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Abstract

Disruption of the Hedgehog signaling pathway has been implicated as an important molecular mechanism in the
pathogenesis of fetal alcohol syndrome. In severe cases, the abnormalities of the face and brain that result from prenatal
ethanol exposure fall within the spectrum of holoprosencephaly. Single allele mutations in the Hh pathway genes Sonic
Hedgehog (SHH) and GLI2 cause holoprosencephaly with extremely variable phenotypic penetrance in humans. Here, we
tested whether mutations in these genes alter the frequency or severity of ethanol-induced dysmorphology in a mouse
model. Timed pregnancies were established by mating Shh+/2 or Gli2+/2 male mice backcrossed to C57BL/6J strain, with
wildtype females. On gestational day 7, dams were treated with two ip doses of 2.9 g/kg ethanol (or vehicle alone),
administered four hrs apart. Fetuses were then genotyped and imaged, and the severity of facial dysmorphology was
assessed. Following ethanol exposure, mean dysmorphology scores were increased by 3.2- and 6.6-fold in Shh+/2 and Gli2+/2

groups, respectively, relative to their wildtype littermates. Importantly, a cohort of heterozygous fetuses exhibited
phenotypes not typically produced in this model but associated with severe holoprosencephaly, including exencephaly,
median cleft lip, otocephaly, and proboscis. As expected, a correlation between the severity of facial dysmorphology
and medial forebrain deficiency was observed in affected animals. While Shh+/2 and Gli2+/2 mice have been described
as phenotypically normal, these results illustrate a functional haploinsufficiency of both genes in combination with
ethanol exposure. By demonstrating an interaction between specific genetic and environmental risk factors, this study
provides important insights into the multifactorial etiology and complex pathogenesis of fetal alcohol syndrome and
holoprosencephaly.
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Introduction

Holoprosencephaly (HPE) occurs in approximately 1 in 10,000

live births [1,2] but an observed prevalence of 1 in 250

conceptuses argues that it is one of the most common human

developmental abnormalities [3]. Defined by incomplete division

of the forebrain and characterized by medial forebrain deficien-

cies, HPE frequently co-occurs with facial abnormalities, including

clefts of the lip and/or palate, microphthalmia, hypotelorism, and

midfacial hypoplasia [4]. Notably, in both humans and animal

models, these facial phenotypes as well as medial forebrain

deficiencies can result from prenatal ethanol exposure [5–7]

The Hedgehog (Hh) signaling pathway is required for midline

development of the brain and face [8–10]. Sonic Hedgehog (Shh)

expression in the neuroectoderm of the diencephalon is critical for

ventral patterning and expansion of the medial forebrain [11,12].

A subsequently established parallel field of Shh expression in the

surface ectoderm regulates growth of the adjacently developing

midface [9,13]. Genetic and chemical lesions in the Hh signaling

pathway have been shown to cause the characteristic face and

brain abnormalities of HPE [14–18]. While multiple mechanisms

have been proposed, disruption of the Hh signaling pathway has

also been implicated in the genesis of fetal alcohol syndrome (FAS)

[19–23].

Mutations in SHH are the most commonly identified cause of

non-chromosomal HPE, accounting for approximately 12% of

such cases [24–26]. Mutations in the GLI-Kruppel family member

GLI2, which encodes a zinc finger protein that serves as the

dominant transcriptional activator of the pathway, have also been

associated with HPE [27]. However, even in cases with a known

causative gene, HPE is etiologically complex. For example, in a

recent analysis of 396 individuals representing 157 unrelated

kindreds with SHH mutations, only 36% were found to have true

HPE [25]. The majority of mutation carriers were classified as

unaffected or as having microform HPE (i.e. midline facial

abnormalities in the absence of detectable neuroanatomical
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anomalies). This suggests that gene-gene or gene-environment

interactions are operational in the pathogenesis of HPE [28].

