum HBV genome was detected in approximately

75% of HBV inoculated humanized mice but not in HBV

inoculated non-humanized mice or mock inoculated humanized

mice at sacrifice time point (Figure 2C). To examine HBV

infection in the liver, animals were sacrificed at approximately

12–16 weeks post inoculation. HBV core and surface antigens

were detected in the livers of all humanized mice with detectable

Author Summary

Over 350 million people worldwide are chronically infected
with the hepatitis B virus (HBV), which leads to severe liver
diseases including fibrosis and cancer. The mechanisms of
chronic HBV infection and disease are poorly understood
due to a lack of a robust small animal model. Here we
report a novel animal model that can be efficiently
repopulated with both human immune and liver cells.
The A2/NSG-hu HSC/Hep humanized mouse model sup-
ported persistent HBV infection, human immune respons-
es, albeit impaired in the liver, chronic liver inflammation
and liver fibrosis. In addition, we found that the HBV
mediated liver immune impairment and liver disease was
associated with high level of infiltrated human immuno-
suppressive/pro-fibrogenic macrophages; this result was
confirmed in chronic HBV-induced liver disease patients
and acute HBV – induced liver failure patients. Importantly,
we demonstrate that HBV promotes immuno-suppressive/
pro-fibrogenic macrophage polarization in human macro-
phages using cell culture models. The humanized mouse
model is a valuable platform in studying HBV infection,
human immune response and liver diseases. Furthermore,
results from this study suggest a critical role for macro-
phage activation in hepatitis B induced liver diseases, thus
providing a novel therapeutic target.
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HBV viremia, but not in the livers of control animals (non-

transplanted mice inoculated with HBV and mock inoculated

humanized mice) (Figure 2D, Table S1). Additionally, HBV

genomes were detected in HBV infected A2/NSG/Fas-hu HSC/

Hep livers (Figure S3).

HBV infection induces human immune response in the
A2/NSG/Fas-hu HSC/Hep mouse

To characterize human immune response to HBV infection

in humanized mice, human cytokines, B cell and T cells

responses were examined. Elevated levels of human cytokines

were detected in the serum of HBV infected mice with relatively

high levels of IFNc, IP10 and IL6, along with low levels of IL10

and IFNa (Figure 3A). Additionally, HBV infection also resulted

in anti-HBV humoral response. We detected elevated levels of

anti-HBs IgM antibody in infected humanized mice compared

to control animals (Figure 3B). However, antigen-specific IgG

response was detected in only two of eight mice and at very low

levels as reported in other human B cell studies with humanized

mice [37]. To characterize anti-HBV human T cell immune

response, HLA-A2 donor derived-leukocytes from the spleen

and lymph nodes of mock- or HBV-infected humanized animals

were collected and stimulated in vitro with PHA or A2-restricted

HBV peptides plus anti-CD28 mAb and expanded in the

presence of IL2 and IL7 for 2 weeks. Human T cells from both

mock and HBV infected humanized mice responded to PHA

stimulation, however higher expansion of T cells from HBV

infected mice was detected than T cells from mock controls

(Figure 3C). Analysis of human T cell expansion following HBV

antigen stimulation showed robust expansion (,20 fold) of

human T cells from HBV-infected humanized mice and no

expansion of human T cells from mock controls (Figure 3D).

Additionally, stimulation with the A2-restricted peptides pref-

erentially expanded CD8+ T cells (Figure 3D). A2/HBV

peptide pentamer staining showed significantly higher frequency

of the immunodominant HBV Core peptide (aa18–aa27)

specific human CD8+ T cells (Figure 3E). Similarly as in human

studies, HBV Core (aa18–aa27) pentamer+ CD8+ T cells

exhibited significantly higher frequency than the HBV Env

(aa183–aa191) pentamer+ CD8+ T cells (Figure 3E). As

expected, infiltration of human T cells was detected in the liver

of HBV infected humanized mice compared to mock animals

(Figure 3F).

Figure 1. Murine-specific Fas antibody treatment promotes human liver reconstitution in A2/NSG-hu HSC/Hep mice. A–B: Anti-
mouse Fas (mFas) antibody enhances human hepatocyte repopulation in A2/NSG immunodeficient mice transplanted with human HSC and liver
progenitor cells. Littermate A2/NSG mice transplanted with human CD34+ HSC and hepatocyte progenitors (HSC/Hep) were treated with vehicle or
mFas activating antibody and sacrifice at 3 months post transplantation. (A) Liver sections from vehicle (PBS) or Fas antibody treated humanized mice
were stained with anti-human HepPar1 monoclonal antibody. (B) % Hep Par1+ cells per total liver cells for each mouse was quantified using 5
different fields and summarized. *, p,0.05. (C) Elevated human serum albumin levels in Jo2 (mFas Ab) treated A2/NSG-hu HSC/Hep mice compared
to pre-Jo2 (mFas Ab) treatment (n = 35, 3 cohorts). (D) Comparative analysis of human immune reconstitution (hCD45%) in A2/NSG/Fas-hu HSC/Hep
mice and A2/NSG-hu HSC mice (n = 40, 3 cohorts). (E) Human immune reconstitution of liver and lymphoid tissue (spleen) in A2/NSG/Fas-hu HSC/Hep
mice. Total leukocytes from indicated tissues were stained with human (hCD45+) and murine (mCD45+) leukocyte antibody plus dead cell marker
(Y7).
doi:10.1371/journal.ppat.1004032.g001
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Chronic HBV infection induces chronic hepatitis and
human liver fibrosis in A2/NSG/Fas-hu mice

Chronic HBV infection in patients is associated with chronic

hepatitis and liver fibrosis, characterized by leukocyte infiltration

and collagen deposition in portal/periportal regions of the liver

[38]. To examine leukocyte infiltration and fibrosis in HBV

infected liver of humanized mice, liver sections were examined at

time of sacrifice. HBV infection resulted in significant infiltration

of human leukocytes (blue cells - H&E, brown cells - hCD45+) in

the portal/periportal regions of infected livers (Figure 4A).

