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Abstract
Heterocyclic aromatic amines formed in cooked meat may be an underlying mechanism for

the red meat-colorectal cancer (CRC) association. These compounds require bioactivaction

by N-acetyltransferase 2 (NAT2). An interaction effect between red meat consumption and

NAT2 in increasing CRC risk has been inconsistently reported in whites. We investigated

this interaction in two populations in which the high-activity rapid NAT2 phenotype is 10-

and 2-fold more common than in whites. We meta-analyzed four studies of Japanese

(2,217 cases, 3,788 controls) and three studies of African Americans (527 cases, 4,527

controls). NAT2 phenotype was inferred from an optimized seven-SNP genotyping panel.

Processed and total red meat intakes were associated with an increased CRC risk in Japa-

nese and in both ethnic groups combined (P’s� 0.002). We observed an interaction

between processed meat intake and NAT2 in Japanese (P = 0.04), African Americans (P =

0.02), and in both groups combined (P = 0.006). The association of processed meat with

CRC was strongest among individuals with the rapid NAT2 phenotype (combined analysis,

OR for highest vs. lowest quartile: 1.62, 95% CI: 1.28–2.05; Ptrend = 8.0×10−5), intermediate

among those with the intermediate NAT2 phenotype (1.29, 95% CI: 1.05–1.59; Ptrend =

0.05) and null among those with the slow phenotype (Ptrend = 0.45). A similar interaction

was found for NAT2 and total red meat (Pinteraction = 0.03). Our findings support a role for

NAT2 in modifying the association between red meat consumption and CRC in Japanese

and African Americans.
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Introduction
Colorectal cancer (CRC) is a leading cause of cancer mortality worldwide, with approximately
1.4 million new cases and 694,000 disease-specific deaths in 2012[1]. In non-western countries
and particularly in Asia, as more people adopt a high-energy diet and low physical activity that
are part of the “western” lifestyle, the incidence of CRC has been increasing, with the highest
incidence rates currently being reported from Japan. Red meat and processed meat consump-
tion are established risk factors for CRC [2–5]. One hypothesized mechanism for this associa-
tion is through exposure to heterocyclic aromatic amines (HAAs), which are formed when
meat is cooked at high temperature for a long duration [6–8].

N-acetyltransferase 2 (NAT2) has been shown to play a critical role in the bioactivation of
HAAs. N-hydroxylated HAA metabolites are substrates for O-acetylation primarily by NAT2
to form the reactive N-acetoxy species which bind to DNA. N-acetylation activity can be deter-
mined by dosing subjects with a substrate, such as isoniazid, sulfamethazine or caffeine, and
measuring urinary metabolites [9]. More than 25 genetic polymorphisms have been identified
for NAT2 that can affect the catalytic activity of NATs toward HAAs. Several genotyping pan-
els have been used to classify NAT2 genotypes and infer phenotype. A panel of seven SNPs for
NAT2 have been shown to be optimal [10,11], although a single SNP (rs1495741) has been sug-
gested to be adequate for NAT2 in Europeans [12].

The frequency of the slow NAT2 phenotype varies markedly across populations, from
approximately 5% in Canadian Eskimos, to 10% in Japanese, 50% in Europeans and 90% in
North Africans [13]. It is notable that populations with the highest frequencies for the rapid
acetylation phenotype also have the highest CRC incidence rates in the world (Native Alaskans
and Japanese Americans), and those with the lowest rapid acetylation phenotype frequencies
have very low CRC rates (e.g., in North Africa)[1,14]. Moreover, the raising trends in colon
cancer incidence and mortality in Japan have closely paralleled the increase in red meat intake
with a 20 year lag [15]. An ecological study showed that NAT2 phenotype significantly
improved the international correlation that exists between country-specific meat consumption
and CRC incidence [16]. A number of studies have suggested a stronger association between
CRC or its precursor, adenoma, and red meat consumption among individuals with the rapid
NAT2 phenotype [17–22], although not consistently [23–26]. This lack of consistency could be
due to multiple aspects of study heterogeneity, such as differences in inferring NAT2 activity
from genotype, study population, sample size, and in analysis strategies (e.g. grouping the
intermediate and rapid phenotypes for Europeans, a population with a low frequency for the
rapid phenotype).

