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Abstract
Player tracking data represents a revolutionary new data source for basketball analysis, in

which essentially every aspect of a player’s performance is tracked and can be analyzed

numerically. We suggest a way by which this data set, when coupled with a network-style

model of the offense that relates players’ skills to the team’s success at running different

plays, can be used to automatically learn players’ skills and predict the performance of

untested 5-man lineups in a way that accounts for the interaction between players’ respec-

tive skill sets. After developing a general analysis procedure, we present as an example a

specific implementation of our method using a simplified network model. While player track-

ing data is not yet available in the public domain, we evaluate our model using simulated

data and show that player skills can be accurately inferred by a simple statistical inference

scheme. Finally, we use the model to analyze games from the 2011 playoff series between

the Memphis Grizzlies and the Oklahoma City Thunder and we show that, even with a very

limited data set, the model can consistently describe a player’s interactions with a given

lineup based only on his performance with a different lineup.

Introduction
Numerical evaluation of basketball players has long been based on box score statistics. Such
evaluations, by nature of the limited data set from which they draw, generally center around a
player’s contributions to the five positive statistics—points, rebounds, assists, steals, and blocks
—while neglecting more nuanced aspects of the player’s value, such as his/her ability to make
high quality (non-assist) passes, or set good screens, or rotate effectively on defense. These less
easily quantifiable aspects of a player’s performance are traditionally evaluated only qualita-
tively, informed by the intuition of a coach or analyst who has spent a significant amount of
time watching the players perform.
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This distinction between quantifiable and non-quantifiable player skills may be on the verge
of disappearing. Beginning in the 2013–2014 season, all thirty arenas of the National Basketball
Association (NBA) contain a system of cameras and tracking software that allow the spatial
coordinates of all players and the ball to be recorded and processed digitally [1, 2]. In this way
essentially every aspect of the game is made accessible for quantitative analysis—every pass,
screen, and defensive rotation can in principle be analyzed quantitatively by those with access
to this “player tracking” data.

Thus far, publicly-available studies using player tracking data have largely focused on aug-
menting or refining the use of conventional statistics. For example, recent studies have exam-
ined the effect of a defender’s proximity on shooting percentage [3], broken down shooting
percentage based on how many dribbles are taken before the shot [1], characterized the effect
of defender proximity on shooting percentage [4], and examined the dependence of rebound
rate on spatial location [5]. These studies are certainly illuminating, and they suggest significant
improvements that can be made to the conventional statistics by which players are evaluated.
Recently, however, researchers have begun to consider that the usefulness of player tracking
data may go well beyond creating or augmenting statistical descriptors of individual players,
and may in fact catalyze a fundamental change in the way we think about the structure of bas-
ketball offense and defense [6, 7]. In this spirit, we consider here a similarly ambitious use for
player tracking data.

Recent studies have proposed the idea that describing a basketball offense is essentially a
network problem [8], in the sense that each possession progresses from a well-defined starting
point toward a well-defined goal through a particular sequence of intermediary states. In this
description, a “node” in the “offensive network” is a particular arrangement of the players and
the ball within the offense, and a “link” in the network is the set of ball and player movements
that are necessary to bring the offense from one node to another. The problem of optimizing
the performance of the offense, then, can be seen as equivalent to optimizing the flow of posses-
sions through the offensive network [8–10]—the offense should move as efficiently as possible
from the first node (the inbounds pass) to the last (a made shot).

The power of this network description becomes apparent when one imagines coupling it
with the full player tracking data set. Indeed, player tracking data allows one to reconstruct
directly how the offense progresses from the inbounds pass to a made basket. The success rate
of each step along the way provides information about the effectiveness of links in the network,
which in turn are a reflection of the skill levels of the players involved. Thus, by “watching” the
performance of the offense with player tracking data, it should be possible to learn the skill lev-
els of the players involved, including any skills that affect the team’s offensive performance.
Once these skills are known, one can predict quantitatively how the offense will perform when
called upon to run different plays or to substitute different players whose skills are also known.

In this paper, we suggest a method for achieving these goals using player tracking data. We
first outline generally how to build a network model of the offense that relates player skills to
the effectiveness of a given play, and we provide a specific, simplified example of such a model.
We then discuss the process of learning player skills from player tracking data, and we show
that in general these skills cannot be measured directly from the data due to a lack of informa-
tion about which play a team is attempting at the moment of a failed offensive sequence. None-
theless, we show that this issue can be addressed using an iterative procedure based on
Bayesian inference. The effectiveness of this procedure is then demonstrated by means of a test
on simulated data. Finally, we use our simplified network model to examine hand-recorded
data from the 2011 playoff series between the Oklahoma City Thunder and the Memphis
Grizzlies. We show that, despite a very limited data set, we are able to correctly predict a
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player’s interactions with a particular lineup based on data from his performance with a differ-
ent lineup.

