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Abstract
This paper explores bias in the estimation of sampling variance in Respondent Driven Sam-

pling (RDS). Prior methodological work on RDS has focused on its problematic assump-

tions and the biases and inefficiencies of its estimators of the population mean.

Nonetheless, researchers have given only slight attention to the topic of estimating sam-

pling variance in RDS, despite the importance of variance estimation for the construction of

confidence intervals and hypothesis tests. In this paper, we show that the estimators of

RDS sampling variance rely on a critical assumption that the network is First Order Markov

(FOM) with respect to the dependent variable of interest. We demonstrate, through intuitive

examples, mathematical generalizations, and computational experiments that current RDS

variance estimators will always underestimate the population sampling variance of RDS in

empirical networks that do not conform to the FOM assumption. Analysis of 215 observed

university and school networks from Facebook and Add Health indicates that the FOM

assumption is violated in every empirical network we analyze, and that these violations lead

to substantially biased RDS estimators of sampling variance. We propose and test two alter-

native variance estimators that show some promise for reducing biases, but which also illus-

trate the limits of estimating sampling variance with only partial information on the

underlying population social network.

Introduction
Respondent driven sampling (RDS) is a popular means of sampling difficult to survey popula-
tions. The ISI Web of Science database currently tags 642 academic articles with RDS listed as
the topic [1]. These papers have been cited 10,217 times by 4,897 unique articles. A search of
the NIH RePORTER database shows that the National Institutes of Health has awarded more
than $180 million to 448 projects and subprojects with “respondent driven sampling” as a
topic [2]. Much of this popularity owes to the fact that RDS is a cost effective and rapid means
of sampling hard to reach populations, which have received increased attention across the
social and health sciences.
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There are two key components to the RDS approach. The first concerns sampling and
recruitment, where respondents themselves are asked to find new survey participants through
their social network connections with members of the target population, which are tracked
with anonymous codes or coupons [3]. This is encouraged through a dual incentive structure
where recruiters are paid for participating in the study and for recruiting others. The second
component of RDS is inferential. Recruitment through social networks is complemented by a
set of estimation techniques. Many of the estimation techniques used in RDS derive from the
mathematics of random walks on graphs [4–6], because when RDS sampling and recruitment
conforms to theoretical assumptions it mimics a simple random walk on an undirected, con-
nected graph [7–9]. Under ideal conditions [10–12], RDS estimators of the population mean
are asymptotically unbiased and generalizable to the population of interest, even absent a con-
ventional sampling frame [7,13].

In this paper, we focus on an aspect of RDS inference that has received only limited atten-
tion in the literature to date: variance estimation. Most prior work on RDS inference focuses
on estimating population means. Some have noted that RDS assumes sampling properties that
are not followed in practice (e.g., non-branching recruitment, sampling with replacement,
accuracy of degree reporting, an undirected network), which can lead to substantial biases
[10,13–16]. Others have evaluated the precision of RDS mean estimates, or, more precisely, the
variance in the sampling distribution of mean estimates (“sampling variance” [17]). An impor-
tant recent finding is that RDS mean estimates may exhibit very high sampling variance com-
pared to simple random sampling (SRS), even when assumptions are met [18]. This is an
alarming finding for practitioners who typically collect only one sample, because their mean
estimates may be far from the population mean, even if the average value from repeated sam-
pling would converge to the population parameter.

Prior work has not thoroughly addressed the accuracy of RDS estimates of sampling vari-
ance, however. There are two commonly used estimators of sampling variance in RDS, known
as the Salganik bootstrap estimator (SBE) [19], which uses a bootstrapping procedure to obtain
variance estimates, and the Volz-Heckathorn estimator (VHE), which obtains variance esti-
mates algebraically [7]. These approaches are quite similar, as both attempt to account for sam-
ple-induced correlations between cases that are close together in the referral network [14].
Such correlations lead the sampling variance of RDS to be larger than what would be obtained
via SRS, yielding design effects greater than one, much in the same way that the design effects
of cluster-based sampling increase as a function of intra-cluster correlations between units
[20]. It is possible to obtain an exact variance estimator for random walks by incorporating
data on the entire population’s social network structure to account for these correlations [6];
we refer to this exact estimator as the Bassetti and Diaconis estimator. However, the RDS vari-
ance estimators lack data on the population network–they have only a sample–and as such
need to approximate it. With a poor approximation, however, these variance estimators will be
biased.

To date, despite attention to the general issue of sampling variance in RDS, the actual esti-
mators of sampling variance used by researchers have escaped evaluation. The most thorough
prior treatment was by Neely [14], who diagnosed fundamental similarities between the SBE
and VHE and limitations of both. Only two prior works have explicitly considered biased vari-
ance estimates in RDS [14,18]. Initial inquiries suggest that researchers should be wary when
reporting confidence intervals and hypothesis tests based on commonly used RDS variance
estimators. One study used simulated sampling and found that the SBE underestimates the
empirical sampling variance using a set of school-based social networks [18], and two addi-
tional studies report that known population means are frequently much larger than the upper
bounds of confidence intervals produced using the SBE [21,22]. However, the generality of
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these findings is uncertain. Whether they are limited to the cases studied or are endemic
remains an open question. In general, the sampling variance of random walks on graphs, and
by extension other chain referral methods like RDS, depends on the specific network structure
of the population under study which determines the closeness of nodes in the network, and,
hence their covariance [6], and researchers do not know how closely the VHE or SBE can
approximate it [14]. Because of this, it is important to assess why the RDS variance estimators
might not reflect the population sampling variance, and whether this is a general problem or
one that is primarily confined to specific types of “problem” networks.

In this paper, we diagnose when and why the current RDS variance estimators are biased
and assess the generality of that bias across different types of networks. We build on Neely’s
[14] observation that both the SBE and the VHE rely, at a fundamental level, on a First Order
Markov (FOM) assumption. This assumption holds that RDS recruitment can be modeled as a
FOM process on the nodal attribute of interest, where transitions between states depend solely
on the prior state and not a higher order sequence of prior states [23]. It is a convenient
assumption for estimating RDS sampling variance, because a single RDS sample consists of a
sequence of observed cases rather than the whole (population) network. Though the FOM
assumption allows the VHE and SBE to estimate sampling variance from RDS sample data,
researchers have not evaluated whether it is justifiable or assessed the potential consequences
of its violation.

We organize the remainder of the paper as follows. We first provide a technical discussion
of variance estimation in link tracing samples. We next extend this to RDS, wherein we explain
the FOM assumption. We then offer two intuitive and general examples which demonstrate
the VHE is biased when the FOM assumption is unwarranted. The first of these is a proof of
concept and demonstrates the limitations the FOM assumption places on network structure.
The second offers a simple model of correlated homophily which shows the VHE underesti-
mates sampling variance when the FOM assumption is incorrectly applied, a problem which is
likely to be quite general, at least whenever homophily based on an unaccounted for factor is
present. After this, we test five variables in 215 empirical social networks for violations of the
FOM assumption. We find that it is violated in every case for the full network data. However,
when simulated samples are drawn from these data, these samples pass the test for FOM in the
majority of cases. These results mean that, were a researcher in the field to have collected one
of these simulated samples, she would not know, on the basis of the data collected, whether the
RDS sampling variance estimators are likely to be biased. A fact which we confirm with our
next set of analyses wherein we test whether sample-level FOM violations indicate especially
poor estimates of the sampling variance (we find that they do not). This is a grave situation for
RDS, whose mean estimators are known to exhibit high-sampling variance, because it indicates
that researchers are unable to detect situations where mean estimates would have high variance
and produce correspondingly large confidence intervals and other indicators of statistical
uncertainty. Finally, we propose and test two modifications to the VHE that account for the
branching structure of RDS data and higher-order Markov transition matrices and afford
closer approximation of the actual RDS sampling process. These modifications improve sam-
pling variance estimation in RDS, but they do not offer a complete solution.

This paper contributes to the literature on drawing inferences from network sampling
designs by demonstrating that RDS sampling variance estimators are biased because their
assumptions are invalid for many social networks and not just “unusual” or “difficult” ones.
Our results also defy heuristic notions that situations where RDS estimates will exhibit high
sampling variance can be easily detected on the basis of observed homophily, perceptions of
network choke points, or sample level indicators of whether the network is FOM. They show
that homophily is not strongly correlated with biases in variance estimates, that even though
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the networks we examine do not have choke points they still have high sampling variance, and
that sample level indications that the network is not FOM give little indication of the extent of
bias in estimates of sampling variance. Taken together, we show that RDS researchers using
currently available estimators are unlikely to know–a priori or even after RDS data has been
collected–whether a given network would exhibit high sampling variance. Such uncertainty
calls for further development of procedures for accurately estimating RDS sampling variance.