Shh2/2 mice exhibit severe HPE phenotypes, including a single

telencephalic vesicle and proboscis situated above a single central

eye [8]. Gli22/2 mice fail to develop a floor plate and present with

microcephaly, cleft palate, and maxillary and mandibular hypo-

plasia [29,30]. In contrast, relative to their wildtype littermates,

Shh+/2 and Gli2+/2 mice are phenotypically unremarkable

[27,30]. These animals therefore serve as an ideal model in which

to test the influence of environmental factors in the context of

human disease-relevant genetic predisposition. Such interactions

have been proposed as the basis for numerous complex diseases

but identification of specific interacting factors has proven difficult.

By demonstrating a functional gene-environment interaction

between mutations in Shh and Gli2 and prenatal ethanol exposure,

the study described here provides new insights into potential

mechanisms contributing to the etiology and pathogenesis of FAS

and HPE.

Materials and Methods

Animals and timed matings
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. All

procedures involving animals were approved by the University of

North Carolina at Chapel Hill Institutional Animal Care and Use

Committee (protocol number 13-081.0). C57BL/6J wildtype

female mice were purchased from The Jackson Laboratory (Bar

Harbor, ME). Shh+/2 and Gli2+/2 transgenic mice [8,31] were

backcrossed to the C57BL/6J background for more than ten

generations. Two female mice were placed with a single Shh or Gli2

heterozygous male for 2 hrs early in the light cycle and

subsequently examined for the presence of copulation plugs,

marking gestational day (GD)0. Genotyping was performed as

described for Gli2 mice [30] and using a standard genotyping

protocol, ‘‘NEOTD,’’ provided by the Jackson Laboratories and

available at http://jaxmice.jax.org for Shh mice.

Ethanol exposure
Timed-pregnant mice were administered two 25% ethanol (v/v

in lactated Ringer’s solution) dosages of 2.9 g/kg by ip injection

four hrs apart beginning at GD7 [6,32,33]. Vehicle treated mice

received two volume-equivalent doses of Ringer’s solution.

Dissection and imaging
On GD17, pregnant dams were euthanized via CO2 anesthe-

tization, followed by cervical dislocation. Fetuses were then fixed

in formalin (10% in phosphate buffered saline solution) for at least

two weeks and then photographed. To ensure consistent

orientation, each fetus was stabilized in a wax mold with specific

anatomical features of the head carefully aligned to a grid of

vertical and horizontal crosshairs. Subsequently, brains were

removed from a subset of fetuses by dissection. Images were

captured with a MicroPubisher 5.0 camera using QCapture Suite

Software.

Assessment of facial dysmorphology
For unbiased assessment of facial dysmorphology, a semi-

quantitative scale encompassing the range of severity present in

the study population was established (Fig. 1). Based upon a large

reference population of untreated wildtype C57BL/6J GD17

Figure 1. Facial dysmorphology rating scale. Illustrated are a GD 17 fetus having normal facial morphology and 4 fetuses with varying degrees
of medial facial deficiency. Numbers assigned to each image (0–4) are scores representing differing degrees of severity of facial dysmorphology. As
compared to normal fetuses, those receiving a score of 1 had a notably diminished area of pigmentation between the nostrils (solid arrow)
accompanied by reduction in the depth of the normally present median central notch of the upper lip (dashed arrow). A score of 2 was assigned to
fetuses that had lost the median lip notch, but still had some remaining pigment at the tip of the nose. Individuals presenting with a single central
nostril were assigned a score of 3 and those given a score of 4 had no nostrils.
doi:10.1371/journal.pone.0089448.g001

Table 1. Facial dysmorphology scores by treatment and genotype.

Treatment Genotype Sample Distribution of facial dysmorphology

Size 0 1 2 3 4 Sum Mean

Vehicle Shh+/+ 22 22 0 0 0 0 0 0

Shh+/2 25 25 0 0 0 0 0 0

Gli2+/+ 34 32 2 0 0 0 2 0.06

Gli2+/2 17 16 0 1 0 0 2 0.12

Ethanol Shh+/+ 28 26 1 0 0 1 5 0.18

Shh+/2 47 34 4 5 3 1 27 0.57

Gli2+/+ 31 29 0 2 0 0 4 0.13

Gli2+/2 21 12 4 2 2 1 18 0.86

doi:10.1371/journal.pone.0089448.t001
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fetuses, a score of 0 was assigned to apparently normal individuals.