Hepatitis was absent in control animals (mock inoculated

humanized mice and non-transplanted mice inoculated with

HBV) (Figure 4A).

Liver fibrosis is characterized by activation of hepatic stellate

cells, which promote increased collagen deposition that results in

tissue pathology [39]. Gross morphological examination of livers

from HBV infected humanized animals also showed extensive

tissue scarring; control livers were morphologically normal (Figure

S4). Examination of liver fibrosis using Sirius red/fast green (SR/

FG) and Masson’s trichrome (MT) staining showed increased

collagen deposition in livers of HBV infected humanized mice but

not of control animals (Figure 4A, Table S1). HBV-induced liver

fibrosis was associated with elevated activation/expansion of

human hepatic stellate cells/myofibroblasts as measured by

human aSMA- and GFAP-positive cells (Figure 4A). Additionally,

human collagen 1 expression but not mouse collagen 1 expression

was unregulated in HBV-induced fibrotic liver tissues (Figure 4B,

4C).

Anti-HBs neutralizing antibody treatment prevents HBV
infection and associated liver diseases in the A2/NSG/Fas-
hu mouse model

To demonstrate that HBV is the pathogenic agent in human

HBV+ serum-induced liver disease in the A2/NSG/Fas-hu mouse

model, humanized animals were inoculated with HBV in the

presence of anti-HBsAg neutralizing antibody (NAb) (Table S1).

HBs antigens in the blood were detected in ,75% of humanized

animals inoculated with HBV alone but not in anti-HBsAg

Figure 2. Persistent HBV infection in A2/NSG/Fas-hu HSC/Hep mice. (A) A2/NSG/Fas-hu mice or non-humanized mice were inoculated with
PBS or HBV (1610e3, 10e5 or 10e7 GE/mouse). Blood samples were collected at various times after infection. HBV genomic DNA was examined in sera
from humanized mice infected with HBV at indicated titration dose and time points. (B) A2/NSG/Fas-hu mice or non-humanized mice were
inoculated with PBS or HBV (1610e6 GE/mouse). Blood samples were collected at various times after infection and HBs antigen in sera was measured
by ELISA. (C) HBV genomic DNA was detected in sera from HBV-infected humanized mice at termination time points (14–16 wpi). {: Unable to bleed
animal at later time points. (D) Liver samples were collected at termination time points (12–16 wpi). HBV core and surface antigens were detected in
livers of HBV inoculated humanized mice and not in control groups.
doi:10.1371/journal.ppat.1004032.g002
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neutralizing antibody treated or control groups (Figure 5A, Table

S1). Immunohistochemical analysis showed the presence of HBV

core and surface antigens in the liver of HBV-infected, but not in

the HBV-neutralizing antibody or mock inoculated mice

(Figure 5B, Table S1). As expected, anti-HBs neutralizing

antibody treatment also blocked HBV-induced liver diseases,

including chronic hepatitis (leukocytes, hCD45+ cells) and liver

fibrosis (MT) (Figure 5C, Table S1). Additionally, elevated levels of

serum biomarkers of liver fibrosis (gamma-glutamyl transpeptidase

- GGT and hyaluronic acid - HA) were detected in HBV infected

humanized mice compared to mock animals; neutralizing

antibody treatment blocked the induction of these serum

biomarkers (Figure 5D).

Persistent HBV infection is associated with impaired anti-
HBV human immune response in the liver