Sampling Variance Estimation in RWS vs. SRS
We can calculate nodal sampling probabilities at any sample size under a simple Markovian
random walk model, which has the features of random referral, non-branching recruitment
and with-replacement sampling assumed by RDS under ideal conditions [7,24]. These can be
used to express the exact sampling variance of random walk sampling (RWS). In this section,
we contrast how this calculation differs from analogous estimation in simple random sampling
(SRS); we rely on a similar discussion in reference [14].

Let the matrix G represent a population’s underlying social network, which we assume com-
prises a single undirected connected component with at least one triangle. Ties between nodes i
and j are indicated in cells Gij and Gji with a value of 1, while unlinked nodes have values of 0
in Gij and Gji. A person’s degree measures how many ties they have; the degree of person i is

given by di ¼
PN

j¼1Gij, where N is the population size. If D is a square diagonal matrix with 1/di
along the diagonal, the Markov transition matrix is defined asM = DG, whereMij = Gij/di. If P0
is a vector containing probabilities of starting the random walk in each node of the network,
then P1 = P0M gives the probability of being in each node after one random walk step through
the network, and Ps = P0M

s gives probabilities of the random walk being at each node in the
network after s steps conditional on the starting probabilities [5].

It is convenient to express the transition matrixM in terms of its eigenvalue decomposition.
Eq (1) presentsM in terms of a set of eigenvalues and corresponding eigenvectors:

M ¼ PN
k¼1lkD

1=2vkv
0
kD

�1=2; ð1Þ

where λk is the kth orthonormal eigenvalue ofM ordered in terms of magnitude 1 . . . N, vk is
the kth eigenvector of a symmetrized version ofM, and D is the diagonal matrix of inverse
degrees described above (primes denote the transpose operator). The eigenvectors ofM will
not necessarily be orthonormal becauseM is not symmetric. However, as suggested by others
[4], consider the matrixM� = D−1/2MD1/2 where D is the diagonal matrix of inverse degrees
andM is the Markov transition matrix defined above. This matrix is symmetric, as each cell

M�
ij ¼ Gij

d1=2
i

d1=2
j

¼ M�
ji.M

� can be decomposed asM� = VLV0 where L is a diagonal matrix con-

sisting of the eigenvalues ofM� along the diagonal and zeros off diagonal, and V is a matrix of
M�’s eigenvectors.M andM� share the same eigenvalues.

A key feature of the eigenvalue decomposition ofM is that the largest eigenvalue λ1 = 1, and
its corresponding eigenvector ν1 has elements n1j ¼ ffiffiffiffipj

p , where πj = dj/2m is the steady state

probability of being in node i, andm = 1/2∑idi is the total number of edges in the network [4].
After expressingM in terms of the eigendecomposition in Eq (1), we can find the transition
matrix after s steps:

Ms ¼ PN
k¼1lkD

1=2vkv
0
kD

�1=2

h i s

¼ PN
k¼1l

s
kD

1=2vkv
0
kD

�1=2; ð2Þ

where νk is the kth (right) eigenvector ofM� = D−1/2MD1/2 (see note 3). Using Eq (2),
we see that lims!1M

s ¼ ls1D
1=2v1v

0
1D

�1=2 ¼ pj because the first eigenvector has elements
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v1i ¼ ffiffiffiffi
pi

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
di=2m

p
[5]. Importantly, πj is a probability vector where each element represents

the probability of being in node j in the steady state equilibrium. This is an important result
because it means that the probability vector Ps does not depend on P0 when s gets large. This is
the source of the argument that the particular seeds from which an RDS sample begins will not
bias estimates from large RDS samples, provided the sample size remains a small fraction of
the population [10].

Sampling variance in RWS differs from the sampling variance of SRS in two important
ways. The first owes to non-uniform sampling probabilities. The effects of this are most clearly
understood by considering the probability model underlying SRS in terms of the matrix algebra
introduced above. To get the sampling variance of SRS, we first arrange members of the popu-
lation into a vector Y with elements Y = {y1, . . ., yN}, and define Y� as its mean centered version

Y� ¼ y1 �
PN

i¼1
yi

N

� �
; ð. . .Þ; yN �

PN

i¼1
yi

N

� �� �
. We denote the sampling variance of mean esti-

mates of Y from simple random samples as s2bm , which can be estimated with the population

variance and sample size ascs2bm ¼ 1
S

PN
i¼1

Y�2
i

N
, where S indicates the sample size. If units are

selected with given probabilities (in the vector π, where ∑iπi = 1) instead of with equal probabil-
ities (1/N), then the sampling variance is defined as:

cs2bm ¼ 1

S

PN
i¼1piY

�2
i ¼

1

S
p1=2Y�ðY�p1=2Þ0: ð3Þ

(Note that we present the matrix portion of Eq (3) in this way–breaking out the squared devia-
tions into two pieces and taking the square roots of π –to simplify algebra presented later).

The most important thing to note about Eq (3) is that it uses population values of Y� and π,
despite being an estimate based on a sample. However, with a sample, researchers almost never
know these values, which must be approximated. Denote the elements selected in a sample of

size S as YSRS ¼ fySRS1 ; . . . ; ySRSS g and their sampling probabilities as pSRS
i ; assume

PS
i¼1p

SRS
i ¼ 1.

Define the sample mean centered Y values of the elements selected in the sample as

Y�SRS
i ¼ ySRS1 �

PS

i¼1
ySRS
1

S

� �
; ð. . .Þ; ySRSS �

PS

i¼1
ySRS
S

S

� �� �
. The estimated sampling variance on

the basis of the sample is then:

cs2bm ¼ 1

S� 1

PS
i¼1p

SRS
i ðY�SRS

i Þ2 ¼ 1

S� 1
pSRS1=2Y�SRSðY�SRSpSRS1=2Þ0 ð4Þ

Eq (4) resembles the presentation in Eq (3), except that it now has sampled squared deviations
Y�SRS (based on the sample estimate of the mean) and sampling probabilities πSRS (based on an
estimate of these probabilities derived from the sample). Due to the Law of Large Numbers, Eq
(4) provides an unbiased estimator of the sampling variance for SRSs where cases are selected

with probability π if S is large; in other wordscs2bm ffi s2bm . In the case of SRS, sampling probabili-

ties are uniform across units. In other sampling designs, however, π can take on other values,
and, indeed, in random walk samples pRWS

i ¼ di=2m as per above, where pRWS
i indicates random

walk sampling probabilities.
The estimation of sampling variance in link-tracing designs also differs from the analogous

estimator in SRS because if there is homophily–the tendency for individuals with similar attri-
butes to be friends with one another [25]–on the basis of some variable, then individuals in the
network who are connected will tend to have similar values of that variable. As a result, values
of the variable of interest from two cases in a random walk will be correlated if the number of
steps between them is small. This results in non-zero covariances between cases in link-tracing
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style samples, which must be accounted for when estimating sampling variance. It is important
to remember that homophily can exist on any sort of characteristic, observed (e.g., race) or
unobserved (e.g., propensity to engage in risky behavior; [26]).

The variance of a RWS on a network can be analytically derived from the eigenvalue decom-
position in Eqs (2) and (3) [6]. First, working from Eq (3), we can express the population vari-
ance ((πSRS)1/2Y�)((πSRS)1/2Y�)0 in terms of an orthonormal eigenvector basis {vk: K = 1 . . . N},PN

k¼1a
2
kvkn

0
k ¼

PN
k¼1a

2
k , where αk is a scalar constant that maps the kth eigenvector of the transi-

tion matrixM� onto π1/2Y�. Note that nkn
0
k ¼ 1 and njn

0
k6¼j ¼ 0 because they are orthonormal.

With this, we can denote the covariance between the ith and jth step of a random walk on G as:

covði; jÞRWS ¼
PK

k¼2a
2
kl

jj�ij
k ; ð5Þ

where αk is the mapping of the variable Y� onto the kth eigenvector of the transition matrix, λk
is the kth eigenvalue of the transition matrix, and |j − i| is the number of steps between the ith
and jth cases sampled by the random walk [6]. In general the covariance between two steps of a
random walk is affected by all three components: αk, λk, and |j − i|. Using Eq (5), we can write
an estimate of the sampling variance of a size S random walk sample as the average of all the
possible covariances among the population that the walk could take on G:

ds2bmRWS
¼ 1

S2ðS� 1Þ
PS

i¼1

PS
j¼1covði; jÞRWS

¼ 1

S2ðS� 1Þ
PS

i¼1

PS
j¼1

PK
k¼2a

2
kl

jj�ij
k

¼ cs2bm þ 1

S2ðS� 1Þ
PS

i¼1

PS
j¼1;i 6¼j

PK
k¼2a

2
kl

jj�ij
k : ð6Þ

When |j − i| = 0, this reduces to the estimated simple random sampling variance of Y,cs2bm . Eq
(6) highlights that the sampling variance of a RWS will be greater than the sampling variance
of a same sized SRS if the variable Y� maps onto the eigenvectors such that the contribution in
the sum from the positive eigenvalues outweighs that from the negative eigenvalues.