We report on the modifying effect of NAT2 on the association of red meat intake on the
risk of colorectal cancer in a genome-wide association study (GWAS) conducted in Japanese
and African Americans. These two populations have high rates of CRC and a frequency of
rapid acetylator phenotype which is 10- and 2-fold greater than in whites, respectively.

Results
The Japanese samples included 2,217 CRC cases and 3,788 controls from the Multiethnic
Cohort study (MEC), the Fukuoka Colorectal Cancer Study (Fukuoka), the Japan Public
Health Center cohort study (JPHC) and the Nagano Colorectal Cancer Study (Nagano). The
African American samples included 527 cases and 4,527 controls from the MEC, the University
of North Carolina Rectal Cancer Study (UNC) and the Prostate, Lung, Colorectal and Ovarian
Cancer Screening (PLCO) Trial. Characteristics of study participants are shown by ethnic/
racial group and study in Table 1. The frequency of the rapid NAT2 phenotype varied across
studies from 46.4% to 48.4% in Japanese and from 6.5% to 10.7% in African Americans,
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consistent with previous studies [27]. NAT2 levels were not significantly associated with CRC
in each population or when the two were combined (P’s> 0.19, S1 Table).

The study-specific cut-points for creating the 4-level meat variables are shown in S2 Table.
Greater intakes of processed meat, red meat without processed meat and total red meat were
all statistically significantly associated with CRC risk in Japanese and when the Japanese were
combined with African Americans (Ptrend � 0.0051) (Table 2). In African Americans alone, the
associations were of the same direction but with P-values> 0.05, partly reflecting the relatively
small number of cases in this group. The odds ratio (OR) for each quartile increase in pro-
cessed meat level was 1.10 [95% confidence interval (CI): 1.05, 1.16] in Japanese (Ptrend =
0.0002), 1.02 (95% CI: 0.93, 1.13) in African Americans (Ptrend = 0.62) and 1.09 (95% CI: 1.04,
1.14) in the combined analysis (Ptrend = 0.0004). The association for red meat without pro-
cessed meat was similar but of somewhat lesser magnitude (Table 2). No within-ethnic group
heterogeneity across studies was observed (Phet’s> 0.39). Similarly, no heterogeneity was
detected by study design (prospective vs. case-control studies) (Phet’s>0.24). There was weak
evidence for between-ethnic group heterogeneity (I2 = 44%) for the association between pro-
cessed meat and CRC, but not for the other two meat variables. Adjusting for additional risk
factors in these data did not materially change the results (S3 Table), except that the between-
ethnic group heterogeneity was weakened (I2 = 8%) for the association between processed
meat and CRC.

Table 1. Characteristics of study subjects.

Japanese African American

Fukuoka Nagano JPHC MEC MEC PLCO UNC

No. of Cases 662 105 653 797 342 76 109

No. of Controls 749 102 640 2297 4328 94 105

Total 1411 207 1293 3094 4670 170 214

Female (%) 37.0 35.7 48.1 45.2 34.4 52.9 45.8

Age (year) 59.5 (10) 59.4 (8.8) 61.2 (9.2) 69.6 (8.5) 68.9 (8.2) 65.5 (5.5) 62.5 (10.1)

BMI (kg/m2) 23.2 (3.1) 23.2 (2.9) 23.8 (3) 24.7 (3.7) 28.1 (4.9) 29.7 (6.4) 30.1 (6.7)

Ever smoker (%) 59.3 49.8 39.6 52.5 66.9 62.4 58.4

Regular aspirin use (%) 5 na na 38 62 56 72

Processed meat intake (g/day) 8.0 (9.5) 7.0 (9.6) 3.2 (3.5) 16.6 (15.0) 20.6 (22.1) 24.6 (22.9) 29.6 (52.5)

Red meat without processed meat (g/day) 43.0 (30.1) 45.4 (43.1) 15.3 (11.8) 37.2 (27.2) 40.0 (37.5) 49.4 (43.4) 52.5 (45.1)

Total red meat intake (g/day) 51.0 (34.4) 52.3 (46.8) 18.5 (13.3) 53.8 (38.1) 60.6 (52.4) 74.1 (58.2) 82.2 (78.1)

Folate from foods (mcg/day) 399 (146) 449 (293) 307 (117) 337 (186) 373 (243) 351 (169) na

Folate from foods and supplement (mcg/day)(DFE) na na na 608 (471) 606 (496) 529 (348) 606 (277)