Several studies have suggested liver specific T cell immune

impairment in chronic HBV infection [5]. To characterize anti-

HBV human T cell immune response in lymphoid and liver

tissues, HLA-A2 donor derived-leukocytes from the spleen and

lymph nodes or livers of mock-, HBV plus neutralizing antibody-

or HBV-infected humanized animals were collected and stimulat-

ed/expanded in vitro with PHA or A2-restricted HBV peptides plus

anti-CD28 mAb and expanded in the presence of IL2 and IL7 for

2 weeks. Analysis of human T cell expansion following HBV

antigen stimulation showed robust expansion of human lymphoid

T cells from HBV-infected humanized mice; lymphoid T cells

from mock or HBV plus neutralizing antibody inoculated animals

exhibited refractory response to HBV antigen stimulation

(Figure 6A). Additionally, PMA plus ionomycin re-stimulation of

PHA expanded human lymphoid T cells resulted in enhanced

cytokine production (IFNc/IL2 or IFNc/TNFa double positive

cells) by T cells from HBV infected animals compared to mock or

HBV plus anti-HBs neutralizing antibody inoculated animals

(Figure 6B; Figure S5). Comparative analysis of liver and lymphoid

tissue T cell expansion following HBV antigen stimulation showed

robust expansion of lymphoid T cells from HBV-infected

humanized mice; however, liver T cells exhibited significantly

lower response compared to lymphoid T cells from the same

persistently infected animal with the exception of an HBV

Figure 3. HBV infection induces anti-HBV human immune response in A2/NSG/Fas-hu mice. HBV infection results in human immune
response with induction of serum levels of human inflammatory cytokines (A), B cells response (serum IgM and IgG antibodies levels) (B) and T cell
response (C–F). (C–F): Expansion of human T cells following stimulation with PHA or HBV antigens plus anti-CD28 mAb (14 days with IL7 and IL2) of
human lymphoid tissue T cells from mock and HBV infected mice. Total human T cell expansion for PHA (C), HBV antigen and resulting percentage of
expanded CD4+ and CD8+ T cells (D) following stimulation are presented. Error bars are shown as standard deviations. (E) HBV infection induced
HLA-A2 restricted HBV-core (18–27)- or HBV-envelope (183–191)-specific CD8+ T cells. Antigen specific CD8+ T cells were detected after expansion
with HBV antigens for 14 days as above. The immunodominant HBV-core (18–27) epitope induced higher levels of CD8+ T cells than the HBV-
envelope (183–191) epitope. Spleen cells from mock-infected mice did not respond to stimulation with HBV antigens and showed no detectable
antigen-specific T cells. (F) HBV infection and associated immune response induced liver infiltration of human T cells. Liver sections from Mock and
HBV inoculated humanized mice sacrificed at 12–16 weeks post inoculation were stained with human CD3 (human T cells, red) antibodies. No
significant leukocyte infiltration was observed in livers from mock animals.
doi:10.1371/journal.ppat.1004032.g003
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inoculated animal (#1476) that did not developed persistent

infection (Figure 6C). Both lymphoid and liver T cells from mock

and HBV plus neutralizing antibody inoculated animals exhibited

no significant response to HBV antigen stimulation (Figure 6C).

HBV-induced liver disease and immune impairment in
the liver is associated with induction of M2-like
macrophages

Several studies have indicated that macrophages play a critical

role in modulating pathogen clearance, chronic inflammation and

associated tissue pathology; with M1-like macrophages promoting

pathogen clearance, and M2-like macrophages impairing Th1

immune response and promoting tissue fibrosis/remodeling/

wound healing [40]. Immunohistochemical analysis of HBV

associated liver inflammation in humanized mice showed high

levels of human macrophages with predominately ‘‘M2-like’’

phenotype (hCD68high, hCD14high, hCD16low/medium,

hCD163high, hCD206high, hCD86negative) (Figure 7A). Additional-

ly, gene expression analysis also confirms elevated levels of human

M2 macrophages (hiNOSnegative, hIL10high, hCD163high,

hCD206high, hIL1RAhigh) (Figure 7B). Several studies have

demonstrated that M2-like macrophages are potent immune

suppressor cells expressing high levels of IL10, co-inhibitory

molecules (B7-H4), while depleting L-arginine and down-regulat-

ing IL12, TNFa and co-stimulatory molecules (CD86); all factors

critical for Th1 anti-viral immune response [41]. Analysis of liver

inflammation in HBV infected humanized mice showed human

M2 macrophages co-localized with human T cells (Figure 7C,

Table S2). Additionally, liver analysis of HBV inoculated

humanized animals that did not develop persistent infection

(ID# 1450 and ID# 1476), showed the absence of M2-like

macrophages was associated with the absence of persistent

infection and associated liver disease (Figure 6C, Table S2).

Interestingly, analysis of T cell response to antigen stimulation

showed similar robust induction for both lymphoid and liver T

cells (ID# 1476); this is in contrast to persistently infected animals

that exhibited robust lymphoid T cell response but relatively

refractory liver T cell response (Figure 6C, Table S2). Further-

more, analysis of Liver and spleen from the same persistently

infected animals showed M2 macrophages preferentially localized

to the liver and not the spleen; thus associating the presence of

M2-like macrophages in the liver with T cell impairment (Figure

S6). M2-like macrophages also localized with activated human

hepatic stellate cells (hGFAP+) and fibrotic regions (blue regions)

in HBV infected humanized livers (Figure 7D, Figure S7, Table

S2). These results suggest that persistent HBV infection-induced

liver disease and immune impairment in humanized mice is

associated with M2-like macrophage infiltration.

To confirm our findings in human HBV patients, patient groups

with varying degree of chronic HBV-induced liver diseases

(Fibrosis/HCC) were examined. Analysis of chronic HBV

associated liver diseases in humans showed high levels of

predominately ‘‘M2-like’’ macrophage (CD68high, CD206high) in

the liver infiltration (Figure 7E). Though chronic HBV-induced

liver disease accounts for the vast majority of HBV associated

morbidity/mortality, acute HBV infection occasionally results in

accelerated liver disease and liver failure with subsequent mortality

in the absence of liver transplantation [8]. Analysis of liver gene

expression profile in acute HBV-induced liver failure patients also

showed increased macrophage infiltration (CD68 upregulation),

up-regulation of M2-like macrophage genes (IL10RA - Interleukin

10 receptor alpha subunit, Dectin-1, CD163, CD163L1, MRC1

Figure 4. HBV infection induces chronic hepatitis and human liver fibrosis. A2/NSG/Fas-hu HSC/Hep mice were inoculated with Mock or
HBV and terminated at 12–16 weeks post infection. (A) Representative liver sections from sacrificed HBV infected or control mice stained with H&E
and hCD45 to examine human leukocyte infiltration and Sirius red/fast green (SR/FG) and Masson’s trichrome (MT) stains to examine liver fibrosis.
Human specific a-SMA (alpha-smooth muscle actin) and GFAP (glial fibrillary acidic protein) antibodies were used to detect activated human hepatic
stellate cell activation or myofibroblasts. Livers from two representative mice per group are shown. Gene expression analysis of human and mouse
collagen 1 was examined using species-specific primers (B) and antibodies (C). A black arrow denotes marking indicating same region.
doi:10.1371/journal.ppat.1004032.g004
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(CD206) - C-type mannose receptor 1, MRC2 - C-type mannose