The other critical difference between Eqs (6) and (4) is that the latter for SRS operates on a
sample and estimates the sampling variance, while the former for RWS requires the underlying
social network and dependent variable data from the entire target population. A researcher in
the field, for example, would be unable to use Eq (6) without knowing the entire social network
connecting individuals in the target population, which will obviously not be the case with a hid-
den population. In the next section, we discuss the VHE, which is an approximation of the Bas-
setti and Diaconis estimator used by the RDS literature to estimate the sampling variance of a
respondent driven sample absent complete knowledge about the underlying social network.

Variance Estimation in RDS
In RDS the researcher does not have data on the network itself, only data on the sequence of
recruitments that occurred and the characteristics of those recruited, i.e., a sample. We present
the VHE in the same framework as Eqs (3)–(6) above. The key difference between the VHE
and the exact estimator of Bassetti and Diaconis discussed above is that the estimator devel-
oped by Volz and Heckathorn uses the patterning of recruitments and characteristics in the
sample in place of the entire population network. Given a RDS sample on the population con-
nected by the social network G, let YRDS 2 Y indicate the cases sampled from the Y values of
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the population. If Y is dichotomous, let the matrix C be a 2 × 2 matrix showing observed transi-
tion probabilities among values of YRDS between respondents and those they referred to the
study. If Qt is a 2 × 1 row vector indicating the probability that the Y value of the jth respondent
(or jth “step” in the interview) is 0 or 1, then we can estimate the Markov transition probability
between any two steps j and i of the survey using observed categories of the dependent variable
rather than nodes in the network as we did in Eq (6) above:

Qs ¼ QrC
jj�ij: ð7Þ

We can then estimate the covariance between the jth and ith steps by modifying Eq (5) as:

dcovðj; iÞRDS ¼ P2

k¼1ðaVHEk Þ2ðlVHEk Þjj�ij
; ð8Þ

where the superscript VHE on alpha and lambda indicate that we are using α (the dependent
variable Y projected into the orthonormal basis) and λ (the eigenvalues) from the eigendecom-
position of sample observed category transition probabilities from the 2 × 2 matrix C instead of
the population node transition probabilities from the N × NmatrixM�. This yields the VHE
as:

ds2bmRDS ¼ cs2bm þPS
i¼1

PS
j¼1;i 6¼jdcovði; jÞRDS

¼ 1

SðS� 1Þ
PS

i¼1p
RDS
i ðY�RDS

i Þ2 þ 1

S2ðS� 1Þ
PS

i¼1

PS
j¼1;i 6¼j

P2

k¼1ðaVHEk Þ2ðlVHEk Þji�jj
; ð9Þ

where pRDS
i is the RDS sampling probabilities. Connecting Eq (9) to the notation used in Volz

and Heckathorn [7], we can write

1
SðS�1Þ

PS
i¼1p

RDS
i ðY�RDS

i Þ2 þ 1
S

Ps

i
YRDS
i =dRDSiPs

i1=d
RDS
i

� �2

1� Sþ 1Ps

i Yi

PS
i¼1

PS
j¼1;i6¼jC

jj�ij
11

� �
, where Y�RDS

i is the

Y value of the ith case selected mean-centered via the Volz-Heckathorn “RDS-2”mean estima-

tor, pRDS
i is the corresponding case’s sampling probability, dRDS

i is its degree, and Cjj�ij
11 is the esti-

mated transition probability between Yj,j 6¼ i = 1|Yi = 1; this presentation can be found in

reference [14]. Thus, 1
SðS�1Þ

PS
i¼1p

RDS
i ðY�RDS

i Þ2 is analogous to the estimated sampling variance of

SRS (i.e.,cs2bm in Eq 6),
Ps

i
YRDS
i =dRDSiPs

i
1=dRDS

i

is the Volz-Heckathorn estimate of the sampling mean, and

1� Sþ 1Ps

i
Yi

PS
i¼1

PS
j¼1;i 6¼jC

jj�ij
11

� �
is the expected correlation between sampled units if the pro-

cess is FOM.
Using C instead ofM equates to making the FOM assumption because it assumes the likeli-

hood of transitioning between categories of the Y variable in question only depends on the cat-
egory of the currently sampled node, one of several assumptions in RDS variance estimators
described in detail in prior work [14]. Importantly, this is the same assumption made by the
other commonly used RDS variance estimator, the SBE [14], which we evaluate via simulation
later in the paper. The SBE is defined in the literature [14,19] as using a bootstrap sampling
procedure to simulate synthetic RDS chains from the FOM approximation embedded in the C
matrix. Using C to approximate the node-specific Markov transition probabilities is a simplifi-
cation, as pointed out by its developers [7]. It may be a reasonable one to make because theM
matrix is unknown; however, the validity of this assumption has rarely been examined or tested
in the RDS literature [14]. In the remainder of the paper, we explore the implications of the
FOM assumption in greater detail.
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What Happens to the VHE when FOM Is Violated?
In this section, we provide several examples of what happens to RDS variance estimation via
the VHE if the FOM assumption is violated.

Illustration 1: Intuition
We begin with an illustration that highlights how the relationship between sampling variance
and sample size differs between FOM and non-FOM networks when using random walk sam-
pling (RWS). This example is intentionally stylized so readers can see what is occurring and
intuit the effects of network structure on the VHE of RDS sampling variance. Fig 1 shows two
networks, A and B, where clear circles indicate nodes where Y = 1 and dark circles indicate
nodes where Y = 0. These networks share several features: they have the same size, density, and
degree distributions. In addition, Fig 1 was intentionally constructed so that both networks
would have identical transition probabilities between categories of Y. This is important as it
means that both networks have identical levels of dyadic homophily and that they share the C

transition matrix used by the VHE; that is, CA ¼ 18=27 9=27

9=27 18=27

" #
¼ CB. Because C is identi-

cal in these two networks, they will produce identical estimates of RDS sampling variance
based on the VHE as shown in Eq (9).

However, there is one key difference between these networks: Network A is FOM with
respect to Y while Network B is not. This difference can be described in terms of the condi-
tional probability of the current node’s Y value given the Y values of prior nodes visited [23]:

PrðYs ¼ 1 jYs�1;Ys�2; . . . ;Ys�1Þ ¼ PrðYs ¼ 1 jYs�1Þ: ð10Þ
Eq (10) holds for network A, and therefore network A is FOM, while for network B it does not
hold (see below for a test of whether a network is FOM). Does this difference in network

Fig 1. Networks with same degree distribution and proportion cross racial ties.

doi:10.1371/journal.pone.0145296.g001

RDS Variance Estimation Bias

PLOS ONE | DOI:10.1371/journal.pone.0145296 December 17, 2015 8 / 27



structure matter for RWS sampling variance? Given that the VHE estimates of sampling vari-
ance for these two networks will be identical (because they share the same Cmatrix), if there is
a large discrepancy between these networks in terms of the empirical RWS sampling variance
(i.e., population sampling variance), then it suggests potential problems with the VHE.

Fig 2 shows how large an impact network structure can have on the sampling variance of
random-walk based designs and that the VHE cannot detect these differences. Because we
know the complete network structure, we can calculate the exact sampling variance of RWS
estimates for these two networks using Eq (6). Alternatively, we can approximate it using the
variance in the distribution of proportion estimates produced by repeatedly sampling the net-
work with random walks starting from random points proportional to their stationary distribu-
tion probabilities a large number of times; these approaches yield indistinguishable results.

The striking result in Fig 2 is that while the sampling variance in Network A (the FOM net-
work) approximates to the sampling variance of SRS as the sample size increases, the sampling
variance in Network B (the non-FOM network) is much higher at every sample size. More
importantly, while estimates from the VHE accurately describe the sampling variance of net-
work A, they fail to do so for network B (the hollow circles on the graph show the VHE esti-
mates run on both networks A and B). In fact, the VHE estimates for network B are identical to
those obtained for network A, which makes sense as both networks have the same first-order
transition probabilities. In terms of design effects (the ratio of RWS sampling variance to SRS
sampling variance, where 1 indicates they are identical), the design effect from sampling
S = 5,000 cases from Network A is 1.9997 while the same sample size in Network B yields a
design effect of 29.2601 (the magnitude of this difference is roughly constant across sample

Fig 2. Sampling variances on Networks A and B from Fig 1, by method and sample size. Note: Like SRS, VHE produces identical estimates on
networks A and B. For both networks, these estimates are identical to the population RWS sampling variance on A because network A is FOM.

doi:10.1371/journal.pone.0145296.g002
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sizes). In substantive terms, we can say that mean estimates based on RWS samples with 5,000
cases from Network B will be more almost 15 times more variable than the same estimates
from Network A, yet, even with perfect information, the VHE will estimate that they have iden-
tical sampling variance. This finding is problematic for RDS because it indicates that if the
FOM assumption is violated, researchers may have no idea whether their estimates of sampling
variance–and, hence, their confidence intervals and hypothesis tests–are accurate or not.