In the following Results section, we present our method and examine one specific imple-
mentation of it using simulated and real data. The Discussion section briefly outlines some lim-
itations and possible generalizations of our work. Finally, the Methods section describes details
of the collection and processing of our NBA data.

Results

1 Constructing a network description of basketball
In order to create a network model of a basketball offense, one must first define the set of nodes
in the network. These nodes constitute unique states of the offense—i.e., the positions of all
offensive players and the ball. For example, one can define the nodes by dividing up the court
into discrete regions and then using the set of all possible locations of all five players and the
ball to identify each node, so that every time a player moves from one region of the court to
another the offense transitions from one node to another. (In principle, one can also incorpo-
rate the velocity of each player in the definition of nodes.) One could also employ a more
course-grained definition of nodes, for example by neglecting the positions of off-ball players
or by using a fine spatial grid for some players and a course grid for others. (In Ref. [11] it was
suggested that such nodes could be defined based on the spatial locations where players tend to
exhibit “bursts” of acceleration.) In the model described below in Sec. 3, we present a simplified
example of such a network wherein each node is identified only by which player holds the ball
and whether that player’s position is “high” or “low”.

Once a set of nodes is defined, one can take one of two approaches to describing the flow of
possessions through the offensive network. The simpler approach is to view players as “random
agents”, characterized only by their tendencies to move the offense in one way or another [12–
14]. Under this description, the transition rates of the offense from one node to another can be
measured directly from the data, and there is no need for the more advanced statistical infer-
ence algorithms that we describe in Sec. 3. This “random agent” description, while it may be
useful for describing sports like soccer or hockey where there is generally no playbook from
which the team operates, is unlikely to accurately describe professional basketball, where the
progression of the offense is influenced both by the skills of the players and by the direction of
the coach. A complete description of the random agent model is therefore confined to Appen-
dix A.

The alternative to the random agent model can be called the “coached agent”model, which
draws a distinction between the success rates of the various attempted transitions of the offense
(“links”), which depend on the skill levels of the players involved, and the rates at which the
plays are attempted, which depend on the coach and on the team’s overall offensive philoso-
phy. A full description of a coached agent offense, then, involves knowing the set of all player
skills and the rate at which each link in the network is attempted. If this information is known,
then in principle the offense is completely described, and the effectiveness of the offense can be
predicted under any number of hypothetical variations, including swapping one player for
another or changing the team’s set of attempted plays. (In other words, a description of an
offense of “coached agents” allows one to address the problem of optimal play calling.) In Sec.
5 we comment briefly on possible hybrids between the “coached” and “random” agent models.

In the coached agent model, one must provide not only a definition of the nodes of the
offense, but also an analytical definition of how the success rates of the links between these
nodes depend on the skill levels of the players involved. For example, if node a describes a state
where the point guard has the ball on the wing and node b describes a state where the center
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has the ball in the low post, then the success rate fab of link abmust depend on the point
guard’s skill in making the entry pass. More generally, for each possible link ij one needs to
define a formula fij(S) that relates the set of all player skills, denoted S, to the probability of the
offense successfully transitioning from node i to node j, given that the transition is attempted
(in general, fij 6¼ fji). In this way, the definition of all success rates {fij} also involves the quantita-
tive definition of all player skills that are relevant to the offense. One specific definition of
player skills and success rates is discussed in Sec. 2 and diagrammed in Fig 1. For those links ij
that involve a shot attempt—i.e., where the node j represents the goal—fij is best defined as the
expected number of points scored by the shot attempt (so that the value of fij depends on
whether the shot taken is a 2-point or a 3-point attempt).

Once the formulae fij(S) are defined, one can predict the expected number of points scored
per possession by the offense, F, by summing over all possible attempted plays α, weighted by
the probability Pα that the team will attempt them during a given possession:

F ¼
X

all plays a

Pa

Y
all links ij2a

fijðSÞ: ð1Þ

In this paper, we use the term “play” to mean “a sequence of moves designed by the offense to
produce a shot attempt.”

Of course, it is important to note that the apparent skill levels of the players, which define
the success rates fij of different attempted transitions, depend not only on the skills of the offen-
sive players but on the quality of the defense being faced. In this sense any player skill is under-
stood to be defined relative to a given defense. When considering the performance of a player
over an entire NBA season, for example, such skills are naturally defined relative to the league-
average defense. One could also imagine considering a player’s performance against a specific
opponent, and thus defining the player’s skills relative to that particular matchup.