receptor 2, AMAC1 - alternative macrophage activation-associat-

ed CC chemokine-1, IL10, B7-H4) and down-regulation or no

change of M1-like macrophage genes (TNFa, iNOS, IL12p40) in

HBV infected patients compared to healthy controls (Figure S8,

S9) [8,9]. Furthermore, liver gene expression profile analysis

showed M2-like macrophage gene expression profile (CD68high,

CD163high, AMAC1high, iNOSlow, TNFalow) is associated with

upregulation of tissue fibrosis (COL1A1high, TIMP1high) and

damage markers (HMGB1high [42,43,44], S100A9high [45,46])

(Figure S9) [8,9].

Results from several cell culture studies have suggested that

HBV can modulate monocyte activation resulting in induction of

M2 associated cytokines and inhibition of M1 associated cytokines

[20,22,47,48,49]. Here we demonstrate that HBV viral stock

promoted M2-like macrophage activation in both human M1 and

M2 polarized macrophages as examined by the induction of

spindle/fibroblast shaped morphology (as opposed to round/oval

shaped morphology of M1 macrophages) and M2 associated gene

expression (AMAC1high, CD86low) (Figure 8A, 8B). Additionally,

HBV inoculation resulted in induction of M2-like cytokine

markers (IL10high and IL12low) in both M1 and M2 polarized

macrophages (Figure 8C). Activation of M1 and M2 polarized

macrophages with activating cytokines results in enhanced

polarization/activation of the respective lineage. Interestingly

inoculation of M1 and M2 activated macrophages with HBV also

resulted in the induction of IL10 and the inhibition of IL12

secretion (Figure 8C). Together these results suggest that HBV

promotes M2-like macrophage activation to impair Th1 immune

response and promote liver fibrosis/pathology.

Discussion

We report here a humanized mouse model engrafted with both

human immune cells and liver cells. The A2/NSG/Fas-hu HSC/

Hep mouse supported persistent HBV infection, which induced

human immune response, albeit impaired in the liver, chronic

hepatitis and liver fibrosis. Therefore, the A2/NSG/Fas-hu mouse

provides a novel humanized mouse model with both human

immune and liver cells for studying hepatotropic pathogen

infection and associated liver diseases. More importantly, this

humanized mouse model strategy can be readily applied across

Figure 5. Anti-HBs neutralizing antibody prevents HBV infection and associated liver diseases. A2/NSG/Fas-hu HSC/Hep mice were
inoculated with HBV +/2 anti-HBs neutralizing antibody (NAb) terminated at 10–16 week post infection. (A) Serum level of HBs antigen was
measured at sacrifice time point in mock, HBV alone or HBV + anti-HBs antibody groups. (B) Liver sections from mock, HBV or HBV plus anti-HBs
antibody treated animals (representative two mice per group) were stained for HBV core or surface antigens. (C) Representative liver sections from
mock, HBV or HBV plus anti-HBs antibody treated animals were stained with H&E and hCD45 to examine human leukocyte infiltration and Masson’s
trichrome (MT) stains to examine liver fibrosis. (D) Liver fibrosis was also examined using serum biomarkers (GGT and HA) in mock (n = 6), HBV (n = 7)
or HBV plus anti-HBs antibody treated (n = 3) animals.
doi:10.1371/journal.ppat.1004032.g005
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current and future immunodeficient mouse models to promote

both human liver and immune cells repopulation.

Immunodeficient mice expressing the uPA transgene in the liver

of SCID mice or with mutant Fah genes allow transplanted human

adult hepatocytes to have a growth advantage and efficiently

repopulate the liver [50]. However, these mice have disadvantages

including neonatal death, poor health and, most importantly, the

lack of a human immune system [19]. To overcome these

deficiencies, the A2/NSG/Fas-humanized mouse model enables

inducible depletion of murine hepatocytes through the Fas

apoptotic signaling pathway, resulting in elevated human liver

repopulation in mice transplanted with human liver progenitor

and hematopoietic stem cells [32,33,34,36,51]. Additionally, the

A2/NSG background permits highly efficient engraftment and

development of human xenografts including human hematopoietic

stem cells compared to current immunodeficient mouse models

[52]. Lower levels of human hepatocytes were detected in A2/

NSG/Fas-humanized mice in comparison to the uPA or FAH

mice transplanted with adult human hepatocytes. However, it

should be noted that fetal liver cell repopulation is also low in those

mouse models [53]. Genetic modification of human liver cells for

enhanced survival, repopulation and differentiation coupled with

mouse Fas agonist (Jo2) [34] and/or the AFC8 murine liver

damage system [18] could further enhance human liver

repopulation.