Illustration 2: Generality
Though Figs 1 and 2 indicate that the VHE may produce estimates that are quite far from the
population sampling variance of a network if the network is not FOM, one may wonder
whether this result is produced by some feature of the two networks we considered. For
instance, these are low degree networks and Network B has “choke points” (i.e., few paths
between otherwise well connected clusters; see below for a more formal definition), which
makes it the type of network that RDS heuristics suggest should be avoided (though, it is an
open question whether a researcher or respondents themselves will know that the network of a
hidden population has choke points in it and thus should not be surveyed with RDS). Because
of these issues, we now turn to a more general illustration showing that the VHE will be down-
wardly biased–i.e., underestimate the population sampling variance–in all cases where there is
homophily on an unobserved variable that is correlated with the Y variable of interest.

Imagine a population composed of two groups categorized by a dichotomous Y variable
which are connected via a social network but which exhibit homophily on Y. We wish to take a
RWS or RDS sample to estimate the population proportion of Y = 1. In addition, imagine there
is a variable, Z,–unobserved by the researcher–which organizes a portion of the social ties in
this network. As has been well documented, homophily exists on a wide range of dimensions,
some of which may not be observed or anticipated by researchers or even research participants
[25,26]. In this case, Z indicates a propensity for forming cross-group ties: individuals for
whom Z = 0 only have ties with those within their Y group, while those for whom Z = 1 have
ties across Y groups. For instance, if Y indicated a dichotomous measure of race, then Zmight
indicate an individual preference for interracial friends. Other examples that may generate a
lack of conditional first-order independence are given on page 75 of reference [14].

For the sake of simplicity, assume an equal number of people of each Y value in each of the
Z groups, and that the total degree of each Y|Z combination is the same. The number of friends
among and between the different Y|Z groups is depicted in Table 1. For example, there are H
friendships between people with different values of Y, while friendships among those with
equal Y values are marked in Table 1 as either D, E, or F, depending on the shared Y value and

Table 1. Algebraic representations of friendships between Y|Z groupings.

Alter values

Y = 0 Y = 0 Y = 1 Y = 1

Ego Values Z = 0 Z = 1 Z = 1 Z = 0

Y = 0 Z = 0 D E 01 02

Y = 0 Z = 1 E F H 03

Y = 1 Z = 1 01 H F E

Y = 1 Z = 0 02 03 E D

Notes: Superscripts indicate no friendships in this cell because 1 Zego = 0 and Yego 6¼ Yalter;
2 Zego = 0 =

Zalter and Yego 6¼ Yalter;
3 Zalter = 0 and Yego 6¼ Yalter.

doi:10.1371/journal.pone.0145296.t001
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the whether the ego and alter share Z values and which Z value they have. Because the total
degree is the same for each Y|Z combination we have (D + E) = (E + F +H),; D = (F +H).

The transition matrixM can be written asM ¼

1� a a 0 0

a 1� a� b b 0

0 b 1� a� b a

0 0 a 1� b

2666664

3777775,
where a ¼ F

EþFþH
and b ¼ H

EþFþH
.M represents a situation where there is heterogeneity in the

level of dyadic homophily on Y. Individuals with Z = 1 form cross Y friendships, while those
with Z = 0 do not. Here Z can represent anything that causes heterogeneity in mixing between
Ys. Note that both of the assumptions underlying this example can be relaxed without affecting
the conclusions derived here. For example, we can allow for different numbers of people in
each of the Y|Z combinations and we can allow the degrees to vary. We have tested numerical
examples under a variety of conditions (available upon request). The fundamental conclusion
is the same, namely that homophily on an unobserved variable that is correlated with the
dependent variable will lead to a biased VHE.

In contrast to the population transition matrixM, the VHE estimates sampling variance
using the sample estimated 2 × 2 transition matrix C as a function of the friendship propensi-

ties and the size of each group, C ¼ 1� i i

i 1� i

" #
, where i ¼ cross Y f riends

total f riends
¼ H

2ðEþFÞ ¼ b
2
. A criti-

cal result is that C andM have different eigenvalues. Because it is dimension two, C has only

two which are
1

1� b

" #
when ordered by size. By contrast,M has four eigenvalues which are

1

1� b� aþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p

1� 2a

1� b� a� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p

266664
377775 when ordered by size. Recalling Eqs (5) and (6), for the VHE to

accurately estimate the sampling variance of Y via a random walk based approach like RDS, the
second largest eigenvalues of these C andM would need to be equivalent. However, they are
not, which means that when a correlated unobserved variable structures the homophily on Y,
the VHE will not accurately estimate sampling variance. In fact, we can make a stronger claim

in this case. Because ð1� b� aþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p Þ > ð1� bÞ for all nonzero as and bs, we can say
that the VHE will always underestimate the true sampling variance with this kind of network
structure. This is a general result that compliments the intuition provided in Figs 1 and 2.
There we showed that a random walk on a FOM network will mix more slowly than a ran-
dom walk on a network with a higher order Markovian structure, but that the VHE will not
be able to detect these differences. Slower mixing results in higher covariances between any
two steps of a RWS or RDS sample drawn from that network, and, thus, higher sampling
variance of mean estimates and larger design effects. However, the inability of the VHE to
detect these differences–its biasedness–means that researchers will understate their
uncertainty.

Illustration 3: Computational Examples
We now provide two concrete examples based on this illustration to demonstrate the effect of
homophily on correlated unobserved variables.
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For the first example, let E = F =H = 10,M ¼

:667 :333 0 0

:333 :334 :333 0

0 :333 :334 :333

0 0 :333 :667

266664
377775 and

C ¼ :833 :167

:167 :833

" #
. In both transition matrices, the observed homophily between Y groups is

identical; that is, 16.7% of friendship ties are between those with Y = 1 and those with Y = 0.
However, there is heterogeneity in the mixing between Y groups defined by the unobserved Z
variable. Individuals in the first and fourth row ofM have no cross Ymixing, while individuals
in rows two and three have twice the average Ymixing. In this example, the second largest
eigenvectors are .804 and .667 forM and C, respectively, indicating that a random walk onM
will reach equilibrium slower than a random walk on C. The standard deviation of a sample of
100 cases drawn from a random walk is 0.138 (design effect = 7.64) forM and 0.110 (design
effect = 4.88) for C. In other words, using the dyadic transition matrix C in place ofM –i.e.,
using the VHE–results in a substantial underestimate of the true sampling variance.

As a second example, let D = F = 100 and E = 10,M ¼

:952 :048 0 0

:048 :476 :476 0

0 :476 :476 :048

0 0 :048 :952

266664
377775 and

C ¼ :762 :238

:238 :762

" #
. The second largest eigenvectors are .954 and .524 forM and C, respec-

tively. The standard deviation of a 100-case sample is 0.219 (design effect = 19.12) forM and
0.0887 (design effect = 3.15) for C. In this second example, the observed homophily across Y
groups is lower than what was shown in the first example; here, 23.8% of friendships are cross
group. However, Zmore fully structures the interaction of those within Y groups–i.e., heteroge-
neity in cross Ymixing–and this results in a dramatically higher difference in design effects for
M and C (19.12 compared to 3.15, i.e., over 5 times larger).

Summary of VHE Bias
The model of homophily on unobserved variables presented in this section is purposively sim-
ple in order to make analytical results tractable. Nonetheless, the basic intuition should be
clear: if there is clustering within categories of the observed dependent variables—such as is
evident in matrixM of the second example above—then the VHE, which relies upon the
observed transition matrix between categories of the variable of interest, C, will exhibit down-
ward bias. The variance of a random walk is not just a function of dyadic homophily between
different categories of the dependent variable, as bothM and C have the same level of dyadic
homophily but different design effects. In other words, it is network structure—not homophily
on the observed, focal variable per se—that affects design effects and biases RDS sampling vari-
ance estimators downward [14]. Moreover, the examples presented here likely underestimate
the role played by network structure as they focus on a simple set of networks and a limited
4 × 4 category transition matrix rather than a node level transition matrix that would be found
in a real network. Indeed, the sampling variance of our computational examples could be cor-
rectly estimated by making a Second Order Markov assumption, but real world networks are
unlikely to conform to that assumption as well. Below we test a modification to the VHE based
on a second order assumption and show that while it frequently outperforms the classic VHE,
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it still does a poor job capturing the sampling variance of simulated RDS in empirical
networks.