Fig 1. Diagram of the high/lowmodel of a basketball offense. For clarity, the diagram shows only two of the five offensive players; the full diagram has 11
nodes (including the goal) and 110 links. Each link is labeled by its corresponding success rate.

doi:10.1371/journal.pone.0136393.g001
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In Sec. 4 we show how player tracking data can be used to learn the set of all player skills, so
that the effectiveness F of the offense can be evaluated for any set of play frequencies P� {Pα}
and any combination of players. But first we outline a simple model of a basketball offense,
which we call the “high/low”model, that will serve as a proof of concept for the network
approach advocated in this paper.

2 The high/low model
In the previous section we outlined the general ingredients necessary for creating a network
model of a basketball offense. In this section we introduce one specific example of such a
model, which we dub the “high/low”model. In this model, the state of the system is considered
to be entirely characterized by which player holds the ball and whether that player’s position is
“high”—far from the basket—or “low”—close to the basket. We set the cutoff between high
and low using the perimeter of the free throw lane (the “key”). For example, if the point guard
holds the ball at the top of the key, this state is labeled “1 high”, or “1H”; if the shooting guard
has the ball in the key this is labeled “2 low”, or “2L”; etc. (Following the convention of basket-
ball coaching, the five offensive players on the court are numbered 1—5, with 1 being the point
guard, 2 the shooting guard, 3 the small forward, 4 the power forward, and 5 the center.) The
nodes of this network are shown as bold, circled characters in the diagram of Fig 1, which for
visual simplicity depicts a network with only two players.

Within this model, we further assume that the success rate of any given link depends only
on the skills of the player holding the ball. Specifically, the success rate of a pass by player i to

another player in a “high” state is defined to be equal to player i’s high passing ability pðhÞi ; the

success rate of a low pass is denoted pðlÞi ; the success rate of a high shot is sðhÞi ; and the success

rate of a low shot is sðlÞi . The probability of player i successfully moving from high to low is
defined as the player’s “driving ability” di. For simplicity, we take the success rate of a move
from low to high to be equal to unity.

Within the model diagrammed in Fig 1, the quality of the offense is completely character-

ized by the shooting skills fsðhÞi ; sðlÞi g, passing skills fpðhÞi ; pðlÞi g and driving skills {di} of each
player. Thus, one can completely determine the expected number of points scored by the team
for a given use of plays {Pα} by performing the sum over all plays denoted by Eq (1).

Of course, one can easily imagine more involved models for the offense than the high/low
model presented here; for example, one could introduce a more finely resolved definition of
player positions or define success rates in terms of multiple players’ activies rather than just
that of the ball handler. Nonetheless, we show in Sec. 5 that even this very simple model can
provide a basis for describing a player’s skill set and predicting its interaction with the skills of
other players, even using a very limited data set.

3 A statistical inference algorithm for learning player skills
Unlike in the “random agents”model detailed in Appendix A, for the “coached agents”model
that is the main subject of this paper, one cannot, in general, measure player skills directly from
player tracking data. This is because player tracking data provides only a sequence of plays as
they are performed by the players, and does not give any information about the team’s original
intentions (i.e., the play as diagrammed by the coach). Consider, for example, the problem of
determining a player’s passing skill in the high/low model. A typical possession within this
model might progress from the state 1H to the state 3H to a turnover (denoted, for brevity, 1H
! 3H! T). But in this sequence it is not clear how the turnover by the small forward should
be interpreted. Was the turnover the result of a failed high pass? A failed low pass? A failed
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drive? In order to determine how to assign blame for this turnover among the player’s various
skills, one needs to know something about which plays the team tends to attempt. Thus, the
frequencies of play calls {Pα} must be inferred simultaneously with the player skills. In this
endeavor one can employ a statistical inference algorithm, such as the one we outline below.

Generally speaking, inference algorithms are used to infer the parameters of a statistical
model in cases where there are latent variables, which cannot be measured directly from the
data [15]. In our case, the relevant model is the network description of a basketball offense (for
example, the high/low model), the parameters are the player skills, and the latent variables are
the frequencies with which different plays are attempted by the team. The data from which
model parameters are to be estimated consists of an ordered list of observed states of the
offense for each possession (for example, data from one possession might read 1H! 5L! 2
points). A successful inference scheme should provide a way to simultaneously estimate the set
of player skills S and the set of play frequencies P from this data using an iterative procedure.
One particularly straightforward implementation of this procedure is as follows.

First, an initial guess is made for P—that is, for the value of the frequency with which all
plays are attempted. For example, below we use the guess where all play frequencies are taken
to be identical. One should also assume a prior distribution for each of the skill values. Here, as
an example, we use the uninformed “flat” prior, which assumes that all skill values are drawn
with equal probability from their entire domain. These initial guesses for P and S are refined
over time, and should not be reflected in the final inferred values of S for a large enough data-
set. This can be verified explicitly by running the algorithm with different initial guesses.