Calcium from foods (mg/day) 693 (272) 606 (396) 440 (257) 637 (306) 732 (436) 799 (453) 780 (384)

Calcium from foods and supplement (mg/day) na na na 973 (632) 906 (550) 924 (566) 870 (455)

Dietary fiber (g/day) 15.3 (5.8) 14.6 (11.9) 7.7 (3.1) 22.2 (11.3) 24.5 (14.9) 22.1 (11.6) 20.8 (10.0)

NAT2 Phenotype

Slow (%) 10.3 8.2 9.7 10.1 15.7 15.3 14.0

Intermediate (%) 43.3 45.9 41.9 43.4 73.6 78.2 77.1

Rapid (%) 46.4 45.9 48.4 46.4 10.7 6.5 8.9

Abbreviations: Fukuoka: the Fukuoka Colorectal Cancer Study; Nagano: the Nagano Colorectal Cancer Study; JPHC: Japan Public Health Center-Based

prospective study; MEC: Multiethnic Cohort Study; PLCO: Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial; UNC: The North Carolina

Rectal Cancer Study.

Values are means (standard deviations) unless specified otherwise.

doi:10.1371/journal.pone.0144955.t001
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The risk estimates for these associations also did not materially change in analyses restricted
to colon cancer or rectal cancer for the Japanese studies, which were large enough to allow for
such subsite-specific analyses. For example, the OR for processed meat was 1.09 (95% CI: 1.03,
1.16, P = 0.003) for colon cancer and 1.14 (95% CI: 1.06, 1.23, P = 0.001) for rectal cancer.

We observed a statistically significant interaction between processed meat and NAT2 phe-
notype on the risk of CRC in Japanese (Pinteraction = 0.044), in African Americans (Pinteraction =
0.018) and in both ethnic groups combined (Pinteraction = 0.006) (Table 3). In the Japanese, the
effect of processed meat was strongest in subjects with the rapid NAT2 phenotype (OR for the
highest to lowest quartile: 1.61, 95% CI: 1.26, 2.06; Ptrend = 1.8×10−4). The corresponding OR
for Japanese with the slow NAT2 phenotype was 1.06 (95% CI: 0.63, 1.79); Ptrend = 0.70). In
African Americans, for whom the number of cases was much smaller, processed meat was not
significantly associated with CRC in any NAT2 subgroup (all Ptrend > 0.05). Nonetheless, an
interaction effect was observed between quartile of processed meat and NAT2 level (Pinteraction
= 0.018). Results in the analysis combining both Japanese and African Americans for processed
red meat resembled those in the Japanese with weak between-ethnic group heterogeneity (I2 =
49.7%). The interaction between total red meat and NAT2 was also significant when both eth-
nic groups were combined (Pinteraction = 0.03). Total red meat intake was associated with CRC
risk in both the rapid and intermediate NAT2 categories (Ptrend = 0.003 and 0.015, respectively)
but not in the slow NAT2 category (Ptrend = 0.53). Since we did not find a statistically signifi-
cant interaction between NAT2 and red meat without processed meat (Pinteraction’s> 0.17), the
interaction between total red meat and NAT2 on CRC risk in the combined analysis was
mostly reflective of that between processed meat and NAT2. The interactions between NAT2
and red meat did not differ by study design (prospective vs case-control) (Phet’s> 0.47).

In a sensitivity analysis, the OR estimates for the meat variables within each NAT2 category
did not change materially (<12%) after adjustment for additional CRC risk factors in the Japa-
nese, although the p-values for the interactions between NAT2 and processed meat changed
from 0.044 to 0.075 (S4 Table). In subsite analyses in the Japanese, the interactions between
processed meat and NAT2 was statistically significant for colon cancer (P = 0.04) but not for
rectal cancer (P = 0.41), although the ORs for processed meat within NAT2 category in each
subsite analysis were similar to those for colorectal cancer (changes<9%).

Table 2. Association (odds ratios and 95% confidence interval) betweenmeat intakes and colorectal cancer.