The fundamental point of this section was to show that if the FOM assumption is violated,
as it is by the case of homophily on an unobserved variable, then the accuracy of the VHE
derived estimates of RDS sampling variance are indeterminate, and will be downwardly biased
under rather general conditions. As illustrated in the these examples, unbiased RDS variance
estimators are predicated on the network being well described by homophily on a single
observed category, and they are of little use when there is heterogeneity in the mixing among
members of the groups defined by those categories. We now consider empirical data to evaluate
the generality of these problems.

HowOften Is FOM Violated in Empirical Networks?
In this section, we ask whether researchers should generally expect networks to be well
described by homophily on a single dimension, or, more specifically, how often they should
expect the FOM assumption to be violated. The RDS literature has not explored this idea since
its foundation [3]. We test the FOM assumption in 215 heterogeneous empirical networks
drawn from two separate datasets. We then outline the issues faced by the two most used RDS
variance estimators–the VHE and the SBE–when they are applied to networks that violate
FOM, as we find that most empirical networks do.

Data, Methods, and Measures
Much prior methodological work in RDS has used simulated data [7,10,27]; however, it is chal-
lenging to accurately simulate all structural features found in empirical networks [28,29].
Because of this, we use data from the National Longitudinal Survey of Adolescent Health (Add
Health) [30] and the Facebook 100 datasets [31–33]. These networks have been used in simula-
tion based studies of network sampling performance [11,18]. In all networks, we restrict our
analysis to individuals in the largest weakly connected components, and, in the Add Health
data, we ignore the directionality of ties and treat all nominations as reciprocal. We use 115
networks from Add Health and 100 from the Facebook data set for a total of 215 empirical net-
works. In the Add Health networks, we test whether the FOM assumption holds for the follow-
ing three dichotomous variables: race (white = 1), gender (female = 1), and sports participation
(yes = 1). We look at the validity of the FOM assumption in two variables in the Facebook data:
gender (female = 1), and class year (freshmen = 1).

These data are faithful to real world network patterns [34,35]. More importantly, they con-
tain a diversity of network structures, which makes them excellent candidates for assessing the
credibility of the FOM assumption in empirical networks and allows us to overcome criticisms
that have plagued prior simulation work in RDS, namely that the empirical networks studied
were too sparse, small, or contained “choke points”. While these properties may characterize
some of the Add Health networks, the Facebook networks we examine are not so limited. The
best measure of choke points in a network is the average number of node independent paths.
In any connected component, a set of nodes exists that, if removed, would disconnect that
component. For a chain referral strategy to pass from one side of this nodal cutset to the other,
it must pass through a node in this set. Menger’s theorem [36] proves that the number of node
independent paths in a graph is equal to the size of the smallest nodal cutset, which has been
used to define the structural cohesion of a network [37]. We measured the numbers of node
independent paths in the symmetrized largest connected components of the Add Health and
Facebook networks used in this paper. Owing to the size of these networks and the computa-
tional complexity of calculating the number of node independent paths amongst all dyads in a
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network, we estimate the number of node independent paths in each network based on random
samples of 10,000 dyads using maximum flow algorithms on the complete network. This pro-
vides asymptotically unbiased estimates. The Facebook networks studied had an average num-
ber of node independent paths of 30.633 (with a range of 11.970 to 62.225), while the numbers
in Add Health were smaller on average (mean of 4.884 with a range of 1.042 to 7.138). These
macro-structural features, in addition to the high average degree (FB = 51.640, AH = 6.971),
suggest that we study a substantial range of networks that are not limited by the heuristic
notion of choke points. Other relevant statistics are as follows. The largest connected compo-
nents in the Facebook networks ranged in size from 388–16,611 with a mean of 4,701. In Add
Health, these numbers were 52–1,610 with a mean of 488. The proportions female in the Face-
book networks ranged from 0.24–1.00 with a mean of 0.54, while the proportions freshmen in
these networks ranged from 0.14–0.46 with a mean of 0.28. In Add Health, the proportions
female ranged from 0.01–0.69 with a mean of 0.54, while the proportions white ranged from
0.01–0.95 with a mean of 0.58, and the proportions participating in sports ranged from 0.28–
0.95 with a mean of 0.56. In sum, the Facebook networks we examine are also quite large,
orders of magnitude larger than the Add Health networks.

The definition of a FOM process is as follows (see Eq 10 above): Pr(Ys = 1 | Ys−1, Ys−2, . . .,
Ys−1) = Pr(Ys = 1 | Ys−1) [23]. Given this, a sufficient condition that satisfies that the network
is not FOM is:

PrðYs ¼ 1 jYs�1;Ys�2Þ 6¼ PrðYs ¼ 1 jYs�1Þ: ð11Þ

By sufficient condition, we mean that if the preceding equation is true, then the network is not
FOM. However, note that because this is only a sufficient condition, a failure to satisfy the pre-
ceding equation does not guarantee that the network is FOM. This makes it a conservative test:
in cases where Eq 11 does not hold (i.e., the quantities are equal), the network may still not be
FOM.

We test whether Eq 11 holds by estimating the following ordinary least squares regression
with robust standard errors for each of the variables of interest in each of the networks from
the Add Health and Facebook data sets:

PrðYsÞ ¼ b0 þ b1ðYs�1Þ þ b2ðYs�2Þ þ b3ðYs�1 � Ys�2Þ þ d; ð12Þ

where Pr(Ys) is the proportion of an ego’s alter’s alters with Y = 1, while (Ys−2) and (Ys−1) are
dichotomous indicators of whether ego’s or alter’s Y = 1, respectively. Note that we include ego
himself as one of ego’s alter’s alters, which suffices to retain ego’s alters who lack alters (i.e.,
pendants) in the sample, and which makes sense for the with-replacement process we study
here. The resulting regression model thus contains one observation for each edge in the net-
work (or referral in the sample, depending on whether the analysis is conducted at the popula-
tion or sample level, see below). Though each ego will have several alters in the data, and we
make use of even more alters’ alters in our definition of the dependent variable, the use of
robust standard errors reduces concerns about clustering of the data. The sufficient condition
shown in Eq 11 is true if the estimated coefficients for β2 and β3 are not jointly equal to 0,
which we evaluate with the F-test of joint significance. Our null hypothesis is that the sufficient
condition shown in Eq 11 is untrue–i.e., that Pr(Ys = 1 | Ys−1, Ys−2) = Pr(Ys = 1 | Ys−1). While
this does not guarantee that the networks are FOM, in cases where this test indicates we should
reject the null hypothesis it means that the network is unlikely to be FOM because the current
state depends on the prior state as well as how that state was reached.

In addition to testing the FOM assumption in the complete networks, we also test it in RDS
samples of size 200 on those networks conducted with replacement from a single seed drawn at
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random from the equilibrium distribution, because this is the type of data that a researcher
who had collected a single sample might possess. We allow branching to occur where the prob-
abilities of referring 0, 1, 2, or 3 new respondents in RDS are 1/3, 1/6, 1/6, and 1/3, respectively.
Because this is the approach used in an influential past study [18], we focus on these results.
We also tested variants where we allow branching with the same probabilities as above, but the
samples are conducted without replacement, and where we do not allow branching (both with
and without replacement). We do not present these results but they did not alter our conclu-
sions of substantial biases in the VHE and SBE. We conduct 500 simulated RDS samples in
each of the 215 Add Health and Facebook schools, storing the relevant variables of interest.