It is important to note that, in principle, the number of elements in P should be very large in
order to account for all possible plays that could be run by the team. In practice, however, it is
sufficient to approximate the offense by some finite number Np of plays that tend to be
attempted. These can be inferred from the data by collecting the Np most commonly seen plays
by the offense that end in a shot attempt. The effect of increasing the size of the play set Np is
examined in Appendix B.

Once initial guesses have been made for P and S, one can estimate values for each player
skill S using the following algorithm. First, one should count the total number of attempted
and failed demonstrations of each skill in the dataset. For possessions ending in a shot attempt,
this counting is straightforward: all steps before the shot attempt represent one successful dem-
onstration of the corresponding skill (for example, the passing/driving skill of the ball handler),
and the shot attempt represents one attempt at a shot (either successful or failed). For poses-
sions ending in a turnover, however, the failed play can be counted fractionally toward a num-
ber of different skills, with the count being weighted by the probability that a given movement
of the offense was being attempted. In particular, one should estimate the probability Prob
(αjk) that the observed sequence k was the result of an attempt to run a given play α, and then
count each step of the observed sequence as a number Prob(αjk) of attempts to run the corre-
sponding step of play α. The probability Prob(αjk) can be estimated using Bayes’ rule:

ProbðajkÞ ¼ ProbðkjaÞPðeÞ
a

ProbðkÞ : ð2Þ

Here, Prob(kjα) is the a priori probability that an attempt to run play α will result in the
observed sequence k; this probability is a function of the skills of the players involved. The
value PðeÞ

a is the previously estimated probability that the team will attempt to run play α on a
given possession, and Prob(k) is the total probability that a randomly chosen possession will

follow the sequence k: ProbðkÞ ¼ P
a0Probðk j a0ÞPðeÞ

a0 .
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Once the number of failed and attempted skill demonstrations have been tallied, one can
use them to produce updated estimates for the skill values, S. More specifically, these numbers
are used to produce posterior distributions for each skill value. This is described in detail for
the high/low model in Appendix C. In the limit of a very large dataset, the posterior distribu-
tions have small variance and the estimated skill value is generally defined by the ratio of the
number of successful skill demonstrations to the total number of attempted skill demonstra-
tions (i.e., the success rate of the particular skill). We emphasize, however, that these numbers
cannot, in general, be read directly from the dataset. As discussed above, making an estimate of
skill values requires one to determine how blame should be assigned for failed play sequences,
and this necessitates the use of a statistical inference scheme.

Finally, once updated estimates for the skills S have been obtained, one can update the esti-
mate for the play frequencies fPðeÞ

a g according to

PðeÞ
a ¼

P
kProbðkjaÞ

N
; ð3Þ

where ∑k denotes the sum over all sequences in the dataset, and N is the total number of such
sequences.

The process outlined in the previous three paragraphs gives improved estimates of the
player skills S, as defined by the posterior distribution for each skill (see Appendix C), and for
the team play frequencies P, starting with an initial guess. This process can be repeated multiple
times, replacing PðeÞ

a and S by their newly-estimated values after each iteration, until all the ele-
ments of S and P converge. In practice,* 10 iterations are generally sufficient to produce con-
vergence, and 100 possessions (about one game’s worth) can be processed within a few
seconds.

4 Test on simulated data
In order to verify that the method outlined in Sec. 3 can consistently learn player skills, we
tested our inference algorithm on simulated data from the high/low model. Specifically, we
wrote a short simulation of a team of five players with arbitrarily-chosen skills running plays
from a playbook of twenty plays. The play frequencies P were also randomly chosen, and 5000
possessions were simulated—this corresponds to 82 games’ worth of data (a full NBA season)
for a lineup that plays together roughly 30 minutes per game. This data was processed using
the algorithm described in Sec. 3 in order to infer the assigned traits without any prior input
regarding their true values. The inferred values were then compared to the ones input to the
simulation in order to assess the accuracy of the algorithm.

Fig 2 shows the resulting mean squared error in the inferred player skills as a function of the
number of possessions analyzed. The results suggest that after a season’s worth of data the
player skills are known to within a few percent, and that the inferred value of skills generally
converge to the actual values after a few hundred possessions. This analysis uses Np = 20;
results at other values of Np are given in Appendix B.