Cases Controls Quartile 1 Quartile 2 Quartile 3 Quartile 4 Ptrend I2 (%)

Processed meat

Japanese 2186 3736 1.0 1.02 (0.88, 1.19) 1.11 (0.95, 1.30) 1.38 (1.17, 1.62) 0.0002

African American 466 4356 1.0 1.26 (0.94, 1.69) 1.03 (0.76, 1.39) 1.16 (0.85, 1.57) 0.62

Combined 2652 8092 1.0 1.07 (0.93, 1.23) 1.09 (0.95, 1.25) 1.32 (1.14, 1.53) 0.0004 44

Red meat without processed meat

Japanese 2186 3736 1.0 1.12 (0.96, 1.32) 1.14 (0.97, 1.33) 1.27 (1.08, 1.49) 0.006

African American 466 4356 1.0 1.34 (1.00, 1.82) 1.21 (0.9, 1.64) 1.18 (0.87, 1.59) 0.40

Combined 2652 8092 1.0 1.17 (1.02, 1.34) 1.15 (1.00, 1.33) 1.24 (1.08, 1.44) 0.0051 0

Total red meat

Japanese 2186 3736 1.0 1.18 (1.00, 1.38) 1.11 (0.95, 1.30) 1.33 (1.13, 1.57) 0.002

African American 466 4356 1.0 1.59 (1.18, 2.14) 1.31 (0.97, 1.76) 1.28 (0.95, 1.73) 0.21

Combined 2652 8092 1.0 1.26 (1.09, 1.45) 1.15 (1.00, 1.32) 1.32 (1.15, 1.52) 0.001 0

Adjusted for age, sex, BMI (continuous), the first 4 principal components and study separately in the Japanese and AA.

Sample sizes were reduced due to missing values in meat intakes.

doi:10.1371/journal.pone.0144955.t002
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Table 3. Association of meat intake with colorectal cancer, stratified by NAT2 phenotypes.

Group NAT2 Cases Controls Quartile 1 Quartile 2 Quartile 3 Quartile 4 Ptrend

Processed meat Japanese S 213 380 1.0 0.89 (0.55,
1.44)

1.07 (0.66,
1.72)

1.06 (0.63,
1.79)

0.70

(Pinteraction = 0.044) I 944 1613 1.0 0.91 (0.72,
1.14)

0.97 (0.77,
1.23)

1.27 (0.98,
1.64)

0.10

R 1029 1743 1.0 1.19 (0.95,
1.50)

1.26 (1.01,
1.59)

1.61 (1.26,
2.06)

0.00018

African American S 82 677 1.0 0.77 (0.38,
1.57)

0.68 (0.34,
1.35)

0.44 (0.19,
1.01)

0.051

(Pinteraction = 0.018) I 344 3216 1.0 1.46 (1.03,
2.05)

1.07 (0.75,
1.52)

1.34 (0.94,
1.91)

0.32

R 40 463 1.0 0.99 (0.32,
3.01)

1.83 (0.64,
5.17)

1.78 (0.62,
5.13)

0.18

Combined S 295 1057 1.0 0.85 (0.57,
1.26)

0.92 (0.62,
1.36)

0.83 (0.53,
1.29)

0.453

(Pinteraction = 0.006, I2 =
49.7%)

I 1288 4829 1.0 1.05 (0.87,
1.28)

1.00 (0.82,
1.22)

1.29 (1.05,
1.59)

0.053

R 1069 2206 1.0 1.18 (0.95,
1.48)

1.28 (1.03, 1.6) 1.62 (1.28,
2.05)

8x10−5

Red meat without processed
meat

Japanese S 213 380 1.0 1.01 (0.62,
1.65)

1.11 (0.66,
1.86)

1.08 (0.65,
1.79)

0.71

(Pinteraction = 0.22) I 944 1613 1.0 1.02 (0.80,
1.30)

1.15 (0.90,
1.46)

1.20 (0.93,
1.54)

0.10

R 1029 1743 1.0 1.27 (1.00,
1.60)

1.15 (0.91,
1.46)

1.41 (1.11,
1.80)

0.014

African American S 82 677 1.0 0.60 (0.27,
1.31)

0.76 (0.38,
1.52)

0.65 (0.31,
1.33)

0.32

(Pinteraction = 0.55) I 344 3216 1.0 1.72 (1.20,
2.44)

1.43 (1.00,
2.03)

1.43 (1.00,
2.05)

0.12

R 40 463 1.0 0.91 (0.35,
2.38)

0.87 (0.32,
2.36)

0.79 (0.30,
2.12)