To examine the applicability of the A2/NSG/Fas-humanized

mouse model for HBV infection studies, we inoculated humanized

animals with clinical HBV isolates. We detected persistent HBV

surface antigens and HBV genome in the sera of inoculated

animals. Additionally, HBV core and surface antigens were

detected in the livers of inoculated mice over 3–4 months after

infection, which indicate that the A2/NSG/Fas-humanized mouse

Figure 6. Persistent HBV infection is associated with liver specific immune impairment. Expansion of human T cells following stimulation
with PHA or HBV antigens plus anti-CD28 mAb (14 days with IL7 and IL2) of human T cells from liver or lymphoid tissues of mock, HBV plus
neutralizing antibody or HBV infected mice. (A) Total human T cell expansion after 2 weeks of stimulation with HBV antigen was examined. (B) Th1
associated double positive cytokine production in PHA expanded T cells re-stimulated with PMA plus ionomycin was also examined. (C) Comparative
analysis of HBsAg level in individual animals (Mock, PBS inoculated; HBV+, HBV inoculated with persistent HBV infection; HBV2, HBV inoculated with
no infection; +NAb, HBV plus anti-HBsAg neutralizing antibody inoculated), and associated human liver and lymphoid tissue T cell expansion
following HBV antigen stimulation. NA (Not applicable, indicating animals with low number of T cells in the liver below the assay requirements, thus
not tested). ND (Not detectable).
doi:10.1371/journal.ppat.1004032.g006
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model supports persistent HBV infection. Importantly, treatment

with anti-HBs neutralizing antibodies prevented HBV infection in

the A2/NSG/Fas-hu mouse model. The A2/NSG/Fas-hu HSC/

Hep mouse model enabled the development of human immune

cells in the blood, lymphoid tissues and the liver, thus anti-HBV

immune response was examined. Ex vivo T cell activation analysis

showed that human lymphoid T cells from HBV infected

humanized mice exhibited robust expansion in response to HBV

antigen stimulation. Furthermore, elevated human anti-viral

cytokines were detected in HBV infected humanized mice. Robust

anti-HBV B cell response is very critical for vaccine associated

prevention of HBV infection. However, only suboptimal B cell

response has been reported thus far in humanized mouse models

[52]. In concordance with those studies, we detected predom-

inantly human IgM antibodies with anti-HBV activity in HBV

infected animals. Although human lymphoid T cells exhibited

robust anti-HBV immune responses, HBV infection resulted in

persistent infection in approximately 75% of inoculated animals,

which was associated with liver specific T cell impairment. The

low HBV viremia in the blood of HBV-inoculated humanized

mice may be due to the relatively low level of human hepatocyte

engraftment (,20%) and the immature human hepatocytes

derived from fetal liver progenitor cells. Additionally, the anti-

HBV immune response could also contribute to the low viremia.

In chronically infected patients, immune and inflammatory

responses against HBV are implicated as the major mediators of

liver diseases [54,55]. Chronic HBV infection in the liver of A2/

NSG/Fas-hu mice was associated with significant human leuko-

cyte infiltration, leading to human hepatic stellate cell activation

and human liver fibrosis. Several reports have shown macrophage

activation/polarization plays a critical role in modulating patho-

gen clearance, chronic inflammation and associated tissue fibrosis

and damage; with M1 polarized macrophages promoting anti-

virus Th1 immune response and pathogen clearance, while

M2 polarized macrophages impair Th1 immune response

and promoting tissue remodeling [23,24,25,26,27]. M2 macro-

phages are critical innate immune cells involved in tissue

remodeling/wound repair, secreting anti-inflammatory cytokines

Figure 7. HBV-induced liver disease and immune impairment is associated with M2-like macrophage activation. A2/NSG/Fas-hu HSC/
Hep mice were infected with Mock or HBV and terminated at 12–16 weeks post infection. (A) Infiltrating monocyte/macrophage (CD68+, CD14high,
CD16low/medium) from HBV-infected and control livers were stained for M1-like marker (CD86+) and M2-like markers (CD163+, CD206+). (B) Elevated
levels of human M2-like macrophage gene expression profile in HBV infected humanized livers. (C–D) HBV-induced M2-like macrophage co-localized
with human T cells (C), activated hepatic stellate cells and fibrotic regions (D) in infected humanized livers. (E) Sex and age matched control and
chronic HBV patients at varying stages of liver diseases were examined to characterize macrophages (CD68+) in chronic HBV infection. Representative
M2-like marker (CD206+) and fibrosis (Sirius red) were stained in healthy controls and chronic HBV-infected human livers. CHB, Chronic HBV infection;
G1S1/G1S3, stage 1/stage 3; LC, chronic HBV associated hepatocyte cell carcinoma. Chronic HBV-induced fibrotic (CHB) and liver cancer (LC) patients
exhibited elevated levels of macrophages (CD68+) of M2-like lineage (CD206+) in the liver. A black arrow denotes marking indicating same region.
doi:10.1371/journal.ppat.1004032.g007
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and redistributing micronutrients to sites of wound repair;

however, during chronic infection, M2-like macrophages promote

tissue fibrosis, neoplasia and impair Th1 response thus promoting

pathogen persistence and associated tissue pathology [40]. We

report that liver inflammation and immune impairment in chronic

HBV infected humanized mice livers was associated with M2-like

macrophages, which also localized to fibrotic regions. Most

importantly, results from chronic HBV and acute HBV-induced

liver disease/failure patients confirmed that accumulation of M2-

like macrophages correlated with liver disease progression and

failure. Several studies have reported that HBV virus/HBV-

encoded proteins can directly promote M2-like activation

[20,21,22]. We confirmed and extended those results by demon-

strating that HBV promotes M2 macrophage polarization in

human M1 and M2 macrophages.

