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Abstract

Background

The inflammatory bowel diseases (IBD) are common, complex disorders in which genetic

and environmental factors are believed to interact leading to chronic inflammatory

responses against the gut microbiota. Earlier genetic studies performed in mostly adult pop-

ulation of European descent identified 163 loci affecting IBD risk, but most have relatively

modest effect sizes, and altogether explain only ~20% of the genetic susceptibility. Pediatric

onset represents about 25% of overall incident cases in IBD, characterized by distinct dis-

ease physiology, course and risks. The goal of this study is to compare the allelic architec-

ture of early onset IBD with adult onset in population of European descent.
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Methods

We performed a fine mapping association study of early onset IBD using high-density

Immunochip genotyping on 1008 pediatric-onset IBD cases (801 Crohn’s disease; 121

ulcerative colitis and 86 IBD undetermined) and 1633 healthy controls. Of the 158 SNP

genotypes obtained (out of the 163 identified in adult onset), this study replicated 4% (5

SNPs out of 136) of the SNPs identified in the Crohn’s disease (CD) cases and 0.8% (1

SNP out of 128) in the ulcerative colitis (UC) cases. Replicated SNPs implicated the well

known NOD2 and IL23R. The point estimate for the odds ratio (ORs) for NOD2 was above

and outside the confidence intervals reported in adult onset. A polygenic liability score

weakly predicted the age of onset for a larger collection of CD cases (p< 0.03, R2= 0.007),

but not for the smaller number of UC cases.

Conclusions

The allelic architecture of common susceptibility variants for early onset IBD is similar to

that of adult onset. This immunochip genotyping study failed to identify additional common

variants that may explain the distinct phenotype that characterize early onset IBD. A com-

prehensive dissection of genetic loci is necessary to further characterize the genetic archi-

tecture of early onset IBD.

Introduction
The inflammatory bowel diseases (IBD) are complex, heritable disorders consisting of two main
clinical forms: Crohn’s disease (CD) and ulcerative colitis (UC). Both forms share several phe-
notypic features and genetic susceptibility and are mainly characterized by chronic and relaps-
ing gut inflammation. CD can occur throughout the gastrointestinal tract, whereas UC affects
only the colon. Inflammatory bowel diseases affect some 1.5 million Americans [1], and ~20%
of cases occur in children [2]. There is no doubt that IBD is heritable, although the 400% rise in
the incidence of IBD over the last 50 years argues for an important role of gene-environment or
gene-diet interactions in its pathogenesis [3–6]

Recent genome-wide association studies (GWAS) and a recent meta analysis identified over
163 IBD-associated loci, mostly in adult population of European descent: two thirds of which
are shared by CD and UC, while the remaining are unique to either CD or UC [7]. Variants in
these loci correlate well with IBD risk but have relatively modest effect sizes and account for a
minority of the total disease variance (13.6% CD, 7.5% UC [7]) suggesting much of the missing
heritability still awaits discovery. The loci with the largest known effects, NOD2 and IL23R,
both have odds ratios of approximately 1.5, with NOD2 affecting only CD and IL23R affecting
both CD and UC [7]. With at least 11 exceptionally highly powered GWAS studies [7–17]
there was compelling evidence that NOD2 and IL23R were the only loci in the genome with
odds ratios approaching 1.5 for IBD.

The natural history of IBD exhibits substantial heterogeneity. Pediatric onset IBD (defined
as the onset under 18 years old) is characterized by a greater disease severity, a higher tendency
for disease manifestation in the colon, more disease extension, a change in disease location
over time, and a positive family history for IBD [18–23]. These differing pathologies of early
onset IBD could arise from differences in genetically attributable risk compared to adult onset
IBD. Early onset diseases including IBD are expected to be more influenced by genetic factors
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than environmental exposures [24]. Two previous pediatric GWAS studies, although under-
powered, identified loci that have been replicated in adult onset IBD GWAS studies [12, 13].
Likewise, many established GWAS loci ascertained in adults did not distinguish early from
later onset CD [25]. Here we used the Immunochip, a high-density custom array designed for
fine mapping and deep replication of ~200,000 established genome-wide significant SNPs
(within 186 loci) identified by GWAS for 12 autoimmune and inflammatory diseases, to deter-
mine how the allele architecture of early onset IBD compares to that of adult onset IBD.