0.64

Combined S 295 1057 1.0 0.87 (0.58,
1.32)

0.97 (0.64,
1.46)

0.91 (0.60,
1.38)

0.789

(Pinteraction = 0.17, I2 = 0) I 1288 4829 1.0 1.20 (0.98,
1.47)

1.23 (1.01,
1.50)

1.27 (1.04,
1.56)

0.026

R 1069 2206 1.0 1.24 (0.99,
1.56)

1.14 (0.91,
1.43)

1.37 (1.09,
1.73)

0.023

Total red meat Japanese S 213 380 1.0 1.56 (0.95,
2.56)

1.09 (0.65,
1.85)

1.19 (0.72,
1.95)

0.79

(Pinteraction = 0.075) I 944 1613 1.0 1.12 (0.88,
1.43)

1.06 (0.83,
1.34)

1.25 (0.97,
1.61)

0.14

R 1029 1743 1.0 1.16 (0.92,
1.46)

1.18 (0.93,
1.48)

1.48 (1.17,
1.88)

0.0021

African American S 82 677 1.0 0.79 (0.37,
1.70)

0.96 (0.48,
1.89)

0.50 (0.23,
1.08)

0.14

(Pinteraction = 0.17) I 344 3216 1.0 1.78 (1.25,
2.53)

1.47 (1.03,
2.10)

1.56 (1.09,
2.21)

0.04

R 40 463 1.0 2.38 (0.91,
6.21)

0.78 (0.24,
2.50)

1.39 (0.51,
3.80)

0.97

Combined S 295 1057 1.0 1.28 (0.84,
1.93)

1.04 (0.69,
1.58)

0.92 (0.60,
1.40)

0.534

(Pinteraction = 0.030, I2 = 0) I 1288 4829 1.0 1.30 (1.06,
1.59)

1.17 (0.96,
1.43)

1.35 (1.10,
1.65)

0.015

R 1069 2206 1.0 1.21 (0.96,
1.51)

1.16 (0.92,
1.45)

1.47 (1.17,
1.86)

0.003

S: Slow; I: Intermediate; R: Rapid

Adjusted for age, sex, BMI (continuous), the first 4 principal components and study separately in the Japanese and African Americans.

Pinteraction was from a Wald test and was verified by a likelihood ratio test within each ethnic group.

doi:10.1371/journal.pone.0144955.t003
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It was reported that in Caucasians, rs1495741 predicts the NAT2 phenotype inferred
from the 7-SNP panel well, with sensitivity and specificity for using the genotype AA to
assign the NAT2 slow phenotype of 99% and 95%, respectively [12]. Similarly in our data,
high prediction accuracy was observed in Japanese but not in African Americans (S5 Table).
The corresponding sensitivity and specificity was 96.8% and 98.9% in Japanese and 97.1%
and 70.5% in African Americans. The agreement rate, i.e. the proportion of subjects with
the AA, AG or GG genotype who are inferred to the same slow, intermediate or rapid NAT2
phenotype category by both methods, was 95.8% in Japanese and 67.7% in African
Americans.

Discussion
In this large study of Japanese and African Americans, two populations at high risk for CRC
and with a high and intermediate frequency of NAT2 rapid phenotype, respectively, we
observed a statistically significant interaction between processed meat intake and NAT2 activ-
ity in each population, and with total red meat intake in both populations combined. The inter-
actions for processed meat and total red meat appeared to be dose-dependent since their
associations with CRC were strongest among individuals with the rapid NAT2 phenotype,
intermediate among individuals with the intermediate NAT2 phenotype, and non-significant
among those with the slow NAT2 phenotype.

N-acetyltransferases (NATs) are thought to play a critical role in the genotoxicity of HAAs.
N-hydroxylated HAAmetabolites are substrates for O-acetylation primarily by NAT2 to form
the reactive N-acetoxy species which bind to DNA. As a result, cancer risk may be particularly
elevated in individuals who are rapid acetylators. A number of case-control and prospective
studies have suggested an increased risk of colorectal cancer for individuals with the rapid acet-
ylator status, assessed by phenotyping or genotyping. However, meta-analyses of the literature
on NAT2 acetylator status (considered as rapid/intermediate vs. slow genotype or phenotype)
have typically not confirmed this association [28–30]. Our study was also consistent with a lack
of main effect for NAT2 on CRC risk.