5 The 2011 OKC/Memphis NBA Playoff series
In Sec. 4 we showed that our statistical inference algorithm can correctly infer the skill levels of
players in a simulated offense. Given this success, the prospect of using the algorithm to learn
the traits of actual NBA players is naturally enticing. A successful inference scheme, coupled
with a suitably sophisticated network model, would allow one to learn the skill levels of NBA
players from player tracking data and thus predict how the team’s effectiveness would be
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affected by any number of changes, including player trades, substitutions, or altered play
calling.

Unfortunately, player tracking data is not yet available in the public domain. Thus, we
devised the following basic test of our general strategy. In order to obtain some “poor man’s
player tracking data”, we recorded by hand data corresponding to 401 possessions from the
2011 playoff series between the Oklahoma City Thunder (OKC) and the Memphis Grizzlies.
This data is described in more detail in the Methods section. Possessions were then sorted
according to which lineup the team had on the floor. For example, the Memphis starting lineup
of Conley-Allen-Young-Randolph-Gasol played 84 possessions together during the first three
games, while the OKC starting lineup of Westbrook-Sefolosha-Durant-Ibaka-Perkins played
111 possessions; we refer to these as “lineup 1” for each team. Memphis’s second-most-used
lineup was Conley-Mayo-Battier-Randolph-Gasol, while for OKC it was Westbrook-Harden-
Durant-Collison-Ibaka; these we denote “lineup 2”.

One particularly exciting feature of our method is its ability to potentially predict how a
given player will contribute to an offense based on his performance in a different offense and
surrounded by different teammates. We tested this feature by examining how well the inferred
skills for a player in one lineup can predict that player’s skills in a separate lineup. For the
remainder of this section we focus our analysis on the point guards Conley andWestbrook, for
whom the data was most robust, given their centrality to the movement of the offense. We
used our inference algorithm to infer the skills of Conley and Westbrook using only the data
corresponding to lineup 2, and then we checked whether these inferred skills constituted an
accurate prediction of the skills exhibited by the players during their performance in lineup 1.

Fig 3 shows that, indeed, the skills inferred from lineup 2 serve as an accurate input for pre-
dicting the players’ performance in lineup 1, even though each player has a significantly differ-
ent role in lineup 2 as compared to lineup 1. As more data is included from lineup 1, we find
that the two estimates come closer and closer. This result suggests that, despite the extremely

Fig 2. Themean squared error in the inferred value of player skills for a simulated high/low offense as
a function of the number of possessions analyzed. The curve is a power-law fit. The inset shows the
same data plotted in logarithmic scale.

doi:10.1371/journal.pone.0136393.g002
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limited nature of the data being analyzed and the parsimony of the high/low model, our
approach has the ability to predict quantitatively how a player will perform given a different set
of teammates and a different offensive role. For example, Westbrook’s effectiveness in lineup 1
can be correctly inferred from his noticeably more aggressive performance in lineup 2—in
lineup 2, Westbrook produced a shot attempt or a turnover on 37/86 of his team’s possessions,
or 43%, while in lineup 1 that ratio was only 33/112, or 29%. A table containing the inferred
skills of both Conley and Westbrook is given in Appendix D along with some relevant
discussion.

A more stringent test of our approach would be to use the inferred skills for a group of play-
ers to predict their offensive performance after a significant lineup change (say, after one of the
players is traded for another) or a change in offensive philosophy (say, after a new coach is
acquired). Unfortunately, our very limited data set does not allow us to perform such a test at
present.

Discussion
In closing, we would like to emphasize that the goal of this paper is not to report a particular
empirical finding or to promote a particular set of metrics and diagrams for basketball analysis,
but rather to suggest an exciting and novel strategy for taking advantage of a revolutionary data
source. The network-based strategy outlined here offers the potential for a new degree of pre-
dictive power for analysts, managers, and coaches in sports. Namely, it comprises a tool for
learning, in a completely automated and unbiased way, the skill levels of different players and
for predicting quantitatively how those players will perform together as a team. Such a tool has
the potential to have a significant effect on coaching, scouting, and personnel decisions in pro-
fessional sports [2].

Fig 3. Themean squared difference between the skills inferred from lineup 1 and the skills inferred from lineup 2 as a function of the number of
possessions analyzed from lineup 1. As more data is analyzed, the inferred skills for both Conley andWestbrook converge toward the prior estimate
based on their performance in lineup 2.

doi:10.1371/journal.pone.0136393.g003
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Of course, the real impact of the approach suggested here awaits its application to the actual
player tracking data. Under the influence of such data, the simple high/low model will likely be
replaced by richer models, including perhaps models that incorporate a finer spatial grid or a
continuous description of spatial positions. Such detailed models may require one to adapt
more advanced techniques from spatial statistics (as, for example, in Refs. [15, 16]).