Results
We performed a genome-wide scan of our collection of early-onset CD cases vs controls (S1
Table) and early-onset UC vs controls (S2 Table). Fig 1 shows the results of CD cases vs con-
trols for the ~140,000 SNPs that passed QC procedures. Highly conservative Bonferroni cor-
rection for multiple testing suggests any SNP p-value below 0.05/140000 = 3.57 x 10–7 is
experiment-wide significant, which corresponds to a-log10(p) of approximately 6.5. Some of
the most significant loci are labeled for the CD vs controls analysis and are shown in Fig 1.
None of the loci in the remaining cases (IBDminusCD) vs controls analysis exceeded our con-
servative experiment-wide threshold for statistical significance, which reflects the limited sam-
ple size of this portion of our study (S1 Fig).

After performing quality control, we successfully obtained genotypes for 158 of the top 163
SNPs from Jostins et al. [7] previously reported to be associated with CD and/or UC (S4
Table). For CD, 2 of 30 CD SNPs and 3 of 106 IBD SNPs successfully replicated at a Bonferroni
corrected threshold of 0.0003. For UC, 0 of 22 UC SNPs and 1 or 106 IBD SNPs successfully
replicated at a Bonferroni corrected threshold of 0.0003.

The limited number of Jostins et al. SNPs that replicated in our study is expected if reported
effect sizes from a largely adult cohort are similar to those in our pediatric cohort. To better
assess this pattern, we asked if our point estimate for the odds ratios (ORs) fell within the

Fig 1. Manhattan plot of SNP association p-values result for CD vs controls within pediatric onset IBD. The horizontal black line represent the
thresholds of P = 3.57 x 10–7 for Bonferroni significance

doi:10.1371/journal.pone.0128074.g001
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confidence intervals reported in the more highly powered study reported by Jostins et al. For
CD, the ORs for 128 SNPs were included within their respective Jostins’ confidence intervals,
while ORs for 8 SNPs fell outside the Jostins’ estimated confidence intervals (S3 Table). The
point estimates for the CD ORs from our study were greater for 3 of 8 SNPs as compared to
those reported in Jostins et al. Of note, our OR point estimate forNOD2, the most strongly asso-
ciate locus in both studies, is modestly larger and outside the CIs reported by Jostins (1.9 vs 1.6).
A similar pattern was observed for UC, where the ORs for 118 SNPs were included within the
CIs, while the ORs for 10 SNPs were found outside the Jostins’ CIs (S4 Table). The point esti-
mates for the UC ORs from our study were greater for only 1 of 10 SNPs as compared to those
reported in Jostins et al. We next tested whether a polygenic liability score could predict the age
of onset for either CD or UC. For CD, we observed a weak, but statistically significant relation-
ship (p< 0.03, R2 = 0.007, S6 Fig). For UC, we did not observe a statistically significant relation-
ship (S7 Fig).

We sought next to assess the genetic architecture differences between very early onset
(VEO) cases (0 to< 10 years) as compared early onset (EO) cases (10 to< 17 years). The anal-
ysis of CD did not reveal any genome-wide significant findings (S2 Fig, S5 Table) between
VEO and EO cases. Among the top findings, a SNP in the IL-19 locus reached a nominal signif-
icance of 7 x 10–5. The remaining cases analysis (IBDminusCD) also failed to reveal any statisti-
cally significant findings (S3 Fig and S6 Table).

Discussion
There is strong evidence to support the genetic contribution and heritability to the pathogene-
sis of IBD [26–33]. Recent efforts to understand the genetics of IBD have identified over 163
IBD-associated loci, mostly in adult populations of European descent [7]. These results explain
only 13.6% of CD and 7.5% of UC total disease variance, showing that these GWAS loci con-
tribute only little towards the explained IBD heritability. The early onset IBD population pres-
ents with a distinct disease physiology, course and risks [18–23], suggesting the possibility of a
different underlying molecular mechanism [34]. To date, GWAS has failed to identify loci that
can distinguish early onset from adult IBD [12, 13, 25]. To determine how the allele architec-
ture of early onset compares to that of adult onset, we performed fine mapping of established
GWAS loci in a well characterized prospectively recruited pediatric onset IBD cases and con-
trol study, using a high-density custom array (Immunochip).

Our strongest associations for CD replicate alleles found at the NOD2 and IL23R loci. This
study suggests that common risk variants at both NOD2 and IL23R loci act in a similar fashion
in both early and later onset populations. This also confirms previous reported associations of
NOD2 and IL23R with both pediatric and adult onset CD [35–37]. Of interest, our OR point
estimate for NOD2, the most strongly associate locus in both studies, is modestly larger and
slightly outside the CIs reported by Jostins (1.9 vs 1.6). IBD is a complex disease whose herita-
bility is influenced by only a small number of loci with large effect sizes (in this case NOD2 and
IL23R), but a relatively large number of loci whose effects are detectable in very large GWAS.
This scenario has in fact been reported for common trait under biotic selection [38].