Scores of 1–4 were assigned based on visual assessment of degree

of medial facial deficiency as evidenced by internasal distance and

upper lip morphology. Those fetuses receiving a score of 1 had a

notably diminished area of pigmentation between the nostrils (Fig.

1, solid arrow) accompanied by reduction in the depth of the

normally present median central notch of the upper lip (Fig. 1,

dashed arrow). A score of 2 was assigned to those fetuses that had

lost the median lip notch, but still had some remaining pigment at

the tip of the nose. Individuals presenting with a single central

nostril were assigned a score of 3 and those given a score of 4 had

no nostrils. Animals having a median cleft lip were classified based

on their nasal appearance. All images were examined by a single

rater blinded to treatment and genotype.

Results

Shh+/2 or Gli2+/2 male mice backcrossed to the C57BL/6J

background were mated with wildtype females, facilitating direct

comparison between littermates differing only in gene dosage. To

examine whether these normally silent mutations alter the

frequency or severity of ethanol-induced abnormalities, a well

characterized prenatal ethanol exposure paradigm that recapitu-

lates the salient facial features of FAS in wildtype C57BL/6J mice

was employed. As previously described, considerable intra- and

interlitter variability was observed among ethanol-exposed fetuses,

with phenotypes ranging from apparently normal to severely

dysmorphic [6]. A semi-quantitative scale based upon the degree

of medial facial deficiency was then applied to characterize the

severity of facial dysmorphology across the entire study population

(Fig. 1).

The distribution of facial dysmorphology by treatment and

genotype is shown in Table 1. While ethanol exposure resulted in

facial dysmorphology meeting the criteria of the implemented

scale only rarely in the wildtype cohort, fetuses having defects

representative of the full range of the spectrum of severity were

frequently observed in the Shh+/2 and Gli2+/2 groups. Compar-

ison of the values listed in table 1 illustrates that ethanol exposure

resulted in mean dysmorphology scores that were increased by 3.2

and 6.6 fold in Shh+/2 and Gli2+/2 fetuses, respectively, compared

to wildtype littermates. To assess statistical differences between

groups independent of litter bias, mean dysmorphology scores with

litter averages of genotypic cohorts as the unit of measurement

were also calculated (Fig. 2). In the Shh+/2 and Gli2+/2 groups,

ethanol exposure caused a significant increase in mean dysmor-

phology scores relative to both respective vehicle control groups, as

well as ethanol-exposed wildtype groups.

The employed ethanol exposure paradigm is well characterized

and has been utilized in numerous studies conducted by the

authors of this study [5,6,32–34]. Importantly, a relatively large

cohort of fetuses in the population described here exhibited facial

abnormalities not commonly observed in affected wildtype

C57BL/6J mice. Along with varying degrees of upper midfacial

deficiency, fetuses in this subpopulation exhibited exencephaly,

apparent anophthalmia, agnathia, and apparent proboscis (Fig. 3).

Genotyping revealed that 8 of 9 of fetuses in this subpopulation

with severe phenotypes were either Shh or Gli2 heterozygotes.

In studies of both animal models and human populations, the

severity of FAS and HPE- associated facial dysmorphology

generally corresponds to that of the brain [33,35]. As expected,

Figure 2. Effect of treatment and genotype on facial dysmor-
phology. To avoid litter bias, the average dysmorphology score from
each genotypic group was determined for each litter in the study
population. Values represent the mean plus the standard error of litter
averages for each genotype and treatment. Brackets indicate p values
of # 0.05 as determined by a one-tailed student’s t-test.
doi:10.1371/journal.pone.0089448.g002