We also note that, while our analysis has focused on basketball, our method can be equally
applied to any sport that can be modeled as a network [17]. Our definition of a “network” as a
sequence of states connected by skill-based transitions is extremely general, and can readily be
extended to other individual or team sports. For some situations it may be expedient to create a
hybrid between the “coached agent” and “random agent”models we have described here and in
Appendix A, in which players are described as making autonomous, random decisions within
some limited aspects of the offense, while other aspects are dictated by the coach or team strategy.
While this hybrid would require some further extensions of the formal methods presented in
Secs. 1 and 3, there is no reason to think that these extensions would be prohibitive.

One can also notice that, while this paper has focused on optimizing the performance of an
offense, the entire analysis can be recast in terms of defense as well. For a defensive team, the
goal is to minimize the effectiveness of the opposing offensive network. Thus, one can define a
player’s defensive skills in terms of how well they prevent certain transitions in the opposing
offense. In this way the entire analytical method can be used directly on the defensive end, and
the effectiveness of an interacting “team defense” can be quantified. The full quality of the
team, then, is the difference between the effectiveness F of the offensive network [given by Eq
(1)] and the entirely analogous effectiveness of the defense.

In closing, we look forward to future work that can apply the approach we have advocated
here to a large corpus of player tracking data. Such work will likely spur the development of
new network-style models and refined statistical inference algorithms, but we remain confident
that the general strategy we have described can be successful if given sufficient attention and
the full power of many games worth of player tracking data. If this is indeed the case, then per-
haps the network-based description of basketball will provide a suitably revolutionary applica-
tion for a revolutionary new data source.

Methods
The data analyzed in Sec. 5 was recorded by hand from the first three games of the 2011 playoff
series between the Oklahoma City Thunder and the Memphis Grizzlies. Footage for the games
was provided by Synergy Sports (www.mysynergysports.com). For each possession, defined as
the interval of time in which one team continuously has possession of the ball, the sequence of
offensive states was recorded as defined by the “high/low”model described in Sec. 2. Specifi-
cally, the state of the offense at a given instant was labeled according to which player (labeled
1–5) had the ball and whether that player was outside the key (“high”, or H) or inside the key
(“low”, or L). A total of 780 such sequences were recorded, 401 for Memphis and 379 for OKC.

Each sequence was identified with the five-man lineup on the floor at the time it was per-
formed. The two most common lineups for each team are analyzed in Sec. 5. Sequences that
did not correspond to these lineups were not included in the analysis.

Appendix A The “RandomAgents”model of a basketball offense
In the main body of this paper, which focuses on the “coached agent”model, a distinction is
drawn between players’ intentions and players’ abilities. In other words, the team’s use of plays
P is considered a separate input to the offense from the players’ skills S. This distinction allows
one a much enhanced ability to predict the offense’s performance. However, it also greatly
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increases the number of variables necessary to describe the offense and requires the use of
inference algorithms, as described in Sec. 3. A much simpler approach is to abandon the dis-
tinction between skills and intentions and talk only in terms of players’ tendencies. This
approach amounts to assuming that the movement of the offense starting at any particular
node is a random decision that is determined only by which players are on the court. In other
words, in the “random agent”model the offense is described as a Markov chain, jumping ran-
domly from one node to another in search of the goal [12–14].

While the random agent description offers significantly less predictive power than the coa-
ched agents model—it becomes impossible to describe how a team’s performance will be differ-
ent under a different offensive scheme, or how a player’s decisions will change with a different
set of teammates—it offers the advantage of being much simpler to implement while still cap-
turing some effect of the interaction between players’ respective skill sets [18]. While we remain
doubtful that it can be implemented to great success in professional basketball, it is easy to
imagine that the random agent model can be beneficial in soccer, hockey, or other sports
where teams don’t tend to use pre-established plays.

In the random agent model, the effectiveness of a team of players can be determined as fol-
lows. First, one should expand slightly the set of nodes of the offense to account explicitly for
the possibility of different possession-ending outcomes. For example, in basketball one would
define separate nodes for “missed shot”, and “turnover”. Each pair of nodes ij has a particular
transition rate rij that can in principle be measured directly from the data. For example, if h is
the node that represents a given player holding the ball in the high post and t represents a turn-
over, then rht is the fraction of the time that the player turns the ball over when given the ball in
the high post. For any possession-ending outcome e, the rate rei is zero for all nodes i except i =
e, for which rei = 1. In technical language, one can say that e is an “absorbing state”. (A missed
shotm, generally speaking, cannot be classified as a possession-ending outcome, since some
missed shots produced offensive rebounds. Thus, rmm < 1, and this represents the probability
of a player’s shot not being rebounded by his own team.) If all transition rates rij are known,
then one can assemble them into a “propagation matrix” U, whose elements Uij = rij. This
matrix describes the evolution of the offense during one step.