Only few in this study reached genome-wide significance threshold. Most of the loci previ-
ously reported by Jostins et al. did not replicate in our smaller pediatric cohort. For CD, we
observed a weak, but statistically significant relationship between a polygenic liability score and
age of onset (p< 0.03, R2 = 0.007, S6 Fig). For UC, we did not observe a statistically significant
relationship (S7 Fig). At the vast majority of loci, our estimated effect sizes fell within the confi-
dence intervals reported in adult onset [7]. Over 91% (128 SNPs) of the SNPs that explain
slightly less than 20% of the CD heritability in the adult onset had similar estimated effect sizes
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in early onset CD cases. Similarly, close to 89% (118 SNPs) of those UC SNPs had similar esti-
mated effect sizes in early onset UC cases.

While our sample size was significantly smaller than that used by Jostins et al, this finding
suggests an overall similar genetic architecture between adult and pediatric onset CD, IBD, and
UC. Consistent estimates of SNP effect sizes in separate adult and early onset IBD cohorts sug-
gests that there are likely to be great similarities in the overall pathogenesis and underlying
molecular pathways of IBD. Furthermore, if early-onset susceptibility alleles exist, they will be
difficult to discover in the absence of extremely large studies. As most common loci ascertained
by GWAS, the loci in this study have small effect size, which are known to additively explain
only a small proportion of the heritability of complex diseases [39]. One explanation for the
“hidden heritability” is that additional or true causal variants could be present within known
loci but they may be poorly tagged and cannot be revealed by the GWAS SNPs surveyed [40].
If true, this suggests that some of the reported clinical heterogeneity within IBD and differences
in phenotypic characteristics between early and late onset could be driven by low frequency to
rare variants, which will only be discovered through whole-exome sequencing, whole-genome
sequencing, or family-based studies [41].

Pediatric onset IBD can be further separated into 2 distinct sub-groups based on the Paris
classification; very early onset (VEO) 0 to< 10 years and early onset (EO) 10 to< 17 years [42].
Very early onset (VEO) IBD is characterized by a greater disease severity, a higher tendency for
disease manifestation in the colon, more disease extension, a change in disease location over
time, and a positive family history for IBD [18–23]. Our assessment of the genetic architecture
differences between VEO and EO IBD cases revealed interesting differences in the allele archi-
tecture but no genome-wide significant findings (Figs S2, S3 and S5 and S6 Tables), which may
reflect the limited analysis power for this sub-groups. One SNP in the IL-19 locus reached a
nominal significance for VEO CD analysis. IL-19 belongs to IL-10 superfamily and is known to
suppress bacteria induced macrophage pro-inflammatory cytokine production in the host fol-
lowing injury to intestinal epithelial cells [43]. IL10 is an established genetic risk for IBD, includ-
ing a role of IL10 receptor variants in VEO and EO IBD [44, 45]. It is not clear if the nominal
significant IL19 signal is independent or exhibited via IL10 as both loci are linked together
through genetic similarity and intron-exon gene structure. Owing to the limitation of GWAS
and the expectation of higher genetic load and reduced environmental modifiers in VEO cases
[24, 46], the allelic architecture of VEOmust be characterized by low to rare frequency variants
with greater penetrance not detectable by GWAS, or are simply located in portions of the
genome not previously associated with IBD, and therefore not represented on the Immunochip.
Rare variants are predicted to vastly outnumber common variants in the human genome [47].

This study showed that the allelic architecture of common susceptibility variants seen in
adult onset is also shared with early onset cases, suggesting similarities in the overall pathogen-
esis of IBD. GWAS have limited utility in identifying low frequency to rare variants and true
causal genetic variants associated with distinct phenotypes within the inflammatory bowel
complex disease. It is therefore necessary that a more comprehensive dissection of the human
genome or known loci be done to further understand the genetic architecture of early onset
IBD. Sequencing-based methods are better at systematically ascertaining both common and
rare SNPs.