Consistent with our results, interactions were suggested in a number of previous studies
between intake of red meat, well-done meat or HAA and NAT2 acetylator status on the risk of
colorectal neoplasia [17–22]. However, other studies, some with large sample sizes, failed to
replicate this interaction between meat intake and NAT2 on colorectal cancer or adenoma risk
[23–26].

Unfortunately, adding to the difficulty in interpreting past data, only a few studies and no
meta-analysis or pooled analyses have reported risk estimates specifically for rapid acetylators
(homozygous for the NAT2�4 allele) (the subset expected to be at the greatest risk), as grouping
intermediate with rapid acetylators has been the norm, probably because most past studies
were conducted in whites, a population with a low frequency of rapid NAT2 phenotype. A
power computation suggests that the replication (with 80% power) of an interaction effect of
the magnitude observed among Japanese in our study in a European-descent population would
require about 6,000 cases and as many controls. The largest analysis to date [26], which com-
bined 9 studies restricted to populations of European ancestry to examine the interaction
between red meat intake and NAT2 on the risk of CRC exceeded this sample size (8,290 cases
and 9,115 controls) and did not detect any significant interaction. It is possible that the modify-
ing effect of NAT2 on the association between red meat intake and CRC is population-specific
due to differences in cooking practices and, thus, HAA intake across populations and/or other
modifying factors. On-going efforts to develop biomarkers of long term exposure to HAAs
may be useful in clarifying these population differences [31].

Red Meat,NAT2 and Colorectal Cancer Risk
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In addition to its large sample size and the ability to distinguish the three NAT2 phenotypes
in our analysis, the current study presents a number of strengths. We were able to harmonize
exposure variables collected from various populations and differing study instruments, which
allows for more robust and generalizable findings. We were also able to consider multiple risk
factors for CRC as potential confounders, ensuring the independence of the observed effects.

Some study limitations deserve consideration. There was variation in the comprehensive-
ness of the dietary data used in this analysis which required that we used study-specific quan-
tiles because of differences in methodology across studies. This is exemplified in JPHC for
which we used the baseline data, which were collected using a ~50 items food-frequency ques-
tionnaire. We note that the follow-up survey in JPHC used a more detailed questionnaire
(~150 items), similar to the one used in the Nagano Study, and yielded similar intake values as
in the Nagano study [32], confirming that the intake variation in our data was most likely due
to instrument differences and not to selection bias. Moreover, not all studies included here
attempted to quantify HAA intake based on meat cooking method and doneness level. So we
were unable to consider well-done meat or HAA intakes in our analyses. We also limited our-
selves to arguably the single most important enzyme involved in the metabolism of HAAs.
However, inter-individual variation in the activity of the other genes in this pathway would be
more likely to dilute than to create spurious effects in the analyses conducted here.

In conclusion, this large study provides substantial support for a role of NAT2 in modifying
the association between intake of red meat and, particularly, processed meat and colorectal
cancer risk in Japanese and African Americans, two populations at high risk for this disease.
Lowering consumption of red meat, especially processed meat, may be an effective approach
for CRC prevention in these and other populations with a high frequency of the rapid NAT2
phenotype.

Methods

Subjects, genotypes and quality control
The Japanese samples included 2,217 CRC cases and 3,788 controls from the Multiethnic
Cohort study (MEC), the Fukuoka Colorectal Cancer Study (Fukuoka), the Japan Public
Health Center cohort study (JPHC) and the Nagano Colorectal Cancer Study (Nagano). The
African American samples included 527 cases and 4,527 controls from the MEC, the University
of North Carolina Rectal Cancer Study (UNC) and the Prostate, Lung, Colorectal and Ovarian
Cancer Screening (PLCO) Trial. Details on study design, genotyping and quality control proce-
dures can be found in previous publications [33,34]. Information on basic demographics and
lifestyle factors was obtained from in-person interviews and/or self-administered structured
questionnaires. All participating studies were approved by their respective Institutional Review
Board (University of Hawaii, Japan National Cancer Center, University of Kyushu, University
of North Carolina, US National Cancer Institute) and had participants sign a consent form.
The present GWAS study was approved by the University of Hawaii Human Studies Program.