To determine the expected offensive output of the team, one should know the average initial
state of the offense, which can be described as a vector y whose elements yi denote the probabil-
ity that the team starts its offense at node i. For example, if the offense always starts with the
ball in the point guard’s hands, then y is a vector whose elements are all zero except for that ele-
ment corresponding to the node 1H (or its equivalent), which has y1H = 1. The product Uy pro-
duces a vector that describes the expected state of the offense after one step. The state of the
offense after many steps is given by Un y, with n!1; here, Un denotes the matrix Umulti-
plied by itself n times. (The matrix U1 is analogous to the “S-matrix” in quantum mechanics,
which dictates the evolution of a system from its initial state.) Thus, if g corresponds to the
“goal” node indicating points scored, then the expected output of the offense is

F ¼ lim
n!1

ðUnyÞg ð4Þ

Here, the subscript g indicates the gth component of the vector Un y.
Thus, the expected offensive output can be evaluated if the tendencies rij are known for all

players in the offense. Interactions between player skills arise in the way that different rates rij
are chained together sequentially in moving the ball from the initial state y to the goal g. Within
this model, one can imagine swapping out one player for another, so that the corresponding
transition rates rij are modified, and then evaluating Eq (4) to see whether the team’s overall
performance has improved or declined.
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Appendix B Effect of play set size
In Sec. 3 we showed how a statistical inference algorithm can be used to infer player skills. This
inference procedure requires one to make an estimate of which plays the team tends to attempt,
which allows one to construct the set of play frequencies P. In principle, there is an enormous
number of potential plays that a team can attempt, which is limited only by the finite duration
of the shot clock. In any reasonable offensive model, trying to include every possible play that
the offense can attempt makes P so large that it becomes impossible to deal with computation-
ally. In practice, however, the vast majority of these possible plays will never be attempted. For
example, the play 1H! 5L! 2L! 5L! 2L! 5L! 2L! goal has probably never been
attempted in the history of professional basketball, much less occupied an importance place in
a team’s playbook. Similarly, the great majority of sequences that are possible for the offense
occur so rarely that they can be safely ignored by our algorithm. Instead, our strategy is to con-
struct a finite set of possible plays that the team is likely to attempt by making a list of all pos-
sessions recorded in the data that end in a shot attempt and then choosing from this list the top
Np most frequently used.

Clearly, if the number Np of plays included is too small, the model will fail to accurately
describe the offense and thus provide a poor fit to the data, while if Np becomes too large one
runs the risk of over-fitting the data and losing any predictive power. In order to see how the
accuracy of the algorithm depends on the number of plays included in P, we evaluated the
accuracy of the algorithm’s inferred skills as a function of Np, again using the simulated data
described in Sec. 3. The result is shown in Fig 4, which generally suggests that the accuracy of
the method converges fairly quickly as more potential plays are added to P. Given this result,
we speculate that for the description of a real (professional) basketball offense it is likely suffi-
cient for P to contain only a few dozen potential plays.

Fig 4. Themean squared error in the inferred value of player skills for a simulated high/low offense as
a function of Np, the number of plays included in the set of possible team plays. 10,000 possessions
are analyzed for each value of Np. The curve is a power-law fit.

doi:10.1371/journal.pone.0136393.g004
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Appendix C Prior and posterior distributions for the skill values in
the high/lowmodel
The goal of the inference algorithm presented in Sec. 3 is to arrive at estimates for each skill
value in the offense. Equivalently, one can say that the algorithm is designed to use some set of
data D to produce an accurate posterior distribution fpost(sjD) for a given skill s. This posterior
distribution is related to the assumed prior distribution, fprior(s) by

fpostðsjDÞ / ProbðDjsÞfpriorðsÞ: ð5Þ

Here, Prob(Djs) is the probability that a player with skill s will produce the observed data D. In
this paper, we choose for the prior distribution fprior(s) a simple uniform distribution, which can
be written in the notation of the beta distribution as fprior(s) = Beta(s;1,1). (Here, the final two
arguments a and b of the function Beta(s;a, b) are the shape parameters of the beta distribution.)