Materials and Methods

Samples
We present a multi-center collaborative study of pediatric inflammatory bowel disease (the
RISK cohort). IBD subjects were obtained from the RISK Study. The RISK Study is an ongoing,

High-Density Genotyping of Early Onset IBD

PLOSONE | DOI:10.1371/journal.pone.0128074 June 22, 2015 5 / 12



prospective observational inception IBD cohort funded by the Crohn's and Colitis Foundation
of America (CCFA) and currently includes 28 pediatric gastroenterology centers in North
America. Children and adolescents younger than 17 years newly diagnosed with inflammatory
bowel disease (IBD) were eligible for enrollment in RISK between November 2008 and June
2012. All subjects presented are of European ancestry.

All patients were required to undergo baseline colonoscopy and confirmation of characteris-
tic chronic active colitis/ileitis by histology prior to diagnosis and treatment, with the recording
of findings in standardized fashion. Once standard and published guidelines were met, patients
were diagnosed with CD and UC and inflammatory bowel disease-undetermined (IBD-U). A
firm and consistent diagnosis of IBD was required during the one-year follow-up for inclusion
into this study. At enrollment and during ongoing prospective follow-up, clinical and labora-
tory data were obtained for each enrolled patient and submitted to a centralized data manage-
ment center. All patients were managed according to the dictates of their physicians, not by
standardized protocols.

The study populations were derived from three sources, including 1) 1401 cases with IBD
(after QC and removal of non-Europeans: CD = 801; UC = 128; IBD-U = 86) recruited from
the RISK cohort, (2) 1,663 healthy controls consisting of 831 pediatric healthy children
recruited from Cincinnati Children's Hospital Medical Center (CCHMC), 647 healthy adults
from Utah, and 185 non-IBD subjects from the RISK Study. Control subjects did not have any
chronic autoimmune or inflammatory disorders. Most of the control subjects were part of
other GWAS and Immunochip studies [48]. The institutional review board at Emory Univer-
sity approved the protocol. Written informed consent was provided by all parents/caregivers,
and written assent was obtained from children as appropriate.

High-density Genotyping with the Illumina Immunochip
The Immunochip, a custom Illumina Infinium High-Density array, contains 196,524 polymor-
phisms (718 small insertion/deletions, 195,806 SNPs). It was initiated by the Welcome Trust
Case-Control Consortium and designed for deep replication of established autoimmune and
inflammatory disease loci identified by GWAS of common variants using data from the 1000
Genomes Project and any other available disease-specific resequencing data. The Immunochip
Consortium selected 186 distinct loci containing markers reaching genome-wide significance
(P< 5 × 10−8) from 12 diseases (autoimmune thyroid disease, ankylosing spondylitis, Crohn's
disease, celiac disease, IgA deficiency, multiple sclerosis, primary biliary cirrhosis, psoriasis,
rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes, and ulcerative colitis). For
each disease, ~3,000 SNPs were selected from available GWAS data for deep replication, as
well as to cover strong candidate genes. Samples were genotyped using the Immunochip
according to Illumina's protocols at laboratories at Emory University and The Feinstein Insti-
tute for Medical Research and Cincinnati Children's Hospital Medical Center (Utah samples
and Cincinnati controls).

Genotype Determination, Data Cleaning, and Statistical Analyses
All chip images were merged into a single batch for simultaneous genotype calling with Bead-
Studio. Included in these samples were 133 replicates (the same sample run twice), and 33 par-
ent-offspring pairs. These replicates and family members were used to directly test for
genotyping error [49]. Samples were tested for cryptic (unexpected) relatedness, incorrect gen-
ders, overall data completeness, and overall heterozygosity; samples were excluded if they had
less than 90% data completeness, differed by more than three standard deviations from the
mean heterozygosity for the study, had the wrong gender, or were unexpectedly the first-degree
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relative of any other sample in the study. Approximately 15% of our samples were dropped for
one or more of these reasons.

BeadStudio reported genotypes for 189,012 autosomal SNPs. Any SNP with more than 2%
missing data, only one allele present (i.e. not segregating), any detectable genotype error (either
through duplicates or parent-offspring), or a Hardy-Weinberg p-value less than 10–5 in con-
trols was dropped. This resulted in a final dataset of approximately 140,000 autosomal SNPs.
Over 40% of the dropped SNPs were dropped simply because there was only one allele present
(~20,600 SNPs).

For this study, we performed three main association analyses. We first evaluated patients
with a diagnosis of CD with matched controls. We then evaluated all remaining cases (IBDmi-
nusCD), which consisted of cases with UC or other indeterminate IBD diagnosis (but not CD).
Finally, we performed association analyses using very early onset (VEO) CD or UC /IBD-U
labeled as “cases” contrasted with matched early onset (EO) CD or UC / IBD-U labeled as “con-
trols”. Matching of cases and controls was done by determining principal components (PC)
with Eigenstrat [50, 51], plotting PC1 against PC2, followed by visual inspection and elimination
of outlier samples. Four successive rounds were necessary until a satisfactory matching of CD
cases/controls (S4 Fig) and UC (IBDminusCD) cases/controls (S5 Fig) was obtained.