Briefly, Japanese subjects were genotyped with the Illumina 1M-Duo or the Illumina
660W-Quad array and African Americans on the Illumina 1M-Duo or the Illumina Omni
2.5M arrays. Samples were excluded for low call rates, gender mismatch or being an ethnicity
outlier or a close (� 2nd degree) relative to another subject. In addition, studies or subjects
missing age, gender or body mass index (BMI) were excluded. Genotyped SNPs were excluded
based on call rates, concordance rates among duplicate pairs, deviation from Hardy-Weinberg
equilibrium among controls, Mendelian errors in family trios or poor clustering quality.

Compared to our previous report searching for genetic susceptibility variants for CRC [33],
we restricted the present analysis to studies that included both cases and controls, because

Red Meat,NAT2 and Colorectal Cancer Risk

PLOS ONE | DOI:10.1371/journal.pone.0144955 December 18, 2015 7 / 11



including studies without controls would generate differential distributions of “environmental”
factors (due to differences in questionnaires and measurement error) across studies and could
bias the associations between “environmental” variables and disease.

Predicted NAT2 activity
NAT2 acetylation phenotype was inferred from a 7-SNP genotyping panel: G191A (R64Q,
rs1801279), C282T (rs1041983), T341C (I114T, rs1801280), C481T (rs1799929), G590A
(R197Q, rs1799930), A803G (K268R, rs1208) and G857A (G286E, rs1799931), as recom-
mended previously [10,11]. Except for G590A (R197Q, rs1799930) and G857A (G286E,
rs1799931) in the Japanese data (both imputed with R2 = 1), the other SNPs were genotyped in
both ethnic groups. Haplotype phasing was performed with BEAGLE [35], using the 1000
Genomes Project (phase 1, release 3) East Asians as reference panels for the Japanese data, and
Europeans and Africans as reference panels for the African American data. Individuals with
two, one and no “rapid” alleles (NAT2�4, NAT2�11A, NAT2�12A, B, C and NAT2�13) were
assigned to the “rapid”, “intermediate” and “slow”NAT2 phenotype category, respectively.
Rs1495741 was genotyped in both ethnic groups.

Statistical Analysis
The Japanese and African American studies were analyzed separately. Logistic regression was
used to test for the main effects of NAT2, intakes of processed meat, red meat without pro-
cessed meat, and total red meat, and the interactions between NAT2 and the meat intake vari-
ables on CRC risk, adjusting for age, sex, study, BMI and the first 4 principal components of
genetic ancestry to control for population stratification. NAT2 was modeled both as a linear
term (rapid /intermediate/slow). Meat intakes were grouped into 4 categories based on study-
specific quartiles defined from the distributions among cases to maximize power. Interaction
between NAT2 activity (slow = 1; intermediate = 2; rapid = 3) and meat intake quartiles (from
1 to 4) was tested using a cross-product interaction term. The p-values fromWald test for
interactions within each ethnic group were verified by likelihood ratio test (LRT). Stratified
analyses by NAT2 phenotype were performed to interpret interaction effects. Results in the
Japanese and African American studies were combined in meta-analyses using a fixed-effect
model and I2 was calculated to assess between-ethnic group heterogeneity [36].

In sensitivity analyses, we examined heterogeneity of the main effects for the meat variables
by study within population (Japanese or African Americans) with the LRT. In both ethnic
groups, we checked whether the main effects of the meat variables were modified by the addi-
tional adjustment for other risk factors [pack-years of smoking (0,<20,�20), calcium and
folate intakes (from foods only for the Japanese and from foods and dietary supplements for
the African Americans, based on data availability) and dietary fiber intake], where dietary fac-
tors were categorized into study-specific tertiles. In the Japanese data, where sample size was
larger, we also checked whether the interactions between NAT2 and meat intakes were modi-
fied by this additional adjustment. In Japanese, the main effects of red meats and the interac-
tion between NAT2 and red meats were also examined by anatomical subsite (colon vs.
rectum).

It was reported that, in Caucasians, rs1495741 alone predicted the NAT2 phenotype
inferred from the 7-SNP panel with high accuracy. We compared the agreement of the NAT2
phenotypes inferred from rs1495741 alone with those inferred from the 7-SNP panel with 3×3
contingency table, separately in Japanese and African Americans.

All analyses were performed with R 3.0 (The Comprehensive R Archive Network http://
www.r-project.org/). All tests were 2-sided and used a significance level of 0.05.
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