After testing for FOM violations in these sampled network data, we then summarize some
of the problems that the VHE and SBE estimators exhibit when applied to empirical network
data. In each sample, we calculate the predicted proportion of Y via the Volz and Heckathorn

(i.e., the “RDS2 estimator”) estimator of the mean bmRDS ¼
Ps

j
Yj=djPs

j
1=dj

, where d indicates degree

[14,38]. We define the “population sampling variance” as the variance of the distribution of
mean estimates obtained over R = 500 simulated samples in that network (which is approxi-
mately equal to what would be obtained via Eq 6 but is computationally feasible for larger net-
works); in other words,

population sampling variance ¼
PR

r¼1ðbmRDS
r � mÞ2
R

¼ s2bmRDS ; ð13Þ

where r indexes the simulated replication of the sample (i.e., we simulate 500 replication sam-
ples in each empirical network). Defined in this way, the population sampling variance is the
variance of the distribution of mean estimates across repeated samples. We use the population
sampling variance to define the bias for the VHE and the other popular means of estimating
sampling variance in RDS, the Salganik Bootstrap Estimator (SBE), which is

bias ¼
PR

r¼1ð ds2bmRDS � s2bmRDSÞ
R

ð14Þ

where a value of zero indicates that the estimator is unbiased for that variable in that network.
To gauge the potential influence of outlier RDS variance estimates on the relationship between
the estimated sampling variance and the population sampling variance, we tested using the
median estimate across the 500 simulations rather than the mean (not shown). This led to
more severe biases and other problems than those reported in the manuscript.The next quan-
tity of interest is the ratio of the estimated sampling variance to the population sampling vari-
ance, which helps quantify how closely the VHE and SBE approximates the population
sampling variance; thus, we also examine:

ratio ¼
PR

r¼1
ds2bmRDS =R

s2bmRDS ð15Þ

in each network. Finally, though it may be biased, there is the possibility that the VHE esti-
mates of sampling variance are highly correlated with the population sampling variance and
thus researchers could simply inflate the variance estimator by some factor. To examine this
possibility, we consider the correlation of the mean variance estimates in each network with
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the population sampling variance for each variable:

correlation ¼ corððPR
r¼1

ds2bmRDS=RÞ; s2bmRDSÞ: ð16Þ

Finally, we note that the results about whether the network or sample is FOM pertain to
whether or not researchers should expect that RDS estimators of sampling variance are under-
estimates (network level analysis) and can detect those cases (sample level analysis), as was
demonstrated in the prior section. However, a different question is whether researchers can
predict how large the underestimation bias in a given sample is likely to be rather than whether
or not the estimators are biased toward underestimation. Building from the literature reviewed
in section 2, we know that the degree of bias is determined by higher order features of a net-
work that is not FOM.

Echoing a general sentiment in the literature, it may be that homophily on the focal variable
explains the degree of bias in cases where FOM is violated, so, to test this, we examine whether
sample level homophily can predict levels of bias in cases where FOM is violated at the network
level (we thank a reviewer for this suggestion). To do this, we compute the sample level homo-
phily defined as the ratio of observed cross-group ties to expected cross-group ties in a given
sample. We then regress bias on this measure of homophily to determine whether there is a
meaningful and consistent relationship between bias and the homophily of a sample, which, if
found, would indicate that the homophily observed in a sample can alert researchers to cases
where bias is especially problematic. To facilitate interpretation, we focus on XY standardized
regression models, where both the independent and dependent variables are standardized to
have a mean of 0 and a standard deviation of 1. In XY standardized regression, the interpreta-
tion of coefficients is natural: a one standard deviation change in X (sample level homophily in

the case we test) leads to a bb standard deviation change in Y (sample level bias in the estimate
of sampling variance in this case). We obtained substantively equivalent results in models run
without XY standardization, but we focus on the XY standardized results because of their sim-
pler interpretation in this case. To determine whether results owe to features of the networks or
estimators we study or are general, we obtain parameters from regression models with and
without absorbing indicators (i.e., fixed effects) for the network studied and for both the VHE
and SBE estimators.

Results
The results of our tests of the FOM assumption on the complete networks are shown in panel
A of Table 2, while results of the FOM test on individual samples are shown in panel B. Columns
1–3 show the proportion of FOM tests where we reject the null hypothesis that the network may
be FOM under standard social science thresholds based on the F-test of joint significance
(p<0.05, p<0.01, and p<0.001). There are two key results. The first is that, for the complete net-
works (panel A), we reject the null hypothesis that the variable of interest in each network is
FOM almost every single time. The one exception is a Facebook school where we could not calcu-
late the FOM test for gender because the school is not co-educational. In other words, we find no
cases where the fundamental premise of RDS variance estimation is a justifiable assumption.
Worse still, the second key result in this table shows that, for the sample level tests (panel B), a
near majority of the samples indicate the opposite, that the network may be FOM. This disjunc-
ture indicates that it would be difficult for a researcher to know a posteriori whether the current
methods of RDS variance estimation can be applied aptly. Though a given sample may seem
appropriately characterized as FOM [3], the network from which it was drawn is highly unlikely
to be. We return later to this disjuncture and its consequences for RDS variance estimation.
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We next consider how problematic RDS variance estimation is when it is applied to empiri-
cal data whose complete network structure violates the FOM assumption. We look at the two
most commonly used RDS variance estimators. Table 3 separate these estimators into two pan-
els, with panel A showing the VHE and panel B showing the SBE. The first column shows the
mean of the bias across the networks for each dataset and variable (Eq 14). The key point to
notice about this column is that both the VHE and the SBE estimates are negatively biased in
all cases. The second column shows the mean of the ratios of average VHE and SBE estimates
of sampling variance in a given dataset and school to the population sampling variance (Eq
15). Most of the variables understate the true variance substantially–in the Add Health schools,
the VHE estimated sampling variance understates the empirical sampling variance of RDS by
about 85%–but this number ranges from as low as 55% to as high as 90% in the Facebook data-
sets. The SBE performs better here on average, with ratios of 0.2862 to 0.4421 in the Add
Health schools and 0.1494 and 0.6544 in the Facebook ones. Finally, the third column of
Table 3 shows the correlations (Eq 16), which highlight that there are substantial deviations
from direct positive correlation and that the relationships between the average RDS estimates
and the population values differ substantially by variable and dataset. We argue that this varia-
tion in correlations implies that researchers cannot know a priori whether the VHE or SBE esti-
mates of sampling variance are useful.

The results in Table 3 are a conservative estimate of the problems with variance estimation
in RDS. This is because they average, respectively, all VHE and SBE estimates across 500 RDS
samples conducted in each school, which may paint an unrealistic picture of the practical utility
of these estimators. Because researchers typically only collect one sample, we now turn to Fig 3

Table 2. Descriptive statistics of First Order Markov (FOM) tests on Add Health and Facebook Net-
works, by analysis level and variable.

(1) (2) (3)

Pr. p<0.05 Pr. p<0.01 Pr. p<0.001

Panel A) Complete network FOM tests

Add Health Data Set

Female 1 1 1

White 1 1 1

Sports 1 1 1

Facebook Data Set

Female 0.99 1 1

Freshmen 1 1 1

Panel B) Sample level FOM tests

Add Health Data Set

Female 0.567 0.367 0.182

White 0.556 0.409 0.245

Sports 0.640 0.450 0.248

Facebook Data Set

Female 0.212 0.088 0.023

Freshmen 0.300 0.182 0.084

Note: Pr. p<0.05, Pr. p<0.01, and Pr. p<0.001 indicate the proportion of networks in which the FOM test

indicated we reject the null hypothesis that the network may be FOM. Note that in cases where the FOM

test could not be calculated–e.g., non-coeducational schools or samples of only one gender–we

considered this as indicating the network or sample may be FOM.

doi:10.1371/journal.pone.0145296.t002
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Table 3. Measures of the relationship between VHE and SBE estimates of sampling variance and the population sampling variance.

(1) (2) (3)

Data Set and Variable Bias Ratio Correlation

Panel A) VHE Results

Add Health Female -0.0092 0.1631 0.6375

Add Health White -0.0235 0.1498 0.9183

Add Health Sports -0.0111 0.1416 0.3333

Facebook Freshman -0.0496 0.0999 0.7851

Facebook Gender -0.0025 0.4981 0.4151

Panel B) SBE Results

Add Health Female -0.0062 0.4421 0.6714

Add Health White -0.0215 0.2862 0.8380

Add Health Sports -0.0084 0.3868 0.4425

Facebook Freshman -0.0474 0.1494 0.7375

Facebook Gender -0.0012 0.6544 0.7380

Note: Bias shows the mean of the average deviations between the sample estimates and the population parameters across replications and networks.

Ratio shows the average ratio of estimated sampling variance to the population parameter. Correlation shows the correlation between the average of the

sample estimates of sampling variance in each network and that network’s population sampling variance.

doi:10.1371/journal.pone.0145296.t003

Fig 3. Distribution across networks of coverage rates based on the VHE and SBE estimators, by variable and data set. Note: The expected coverage
rate across networks for SRS is .95 (thick dashed line). AH indicates Add Health data set; FB indicates Facebook 100 data set. VHE indicates the Volz-
Heckathorn Estimator, and SBE indicates the Salganik Bootstrap Estimator.

doi:10.1371/journal.pone.0145296.g003
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which shows box plots of the distribution across networks of the coverage rates by dataset, vari-
able, and estimator (VHE vs. SBE). A given network’s coverage rate is defined as the proportion

of cases where the population mean μ is in the range bmRDS � 1:96

ffiffiffiffiffiffiffiffiffiffids2bmRDS
r

, i.e., within the esti-

mated 95% confidence interval. In SRS, the coverage rate is expected to be 0.95, but, as Fig 3
shows, the coverage rate for the VHE is substantially lower, and we see substantial variability in
the distributions by data set and variable. For example, the “FB Freshman” variable shows that,
on average, the 95% confidence interval for the VHE estimates of the mean proportion of fresh-
men contained the true mean in only 36.5% of the networks under study. This is substantial
failure of confidence intervals for RDS. Beyond the poor coverage seen across all of the vari-
ables, a secondary point conveyed by Fig 3 is that the SBE generally outperforms the VHE.