In summary, we have established a novel humanized mouse

model with both human liver cells and immune system (A2/NSG/

Fas-hu HSC/Hep mice) using a highly immunodeficient mouse

strain that efficiently supports human cell engraftment. A2/NSG/

Fas-hu HSC/Hep mice were susceptible to chronic HBV infection,

associated with HBV-specific human immune responses and liver

immune impairment, chronic inflammation and fibrosis. Important-

ly, our findings suggest a critical role for M2-like macrophages in

HBV infection, immune dysregulation and associated liver diseases.

Materials and Methods

Ethics statement
All animal experiments were conducted following NIH guide-

lines for housing and care of laboratory animals and in accordance

with The University of North Carolina at Chapel Hill in

accordance with protocols approved by the institution’s Institu-

tional Animal Care and Use Committee (protocol number 10-

107). Human study protocols were approved by Beijing 302

Hospital Research and Ethics Committee and the independent

ethics committee (IEC) of Jilin University; written informed

consent was obtained from all participants. Liver gene expression

profile analyses in patients were obtained from a dataset in Gene

Expression Omnibus (GEO)/NCBI database; the reports followed

NIH research ethics guidelines [8,9].

Isolation of CD34+ HSC and liver progenitor cells from
human fetal liver

Human liver progenitor cells containing hepatoblasts (Hep) and

CD34+ hematopoietic stem cells (HSC) were isolated from 15–19

weeks old human fetal liver tissue (Advanced Bioscience Resourc-

es) essentially as described [56,57,58]. To separate progenitor liver

cells from non-parenchymal cells (including HSC), the fetal liver

cells were centrifuged at low speed three times (5 minutes, 186g).

Figure 8. HBV induces M2-like activation in human macrophages. (A–B) Polarized M1 or M2 monocyte-derived macrophages were treated
with HBV (HepG2.2.15 derived), or mock (HepG2 derived) for 6 days and M1 and M2 macrophage activation was examined using (A) morphological
analysis (oval/round shape – M1, spindle/fibroblast shape – M2) and (B) gene expression analysis (CD86 – M1, AMAC1 – M2). (C) Polarized or activated
(enhanced polarization) M1 or M2 monocyte-derieved macrophages were treated with HBV (HepG2.2.15 derived), or mock (HepG2 derived) for 6 days
and M1 and M2 macrophage activation was examined using cytokine analysis (IL12 – M1, IL10 – M2).
doi:10.1371/journal.ppat.1004032.g008
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Liver progenitor cells were collected in the pellet. The supernatant

was centrifuged at 4696g for 5 min to collect the non-parenchyma

mononuclear cells. CD34+ cells were isolated by magnetic-

activated cell sorting (MACS), and the purity of CD34+ HSCs

was greater than 95%. Cell viability, measured using Guava

Easycyte -with Viacount staining (Millipore), generally exceeded

90%.

Construction of A2/NSG/Fas-hu mice with human
immune and liver cells

CD34+ HSCs (0.5–16106) and Hep (liver) progenitor cells (0.5–

16106) from the same donor liver were co-injected into the liver of

1 to 2 days old newborn A2/NSG mice, previously irradiated at

200 rad. Additionally, fetal thymus tissue from the same donor was

also transplanted when available. Animals were injected 3–5 times

via ip with Jo2 antibody/PBS at 0.1–0.15 mg/kg body weight (BD

Pharmingen) every 4–5 days at approximately 3–4 weeks post

transplant of human cells [59]. At 12–16 weeks post-transplant

with HSC+Hep cells, Transplanted mice were bled to determine

human leukocyte (hCD45+) reconstitution by FACS and human

albumin concentration in the blood by ELISA (Bethyl laborato-

ries). All experiments using live rodents conformed to governmen-

tal and institutional guidelines.

HBV infection of humanized mice
HBV clinical isolates were obtained from patients with chronic

HBV infection (patient # 1 – HBV #1 and patient # 2 – HBV

#2). A2/NSG-humanized mice or non-humanized control mice

were inoculated iv with 50–75 ul of clinical isolates of HBV

(16103–16107 genome equivalent copies) plus or minus anti-

HBsAg ScFv neutralizing antibody (NAb) mixture (40 ug) per

mouse or vehicle control (PBS). For in vivo neutralization assay,

virus plus or minus monoclonal antibodies mixture was

incubated at 25 degrees (room temperature) for 1 hour prior to

inoculation.

Blood and tissue analysis of A2/NSG/Fas-humanized mice
At different times after infection, blood was collected and

HBsAg levels were measured using in house ELISA consisting of

anti-HBsAg ScFv monoclonal antibodies mixture and commercial

reagents (Alpha Diagnostics). HBV serum genome was detected at

termination using real-time PCR [60]. Serum cytokine levels were

measure using a multiplex human cytokine array and following

manufacturer’s recommended procedures (Luminex, Millipore).

Liver fibrosis serum biomarkers, gamma-glutamyl transpeptidase

(GGT) was measure using MaxDiscovery GGT enzymatic assay

(Bioo Scientific Corporation) and hyaluronic acid (HA) was

measured using hyaluronic acid ELISA kit (Echelon Biosciences)

were measure following manufacturer’s recommended procedures.