After all SNP and sample removal, 1,633 controls, 801 CD, and 207 UC / IBD-U individuals
remained. From the 801 CD cases, we performed a second association with 267 VEO CD
“cases” contrasted with 525 EO CD “controls”. From the 207 UC cases, there were 62 VEO UC
/ IBD-U “cases” contrasted with 143 EO UC / IBD-U “controls”. We excluded 7 CD and 2 UC
samples because of indeterminate age of diagnosis. All samples were unrelated to one another.
All association analysis was performed with PLINK 1.0.7 via a logistic regression [52], additive
model, adjusting for the first five principal components of ancestry as determined by Eigen-
strat. Replication of the top SNPs from Jostins et al. successfully genotyped in this study was
assessed by performing a Bonferroni correction for 158 tests (0.05/158), resulting in a threshold
of 0.0003. The complete summary for all SNP associations for CD (S1 Table) and UC (S2
Table) are contained in the supplemental materials. The summary for the 158 top SNPs for CD
(S3 Table) and UC (S4 Table) are also included in the supplemental materials.

Polygenic liability scores were calculated assuming an underlying normal distribution of lia-
bility with disease (CD or UC) state representing a threshold on the continuous liability scale
[53]. To do so, we first assumed the odds ratio estimated by Jostins’ et al [7] is the true odds
ratio for the identified allele. Using the observed allele frequency in controls from this study,
and an assumed prevalence for CD of 5 in 10,000, and for UC of 1 in 10,000, independent of
sex, the additive effect on liability of each of the (163) Jostins’ identified SNPs was calculated
[53]. Final polygenic liability for each sample was calculated by summing the additive affects
for both alleles at all 163 loci. Thus we assume both additive dominance and additive epistasis
on the liability scale. This polygenic liability score was regressed against age of onset for all CD
and UC cases separately. While our cohort is purely pediatric onset (less than 18 years) only
about 10% of the Jostins et al cohort were under 18 years of age at onset (personal communica-
tion with Dr Judy Cho).

The data of this study have been deposited into the Odum Institue Dataverse Network
hosted at UNC (http://arc.irss.unc.edu/dvn/) and is accessible through the accession number
doi:10.15139/S3/11991.

Supporting Information
S1 Fig. Manhattan plot of SNP association p-values result for IBD-minusCD vs Controls
within pediatric onset IBD. The horizontal black line represent the thresholds of P = 3.57 x
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10–7 for Bonferroni significance.
(TIFF)

S2 Fig. Manhattan plot of the association analysis for CD between VEO taken as cases and
EO taken as “control”. The horizontal black line represent the thresholds of P = 3.57 x 10–7

for Bonferroni significance.
(TIFF)

S3 Fig. Manhattan plot of the association analysis for IBD-minusCD between VEO taken
as cases and EO taken as “control”. The horizontal black line represent the thresholds of
P = 3.57 x 10–7 for Bonferroni significance.
(TIFF)

S4 Fig. Principal component analysis (PCA) plot of the pediatric CD and control group.
Yellow and blue dots represent CD and control respectively.
(TIFF)

S5 Fig. Principal component analysis (PCA) plot of the pediatric IBD-minusCD and con-
trol group. Yellow and blue dots represent IBD-minusCD and control respectively.
(TIFF)

S6 Fig. Relationship Between Polygenic Liability Score and Age of Onset of CD.
(TIFF)

S7 Fig. Relationship Between Polygenic Liability Score and Age of Onset of UC.
(TIFF)

S1 Table. Summary of SNP association findings for CD analysis.
(CSV)

S2 Table. Summary of SNP association findings for UC analysis.
(CSV)

S3 Table. Summary of CD association findings from this study for top SNPs reported in
Jostins et al. 2012
(XLSX)

S4 Table. Summary of UC association findings from this study for top SNPs reported in
Jostins et al. 2012
(XLSX)

S5 Table. Summary of association findings from this study for CD comparing very early
onset (VEO) with early onset (EO) patients.
(CSV)

S6 Table. Summary of association findings from this study for UC comparing very early
onset (VEO) with early onset (EO) patients.
(CSV)
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