Figure 3. Subpopulation of GD17 fetuses exhibiting severe craniofacial phenotypes. Included in the study population were 9 fetuses with
phenotypes not typically observed in wildtype C57BL/6J mice exposed to the employed ethanol exposure paradigm (A-I). Single allele mutations in
Shh or Gli2 were detected in 8 of 9 fetuses in this severely affected subpopulation. In addition to varying degrees of upper midfacial deficiency, other
notable defects included exencephaly (A), iridial coloboma and microphthalmia (A-D), apparent anophthalmia (E, G, I), agnathia (E), micrognathia (A-
D, F-I), and proboscis (I). Median cleft lip was also observed (B, C). Within this subpopulation, fetuses were assigned dysmorphology scores as follows:
2 (A), 3 (B-F), 4 (G-I).
doi:10.1371/journal.pone.0089448.g003
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the degree of medial forebrain deficiency directly correlated with

increasing category of facial dysmorphology among fetuses in this

study population (Fig. 4). True HPE, as defined by incomplete

division of the forebrain, was observed in fetuses in the most severe

upper midfacial deficiency categories.

Discussion

While Shh+/2 and Gli2+/2 mice have no apparent phenotype,

single allele mutations of these genes in human populations cause

HPE with incomplete penetrance or variable expressivity. The

findings of the study reported here illustrate that in the mouse,

both Shh and Gli2 are functionally haploinsufficient when

combined with prenatal ethanol exposure. While mice utilized in

biomedical research are maintained in a highly controlled

environment, human populations are subject to myriad environ-

mental influences, potentially including ethanol exposure. Thus,

demonstration that these genetic lesions lend a predisposition to a

near-ubiquitous environmental influence offers new insight into

the apparent discrepancy between findings from mouse models

versus human populations.

This study follows recent work demonstrating that mutations in

Cdon exacerbate the effects of prenatal ethanol exposure,

producing severe HPE phenotypes in mice [36]. While primarily

studied as a co-receptor for the Shh ligand, Cdon is known to be

multifunctional with some Hh-independent activity. Promiscuity

of receptor activity left the authors to speculate that the observed

interaction between Cdon mutation and ethanol exposure may be

mediated through effects on the Nodal or BMP signaling

pathways, which have also been implicated in the pathogenesis

of HPE [37,38]. By directly examining the interaction between

mutations in two genes essential for signal transduction, the

findings reported here strongly support the premise that Hh

signaling-related genetic lesions directly lend a functional predis-

position to the effects of prenatal ethanol exposure.

These findings support the premise that a lower threshold of

ethanol exposure is sufficient to cause clinically significant

abnormalities in fetuses with genetic mutations in the Hh signaling

pathway. However, each of these studies employed a binge model

of early prenatal ethanol exposure, which has been reported to

result in peak blood ethanol concentrations above 0.04 g/dl [6].

Translation of these findings would benefit by future studies

examining the dose-response relationship of ethanol exposure in

models of relevant genetic predisposition.

The severity of abnormalities in children exposed prenatally to

ethanol appears to depend upon variables beyond the level of

exposure itself [39,40]. Animal studies have confirmed that the

teratogenic effects of ethanol vary depending upon genetic

background [22,41–44] spurring efforts directed at identifying

genetic factors that may predispose the fetus to ethanol teratoge-

nicity [45,46]. In this regard the results of the present study, along

with those of others, strongly argue that additional research

examining genetic lesions in the Hh pathway is warranted.

Designed to isolate the impact of heterozygosity on embryonic

sensitivity to ethanol exposure, for this study Shh and Gli2 null

alleles were backcrossed to the C57BL/6J background and

heterozygous males were mated with wildtype females. Examina-

tion of potential maternal effects of these mutations and whether

the demonstrated haploinsufficiency is affected by background

strain was not within the scope of this study but would be an

interesting future direction as well.

Most diseases result from an interaction of genetic and

environmental influences but identification of specific interacting

influences has remained largely elusive. The significance of the

findings presented here is highlighted by the clinical relevance of

the identified interacting factors. Mutations in SHH are the most

commonly identified cause of non-chromosomal HPE, while it is

estimated that 7.6% of women in the United States consume

ethanol while pregnant [47]. By demonstrating an interaction

between prenatal ethanol exposure and genes in the Hh pathway,

this study provides important insights into the multifactorial

etiology and pathogenesis of both FAS and HPE.
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