At termination, liver tissue was immediately place in RNAlater

(Qiagen) or fixed in 10% formalin. RNAlater was removed from

tissue and samples were stored in 280 C. RNA was isolated from

tissue following manufacturer’s recommended procedures and

qPCR was performed using species-specific published [18,61] or

NCBI primer blast generated primers and the SYBR Green

method, following manufacturer’s recommended procedures

(Thermo Scientific). Paraffin embedded fixed liver sections were

stained with hematoxylin and eosin (H&E), sirius red/fast green

(fibrosis), Masson’s trichrome (fibrosis) or with antibodies: anti-

human GFAP (1:250; Abcam), anti-human Collagen 1 (1:250;

Abcam), anti-mouse Collagen 1 (1:250; Abcam), anti-human a-

smooth muscle actin (1:75; Dako), anti-human CD45 (1:2, Dako),

anti-human CD3 (1:250; Dako), anti-human CD68 (1:250; Dako),

anti-human albumin (1:250; Dako), anti-Hep Par1 (Dako), anti-

HBcAg (1:100; Zeta Corp). anti-HBsAg (1:100; Thermo Scientif-

ic). Immunoreactivity was determined by incubation with DAB

substrate (Pierce) or Vulcan red (Dako), and counterstained with

hematoxilin [56,58]. Liver histological activity was determined

using the knodell score, which examines liver necrosis, degener-

ation, inflammation and fibrosis [62,63].

T cell immune responses in mock or HBV-infected A2/
NSG/Fas-hu mice

Spleens, mesenteric lymph nodes and liver were isolated from

individual animals and 0.56106 human spleen plus mesenteric

lymph node or liver leukocytes were stimulated for 20 hours with

phytohemagglutinin (PHA) or HBV antigens [HLA2 core (18–27),

envelope (183–191, 185–194, 172–181), polymerase (573–581)

peptides (ProImmune) +/2 recombinant HBc and HBs (ProSpec)

at 10 ug/ml each]+1 ug/ml anti-CD28 mAb (Invitrogen) in

IMDM+10% FBS media (Gibco). The cells were then cultured

for 14 days with fresh media replaced every two days (IMDM,

10% FBS, 10 U/mL human IL-2 and 125 ng/mL IL-7; human T

cell expansion was examined by FACs (Guava, Millipore) using

CD45, CD3 and live cell marker. Additionally, cells were stain for

HBV core (18–27) or HBV envelope (183–191) pentamer+ human

CD8+ T cells (ProImmune). PHA expanded cells were re-

stimulated with Phorbol 12-myristate 13-acetate (PMA) plus

ionomycin for approximately 6 hours and cytokine secretion was

block with brefeldin A; intracellular cytokine levels were examined

using FACs.

Human patient samples and analyses
Chronic HBV Infection and associated liver diseases: Fifty-two

chronic HBV (CHB) patients and 22 liver cancer (LC) patients

were recruited for this study. All patients were diagnosed

according to our previously described criteria [64,65] and had

not received any antiviral therapies or immunosuppressive drugs

within six months before sampling. Sixteen age- and sex-matched

healthy individuals were enrolled as controls (HC). Individuals

with concurrent HCV, HDV or HIV infections, autoimmune liver

diseases or alcoholic liver disease were excluded.

Acute HBV - induced accelerated liver disease and failure:

Gene expression analysis was performed on publicly available

microarray dataset from patients with acute HBV-associated liver

failure (n = 4 patients, 17 different liver specimens approximately

evenly taken from the 4 livers) and match healthy control liver

donors (n = 10); acute HBV- induced liver failure patients were

previously healthy and had no signs of chronic liver disease [8].

Microarray dataset (GEO accession: GSE49656; [8]) was analyzed

using GEOR (NCBI Software).

Human macrophage culture
PBMC were isolated from the buffy coats of healthy HIV-1/

HBV/HCV sero/qPCR negative blood donors by Ficoll-paque

density gradient centrifugation. The cells were then washed,

resuspended in RPMI containing pen/strep (1%), glutamine (1%),

heat-inactivated FBS (10%), and seeded into tissue culture plates.

Non-adherent cells, mostly T lymphocytes, were removed by

gentle pipette aspiration after 1.5 h of incubation at 37uC in a

humidified atmosphere containing 5% CO2. An equal volume of

fresh complete medium was then added to each flask and attached

cells at approximately 70–80% confluency were cultivated for 6

additional days at 37uC in 5% CO2 in presence of either rHuGM-

CSF (100 ng/ml) (M1) or rHuM-CSF (100 ng/ml) (M2) for

differentiation into polarized M1 or M2 - monocyte derived
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macrophages. These polarized macrophages ($95% CD14+) were

then stimulated for two days with either IFN-c (50 ng/ml) and

LPS (10 ng/ml) or IL-4 (20 ng/ml) to obtain activated M1

macrophages or activated M2 macrophages, respectively. Polar-

ized or activated primary monocyte derived macrophages were

washed and treated with medium containing HBV (HBV positive

HepG2 cell line - HepG2.2.15 supernatant derived at MOI = 10)

or Mock (HBV negative HepG2 cell line - HepG2 supernatant

derived) for 6 days; M1 and M2 macrophage activation were

examined using cytokine analysis (BD Biosciences) and qPCR

(Invitrogen) following manufactures’ recommended procedures.

Statistical analysis
We used unpaired two-tailed Student’s t-tests or ANOVA for all

comparisons. p,0.05 is considered significant. All data are

reported as means 6 standard error.