With Table 4, we return to the disjuncture between population-level failure of the FOM test
and sample-level passing of it that we noted in our discussion of Table 2. A natural question to
ask is whether–a posteriori–a researcher can test her sample for FOM violations and discern
whether the RDS variance estimators are likely to be biased. We split Table 4 into two panels:
panel A shows the cases where the samples in Table 2 were found to not be FOM, while panel
B shows those which may be FOM. The columns show the data set and variable combinations.
Within each panel, we present the most relevant statistics averaged samples within that panel:
the empirical design effect calculated from the population sampling variance in Eq 13 (“Mean
empirical DE”), the VHE and SBE estimated design effects (“Mean VHE/SBE estimated DE”),
and the coverage rates from both estimators (“Mean VHE/SBE 95% coverage rate”). The
empirical design effects are generally smaller in the samples that may not be FOM; however,
this is not true for the FB Freshman variable. However, the estimated DEs, using either the
VHE or the SBE, do not appear appreciably closer to the population values (the empirical
DEs). Neither do the coverage rates. Taken as a whole, these results suggest limited potential
for sample-level FOM tests to be used as a diagnostic tool. Though researchers do not typically
test for FOM violations, and while other, potentially yet-to-be-developed tests may be able to

Table 4. Comparison of Design Effects, Estimated Design Effects, and Coverage Rates across samples that are not FOM or may be FOM, by data
set and variable.

Data Set and Variable

AH Female AH White AH Sports FB Female FB Freshmen

Panel A) Results on samples that are not FOM

Number of samples not FOM 24,877 25,539 20,692 39,395 34,983

Mean empirical DE 7.906 24.697 9.921 2.856 60.260

Mean VHE estimated DE 1.302 3.590 1.816 1.450 11.035

Mean SBE estimated DE 3.568 4.364 3.488 1.821 10.454

Mean VHE 95% coverage rate 0.599 0.424 0.509 0.699 0.349

Mean SBE 95% coverage rate 0.803 0.426 0.715 0.863 0.398

Panel B) Results on samples that may be FOM

Number of samples may be FOM 32,623 31,961 36,808 10,605 15,017

Mean empirical DE 9.386 28.185 11.441 3.045 51.756

Mean VHE estimated DE 1.392 1.908 1.323 0.769 4.836

Mean SBE estimated DE 4.322 4.869 3.935 1.929 8.568

Mean VHE 95% coverage rate 0.555 0.455 0.508 0.667 0.405

Mean SBE 95% coverage rate 0.785 0.588 0.734 0.861 0.505

Notes: There are 57,500 samples for the 115 Add Health schools per variable; there are 50,000 samples for the 100 Facebook schools per variable. All

statistics are averaged across samples in each panel.

doi:10.1371/journal.pone.0145296.t004
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detect FOM violations in RDS sampled data, the most natural means of testing for FOM viola-
tions is unable to detect them. The development of methods to detect such violations thus rep-
resents a key area for potential research on RDS variance estimation.

Lastly, we estimated the parameters of XY standardized regression models for the relation-
ship between sample level bias in the VHE and SBE estimators of RDS sampling variance and
sample level homophily. These results are shown in Table 5. The key points highlighted in this
table are that the relationship between sample level homophily and bias a) are in different
directions across variables, b) are generally of low magnitude and often not distinguishable
from 0 despite the large sample sizes, and c) differ between the VHE and SBE estimators. The
conclusion to be drawn from these tests is that sample level homophily cannot be used to char-
acterize the degree of bias in RDS estimators of sampling variance. These results show that
another feature of networks that is commonly assumed to explain biases in RDS sampling vari-
ance estimators, level of homophily, is not a reliable indicator of whether the results of a single
sample are biased.

In this section we found that the FOM assumption is routinely violated in empirical net-
works, but that researchers will not know this from the results of a single sample. Building on

Table 5. XY Standardized Regressions of Sample-Level Biases in Variance Estimates using VHE and SBE Estimators on Sample Level Homophily
across the 5 Data Set/Variable Combinations Analyzed.

VHE VHE w/fixed network effects SBE SBE w/fixed network effects

Regression of variance estimate bias (standardized) for %:

1) female variable in Add Healtha

Sample homophily, standardized 0.228*** -0.095*** 0.230*** -0.006**

[0.00] [0.00] [0.00] [0.00]

R-squared 0.052 0.998 0.053 0.776

2) non-white in Add Healtha

Sample homophily, standardized 0.448*** -0.043*** 0.473*** 0.000

[0.00] [0.00] [0.00] [0.00]

R-squared 0.201 0.997 0.224 0.982

3) sports participants in Add Healtha

Sample homophily, standardized 0.143*** -0.065*** 0.218*** -0.002

[0.00] [0.00] [0.00] [0.00]

R-squared 0.020 0.996 0.047 0.927

4) female in Facebookb

Sample homophily, standardized -0.324*** -0.229*** -0.055*** -0.002

[0.00] [0.00] [0.00] [0.01]

R-squared 0.105 0.760 0.003 0.332

5) freshmen in Facebookb

Sample homophily, standardized -0.023*** -0.136*** 0.098*** 0.001

[0.00] [0.00] [0.00] [0.00]

R-squared 0.001 0.936 0.010 0.902

Notes: Standard errors in brackets. All regressions are based on XY standardized coefficients within estimator and data set/variable so all variables have

a mean of 0 and a standard deviation of 1; models with fixed network effects mean dummy variables for each data set and network were absorbed by the

model thereby removing network level differences. Constants not shown but all approximately 0 as would be expected in a XY standardized regression.

*** p<0.001

** p<0.01.
a All models using Add Health data contain 57,500 simulated samples.
b All models using Facebook data contain 49,000 simulated samples.

doi:10.1371/journal.pone.0145296.t005
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arguments introduced in Section 2, this finding indicates that the RDS variance estimators in
common use can be expected to substantially underestimate the population sampling variance
that RDS is likely to exhibit. We also examined a related question that helps contextualize the
importance of our FOM results: how much do these violations of matter? More specifically, we
explored the extent to which the current estimators for RDS sampling variance, the VHE and
the SBE, are likely to underestimate the true sampling variance in these empirical networks.
Our findings in this regard were surprising in two ways. First, Table 3 showed substantial
downward biases in the VHE and SBE estimators of RDS sampling variance. It also showed lit-
tle consistency across variables or data sets in the magnitude of this bias, or other properties of
the relationship between the estimated values and the population parameter. This is important
because it highlights that the current techniques of RDS variance estimation are wildly inaccu-
rate, which makes sense because they are premised on a faulty assumption. In other words, this
section has provided suggestive evidence that the core assumption underpinning variance esti-
mation in RDS (the FOM assumption) is violated in a large proportion of empirical cases, that
RDS variance estimators are biased in such circumstances, and that researchers will have diffi-
culty knowing when this will be the case.

Improvements to the VHE
In this section, we test the performance of two improvements to the VHE. An easily diagnos-
able flaw in the VHE is that it fails to account for the branching nature of RDS data. As shown
in Eqs (5) and (6) above, the VHE uses the distance between sampled individuals i and j, which
in a random walk is equal to the number of steps between their appearances in the sample.
However, in RDS, because of the branching structure of recruitment, these distance calcula-
tions will be more complicated. As such, the first estimator we introduce, based off of an earlier
estimator developed by Neely in a prior investigation [14], which we call the “VHE with
branching correction” (VHEwbc for short), explicitly tracks the network distance between
individuals, so, if i recruits j who recruits both k and l, we define the distance between i and
both k and l as 2. This approach should improve the VHE by more accurately calculating the
covariance between cases.