In the first step of the inference algorithm described in Sec. 3, initial guesses for the set of play
frequences P are used to arrive at estimates for the number of successful skill demonstrations, ns,
and for the number of total attempted skill demonstrations, ntot. If the outcome of each step of
each play is considered to be statistically independent, then the probability Prob(Djs) is a bino-
mial distribution: Prob(Djs) = Binomial(ns;ntot, s). Here, the skill s is taken to be the probability
of successful completion of a given step of a play (e.g., the passing or driving skill of a particular
player, or the player’s shooting percentage). In this case, since the beta distribution is conjugate
to the binomial distribution, the posterior distribution is also a beta distribution:

fpostðsjns; ntotÞ ¼ Betaðs; ns þ 1; ntot � ns þ 1Þ: ð6Þ

More generally, in cases where one can make a more informed statement about the prior
expectation for player skill values, the prior distribution can be taken to be fprior(s) = Beta(s;α0,
β0) with some shape parameters α0, β0 > 0. Using the beta distribution as a prior allows one to
write a simple expression for the posterior distribution:

fpostðsjns; ntotÞ ¼ Betaðs; ns þ a0; ntot � ns þ b0Þ: ð7Þ

The corresponding mean skill value is then

hsi ¼ ns þ a0

ntot þ a0 þ b0

; ð8Þ

and the associated standard error is

ss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðns þ a0Þðntot � ns þ b0Þ
ðntot þ a0 þ b0Þ2ðntot þ a0 þ b0 þ 1Þ

s
: ð9Þ

In the main text, when we refer to an “estimated skill value”, we generally mean hsi as given
by Eq (8) with α0 = β0 = 1. Of course, as mentioned in Sec. 1, for shooting skills this probability
is multiplied by the average number of points scored per made shot for the player in question,
so that s (as, for example, in Table 1) represents the number of points scored per shot attempt.

Appendix D Inferred skills for Conley andWestbrook in the high/
lowmodel
In Sec. 5 we briefly described our results analyzing NBA games between the Memphis Grizzlies
and the Oklahoma City Thunder in terms of the high/low model presented in Sec. 2. Table 1,
below, shows the values of the player skills that were inferred for the point guards of both

Building Data-Driven Network Models in Basketball

PLOS ONE | DOI:10.1371/journal.pone.0136393 September 9, 2015 13 / 15



teams, Conley and Westbrook, against the opposing defense. Each listed skill corresponds to a
weighted average between the values inferred from lineup 1 and lineup 2. The definition of
each skill is provided in Sec. 2.

Based on the inferred values of S and P, Eq (1) predicts a nearly identical offensive efficiency
F for the two teams’ starting lineups: FOKC/FMemphis = 1.02. It is perhaps not surprising, then,
that the series took seven games and four overtimes to decide.

One can notice from Table 1 that Conley’s high/low skills compare very favorably with
Westbrook’s, rating essentially identical in all skills except for high shooting, where Conley
rates significantly higher. This favorable comparison comes despite the fact that Westbrook is
generally considered the better player. This discrepancy can likely be attributed to the very
small data sample size—in a data set of three games, one “off game” by Westbrook or “hot”
game by Conley would greatly alter their relative perceived value. (In Game 3, for example,
Wesbrook shot only 7–22 from the floor and committed seven turnovers, while in Game 2
Conley show 8–10 from “high”, with three 3-pointers.) And, certainly, no one who watched
Conley’s performance during these three games should be surprised that his apparent skill lev-
els are very high.

On the other hand, there is perhaps an important dependency reflected in Table 1 that is
not captured directly by our network description. Westbrook is generally called upon to carry a
significantly larger offensive load than Conley, a fact that is reflected in the much larger per-
centage of OKC’s possessions that end with Westbrook taking a shot or committing a turnover:
about 35%, as compared to only about 15% for Conley. In basketball analysis, it is generally
accepted that larger usage rates for a given player are correlated with declining success rates,
due primarily to the increased focus such a player receives from the defense. Such a relation-
ship is called a “skill curve” [19], and under certain situations it can lead to surprising and
counterintuitive phenomena in the offensive network [8]. Any dependencies of success rate on
usage rate are not considered explicitly in this paper, but in principle they can be incorporated
into the functional definitions of the network success rates fij, which become functions not just
of the player skills S but of the play usage rates P as well.

For models that do not make explicit consideration of such effects, one should be careful
when making predictions about hypothetical lineups to ensure that each player’s usage rate in
the new offense is not significantly different than the player’s usage rate in the data from which
their skills are inferred. Otherwise, one can get spurious predictions based on unrealistically
robust estimates of player skills.
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Table 1. Inferred skill values for Mike Conley and Russell Westbrook based on their performance in
the first three games of the 2011 Memphis-OKC playoff series. The skills are based on the high/low
model, defined in Sec. 2 and Fig 1, and are listed together with ± one standard error [see Eq (9)].

Player s(h) s(l) p(h) p(l) d

Conley 1.56±0.29 1.01±0.29 0.98±0.01 0.98±0.03 0.87±0.07

Westbrook 0.66±0.20 1.04±0.20 0.98±0.02 0.75±0.11 0.85±0.06

doi:10.1371/journal.pone.0136393.t001
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