Supporting Information

Figure S1 Anti-mouse Fas activating antibody exhibits
murine-specific affinity and hepatotoxicity. (A) Human

hepatocyte cell line (HepG2) was culture in DMEM based complete

medium and stained with PE-conjugated anti-human CD95

antibody (clone DX2, eBioscience) or PE-conjugated anti-mouse

CD95 antibody (Jo2 antibody) (BD Pharmingen) and analyzed by

FACs; Jo2 exhibits species-specific affinity for murine CD95. (B)

Human fetal liver progenitor cells (7e5 cells per well) were cultured

in 12 well plates and treated with Jo2 (500 ng/mL) or vehicle (PBS)

for 3 days and cell death was examined using both FACs based

viability staining assay. Treatment of fetal liver progenitor cells

culture with Jo2 does not induce apoptosis. (n = 3 per treatment

group) (C) For studies examining Fas activating antibody in vivo

hepatotoxic activity, A2/NSG immunodeficient mice were injected

once via ip with Jo2 at sub-lethal doses or vehicle (PBS) and ALT

levels was measure 20 hours post treatment. Jo2 induces dose

dependent murine liver damage in A2/NSG immunodeficient mice

(n = 2 per treatment group). p,0.05 is considered significant. All

data are reported as means 6 standard error.

(PDF)

Figure S2 Human immune reconstitution in A2/NSG/
HSC-Hep Fas mice. Leukocytes from indicated tissue were

isolated and stain for various human immune lineages including T

cells (hCD45+ hCD3+), B cells (hCD45+ hCD19+), monocytes/

macrophages (hCD45+ hCD32 hCD192 hCD562 hHLADR+
hCD14high hCD11Chigh), myeloid dendritic cells (hCD45+
hCD32 hCD192 hCD562 hHLADR+ hCD14low hCD11Chigh)

and plasmacytoid dendritic cells (hCD45+ hCD32 hCD192

hCD562 hHLADR+ hCD123high hCD4high).

(PDF)

Figure S3 HBV genome in the liver of humanized mice.
Extrachromosomal DNA was isolated from liver samples, and

HBV DNA was quantified in mock (lanes 1–3) or HBV infected

(lanes 4–8) humanized mice using real-time PCR (A) and gel

electrophoresis analysis (B). HBV plasmid DNA from hydrody-

namically transfected mice was used as positive control of qPCR

and gel analysis (data not shown).

(PDF)

Figure S4 HBV infection induces liver fibrosis/scarring
in humanized mice. Representative gross liver morphology of

HBV-infected and mock-infected mice. HBV infection of

humanized animals was associated with gross liver pathology with

prominent scarring visible on the tissue.

(PDF)

Figure S5 HBV infection primes human T cells in
humanized mice. Representative FACs analysis of Th1

associated double positive cytokine secretion in vehicle or PMA

plus ionomycin re-stimulated PHA expanded T cells.

(PDF)

Figure S6 Liver specific localization of human M2-like
macrophages in HBV infected humanized mice. Immu-

nohistochemical analysis of M2 macrophage (CD68+,

CD163+) levels in the spleen and liver of the same HBV-

infected animal. Black arrows serve as a marker to denote the

same region.

(PDF)

Figure S7 Chronic HBV infection–induced liver fibrosis
is associated with M2-like macrophages in humanized
mice. (A–B) Livers from representative HBV infected humanized

mice (HBV), mock (Mock) inoculated humanized mice and HBV

inoculated non-humanized (NTP-HBV) control mice were stained

for M2-like (CD163+, brown regions) macrophages and liver

fibrosis (MT, blue regions) and slides were scanned (A);

additionally an enlarged HBV infected liver is shown (B), black

arrows serve as a marker to denote the same region. (C)

Quantitative analysis of CD163+ macrophages (brown color)

and liver fibrosis (collagen deposition-blue color) in the indicated

livers.

(PDF)

Figure S8 Acute HBV infection–induced accelerated
liver fibrosis and damage is associated with the
induction of M2-like macrophage gene expression
profile in humans. Relative log2 expression of macrophage

(CD68), M2-like macrophage (IL10RA, Dectin-1, CD163,

CD163L1, MRC1(CD206), MRC2, AMAC1, IL10, B7-H4) and

M1-like macrophage (TNFa, iNOS, IL12p40) markers in the

livers of healthy control liver donors (n = 10) and human patients

with acute HBV – induced liver failure (n = 17 from 4 patients).

(PDF)

Figure S9 M2-like macrophage gene expression profile
directly correlates with liver fibrosis and damage
markers in Acute-HBV liver failure patients. Regression/

correlation analysis of relative log2 expression (RE) of macrophage

(CD68) marker and M2-like macrophage (CD163, AMAC1) or

M1-like macrophage (TNFa, iNOS) markers in the livers of

human patients with acute HBV – induced liver failure show

elevated levels of M2-like macrophage directly correlate with

macrophage levels. Additionally, regression/correlation analysis of

relative log2 expression of M2-like macrophage (CD163) marker

and tissue fibrosis (COL1A1, TIMP1) or damage (HMGB1,

S100A9) markers show M2-like macrophage levels correlate with

liver fibrosis and damage levels.

(PDF)

Table S1 Chronic HBV infection induces liver disease in
the humanized mouse model. Animal information and

associated human reconstitution level, infection status, and liver

disease score.

(PDF)

Table S2 Chronic HBV–induced liver disease and
immune impairment is associated with M2-like macro-
phages in the humanized mouse model. Animal informa-

tion, human reconstitution status, infection status, lymphoid and

liver immune response, liver disease stage/score and associated

liver M2-like macrophage levels.

(PDF)
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