The second improvement we test is relaxing the FOM assumption in the VHE. The VHE
assumes the network is FOM with respect to the variable of interest because it uses a 2 × 2 tran-
sition matrix populated with the observed categorical transitions in the data. However, we can
relax this assumption by making, e.g., a 4 × 4 transition matrix which is populated with the
observed three step transitions (i.e., a second order chain); that is how often we see three-step
chains with the following sequences of Y values a) 0-0-0, b) 0-0-1, c) 0-1-0, d) 1-0-0, e) 0-1-1, f)
1-0-1, g) 1-1-0, or h) 1-1-1. This transition matrix encodes the probabilities by which the most
recent pair of observed Y values yield the next value; for example:

C2nd order ¼

Pr000 Pr001 0 0

0 0 Pr010 Pr011

Pr100 Pr101 0 0

0 0 Pr110 Pr111

266664
377775; ð17Þ

where Pr000 = p(yt = 0|yt−1 = 0|yt−2 = 0), that is the proportion of observed sequences of Y val-
ues that went 0-0-0, and Pr001 = p(yt = 0|yt−1 = 0|yt−2 = 1), and so on (note that 8 of the 16 ele-
ments in this transition matrix will be 0 by definition). In principle, one could further relax this
assumption to incorporate even high-order chains, but there is a tradeoff in terms of the num-
ber of such chains that one can observe in a single sample. As such, we test whether
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incorporating higher order Markov assumptions improves the validity of the VHE. In all cases,
we also include the branching correction (i.e., VHEwbc); we call this estimator the “VHE with
higher order Markov”, or VHEhom for short. We test two higher order Markov assumptions:
first we focus on a 2nd order assumption then we focus on a 3rd order assumption. We also
present results for the SBE which adds another dimension of comparison with three variants of
the algebraically based VHE estimator.

Fig 4 presents the distribution of coverage rates across the different networks for the VHE
estimates of RDS sampling variance, for the VHEwbc estimates, for the VHEhom estimates
(note we did not calculate the VHEhom in the Facebook data set), and for the SBE estimates.
In most cases, the SBE outperforms the variants of the VHE we tested in most cases. This is
most clearly true for estimates of percent female in both the Add Health and Facebook net-
works and the percent participating in sports in the Add Health networks. The SBE’s results
are closer to the VHE variants for the race variable in the Add Health networks and worse than
the VHEwbc estimator for the freshman variable in the Facebook networks. The proposed
adjustments we consider generally improve the median coverage rate, but not substantially.
Their effects also differ by variable and dataset. For the female variable in the Add Health net-
works, the VHEwbc improves estimates in all cases; the median, both quartiles and the outlier
dots move closer to the desired 0.95. The VHEhom also improves estimates, if only marginally.
For race in the Add Health networks, both the VHEwbc and the VHEhom outperform the
VHE, but the VHEhom underperforms the VHEwbc. By contrast, for sports participation in

Fig 4. Distributions across networks for coverage rates based on the VHE, VHEwbc, VHEhom, and SBE estimators, by variable and data set. Note:
The expected coverage rate across networks for SRS is .95. AH indicates Add Health data set; FB indicates Facebook 100 data set. VHE indicates the Volz-
Heckathorn Estimator; VHEwbc indicates the VHE with Branching Correction; VHEhom is the VHE with Higher Order Markov assumptions; and SBE
indicates the Salganik Heckathorn Estimator. The estimators are described in text.

doi:10.1371/journal.pone.0145296.g004
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the Add Health networks, the VHEhom substantially outperforms the VHEwbc. These cases
illustrate that neither approach is significantly better than the other. In the Facebook 100 net-
works, we did not test the VHEhom owing to the size of these networks and the computational
complexity of enumerating higher order chains, but suspect that the same general conclusions
will hold. However, these networks are still interesting because they show just how much of a
difference the VHEwbc can make. For the gender variable, there is almost no difference
between the VHE and the VHEwbc. However, for percent freshmen, the difference is enor-
mous with the 25th percentile estimate from the VHEwbc higher than the 95th percentile whis-
ker from the VHE. On balance, however, the proposed corrections do not appear to
substantially improve the coverage rates as none of median estimates are close to 0.95. On bal-
ance, researchers would be less likely to make inferential errors using the SBE estimator than
any of the VHE variants we tested, but we note that they would still make the wrong inference
frequently.

As a final illustration of the potential of these adjustments, we consider Fig 5. It plots differ-
ences between population design effects and the estimated design effects for the first (i.e., the
VHEwbc), second (the VHEhom), and third order Markov strategies (not shown previously)
for one variable (race) across the different networks in the Add Health data. The VHEwbc esti-
mates are primarily found in the top left, and are often about an order of magnitude lower than
the population DE. The VHEhom (2nd Order) is slightly closer to the line of parity, but still
substantially different. The 3rd Order Markov estimates are more scattered, but do not appear

Fig 5. Population RDS sampling variance vs. VHE estimated sampling variance with branching correction under different Markov Order
assumptions, for Race in the AH data set. Notes: Both scales are design effect scales and are logged. Symbols in the graph are as follows: 1—FOM
assumption (VHEwbc in Fig 4); 2—Second Order Markov assumption (VHEhom in Fig 4); 3—Third Order Markov Assumption (not shown in Fig 4).

doi:10.1371/journal.pone.0145296.g005

RDS Variance Estimation Bias

PLOS ONE | DOI:10.1371/journal.pone.0145296 December 17, 2015 23 / 27



to be much better than the 2nd Order estimates. Indeed, some are worse. This is because there
is less and less data the higher order Markov process we estimate, and consequently additional
error may be introduced by using higher order estimates. The reason for this fact is that there
are fewer cases corresponding to each type of sequence the higher we go; as the cells become
sparser, the precision with which they are estimated decreases.

To summarize our analyses of potential corrections to the VHE, we note that the proposed
corrections–more accurately accounting for the branching structure of the RDS chain rather
than assuming a simple random walk and attempting to estimate higher order Markov transi-
tion patterns–do generally improve the variance estimation. However, the improvements we
see are small and variable, and they do not improve coverage rates to a desirable level. None-
theless, these procedures are a plausible first step toward improving estimates, and future work
may improve on them. For instance, it may be that the eigensystem-based approach of the
VHE fails with higher order Markov chains, but that a bootstrap approach more similar to the
SBE would perform more desirably. We leave these questions for future work. More impor-
tantly, however, these results suggest the constraints that emerge from the typical RDS sam-
pling methodology which focuses solely on recruiter-recruit links to the neglect of other
relevant network data. We argue that a more fruitful approach may be to collect additional net-
work data, either ego-networks [24,39–41] or more complete structures [11,42].

Conclusions
This paper has contributed to the literature on sampling hidden and hard to reach populations,
and specifically Respondent Driven Sampling, by focusing on the issue of biased sampling vari-
ance estimation, which has only rarely been addressed to date [14,18]. Whereas prior work has
documented biases in RDS mean estimators and the potential for RDS estimators to exhibit
high sampling variance, the actual estimation of sampling variance has received considerably
less attention. This is unfortunate for two reasons. First and most generally, if the RDS estima-
tors of sampling variance are biased, then researchers cannot trust confidence intervals and
hypothesis tests derived from these estimators. This is a problem for researchers and policy
makers seeking to determine which populations have the highest disease prevalence, or
whether observed changes in behaviors within a single population over time are due to actual
changes or simply the variability that would be obtained through repeated sampling, to name
two examples. Second, in the case of RDS, whose mean estimators are known to exhibit high
sampling variance, an inaccurate means of estimating sampling variance will be especially
problematic if it is downwardly biased. Our results suggest that the sampling variance estima-
tors in use for RDS data are downwardly biased, indeed, massively so. Similar conclusions on a
smaller scale have been highlighted in prior work [14,18]. We also found that the SBE generally
outperforms the VHE or any natural extension of it, if only by a marginal amount.

Further, by focusing on the exact reasons for biases in the RDS variance estimators, this
paper clarifies the heuristic notions prevalent in the RDS literature about which types of net-
works will be “problem cases” where RDS should not be applied. Unfortunately, our results
demonstrate that such “problem cases” are common. Through mathematical illustrations,
computational examples, and empirical analysis of 215 observed social networks from two dif-
ferent data sources, we have shown that the key assumption made by current RDS variance
estimators–the First Order Markov assumption–is frequently violated. In addition, our results
extend those of prior work [14,18] and show that the variance estimators perform poorly in
many situations, and that the VHE as well as the SBE suffers this limitation. We examined two
modifications to the VHE in an effort to reduce these biases, but, though they both offered
some improvement, neither fundamentally solved the problem.
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This paper has outlined new reasons that variance estimation in RDS needs more attention.
Based on the performance of currently available estimators, a prudent researcher must wonder
whether meaningful confidence intervals and hypothesis tests can be constructed. Given the
results presented here, this does not appear to be the case because the variance estimators are
so biased as to be effectively meaningless. However, further work may correct these issues, and
other approaches to RDS estimation and diagnostic [10,13,24,39,40,43,44] and chain referral
sampling [11,42,45–47] are being developed. These approaches, combined with renewed atten-
tion to the issue of estimating sampling variance in RDS, should pave the way for more accu-
rate sampling variance estimation and a renewed emphasis on collecting additional network
data as part of the sampling process.
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