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Abstract

The physical mechanism by which cells sense high-frequency mechanical signals of small magnitude is unknown. During
exposure to vibrations, cell populations within a bone are subjected not only to acceleratory motions but also to fluid shear
as a result of fluid-cell interactions. We explored displacements of the cell nucleus during exposure to vibrations with a finite
element (FE) model and tested in vitro whether vibrations can affect osteocyte communication independent of fluid shear.
Osteocyte like MLO-Y4 cells were subjected to vibrations at acceleration magnitudes of 0.15 g and 1 g and frequencies of
30 Hz and 100 Hz. Gap junctional intracellular communication (GJIC) in response to these four individual vibration regimes
was investigated. The FE model demonstrated that vibration induced dynamic accelerations caused larger relative nuclear
displacement than fluid shear. Across the four regimes, vibrations significantly increased GJIC between osteocytes by 25%.
Enhanced GJIC was independent of vibration induced fluid shear; there were no differences in GJIC between the four
different vibration regimes even though differences in fluid shear generated by the four regimes varied 23-fold. Vibration
induced increases in GJIC were not associated with altered connexin 43 (Cx43) mRNA or protein levels, but were dependent
on Akt activation. Combined, the in silico and in vitro experiments suggest that externally applied vibrations caused nuclear
motions and that large differences in fluid shear did not influence nuclear motion (,1%) or GJIC, perhaps indicating that
vibration induced nuclear motions may directly increase GJIC. Whether the increase in GJIC is instrumental in modulating
anabolic and anti-catabolic processes associated with the application of vibrations remains to be determined.
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Introduction

Gap junctions formed by connexins play an important role in

cell signaling and tissue function by enabling the passing of ions

and intracellular signaling molecules via transmembrane chan-

nels in various organ systems [1–3]. In bone, connexin 43

(Cx43) is the most common connexin, present in osteoblasts,

osteoclasts, stromal cells and osteocytes [4–8]. Connexin 43 can

serve as an open ended hemi-channel to secrete signaling

molecules such as NO, PGE2 and Ca2+ [9–13] or provide

functional communication between resident bone cells via gap

junctions, a process that is critical for coordinating bone

remodeling and cell function [14–19].

Gap junctional intercellular communication (GJIC) is also

important for cell mechanotransduction. Both fluid shear stress

and mechanical strain increase GJIC between bone cells [20–23].

Osteocytes, embedded within the bone matrix, are well positioned

to effectively use GJIC to communicate mechanically derived

responses. Consistent with the hypothesis of osteocytes being the

sensory cells that orchestrate the response of osteoblastic and

osteoclastic effector cells [24–26], mechanical perturbation of

osteocytes can regulate osteoblast function through gap junctions

[27]. Thus, GJIC may play an important role in relaying

mechanically derived signals to other cells such as osteoblasts

[28] or vice versa.

Mechanical signals including fluid flow and mechanical stretch

have been shown to regulate Cx43 function and GJIC [29–32].

In osteocytes, Cx43 activity is regulated by fluid flow through

PI3K/Akt signaling [33], inhibiting glycogen synthase kinase-3b
(GSK-3b) a critical component of the b-catenin degradation

complex. Under fluid flow, PI3K mediated Akt activation is

controlled via integrins [34] and focal adhesion kinase (FAK)

[35] while mechanical stretch activates Akt through a PI3K

independent mechanism [36,37]. Low intensity vibrations, a

mechanical signal anabolic and/or anti-catabolic to bone [38–

42], can also increase b-catenin levels through inhibition of

GSK-3b [42], suggesting that perhaps vibrations regulate Akt

activation and thereby modulate GJIC.
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Vibrations applied either in vivo or vitro create a complex

cellular mechanical environment that is dependent on vibration

magnitude (acceleration) and frequency. In vivo, vibrations can

cause significant fluid shear on trabecular bone surfaces [43,44]

in the absence of significant matrix strain levels [38,45]. We

previously showed that vibration induced fluid shear stresses in

vitro can be finely tuned by vibration frequency and acceleration

[46]. In addition to fluid shear, dynamic accelerations ostensibly

cause out-of-phase motions of the nucleus [38], another potential

signal transduction mechanism by which vibrations may produce

biochemical signals. In support of the hypothesis that vibrations

can be sensed through nuclear motions, PGE2 and NO responses

of osteoblast-like cells are acceleration rate dependent [47]. Also,

vibration induced transcriptional activity of cytoskeletal regula-

tors, including Arp2/3 complex and RhoA, was correlated with

acceleration magnitude rather than fluid shear [48].

Here we investigated if vibrations increase GJIC and whether

these changes are related to a specific physical variable that defines

the nature of the oscillatory signal. Specifically, we hypothesized

that vibration induced accelerations generate larger relative

nuclear motions than vibration induced fluid shear and that the

mechanically modulated increase in GJIC is independent of fluid

shear through an Akt dependent pathway.

Methods

Experimental design
We addressed the question whether vibrations affect osteocyte

communication independent of fluid shear. Using previously

established methods to quantify vibration induced fluid shear stress

[46], we applied four different vibration regimens in vitro, each

exposing adherent cells to distinct levels of fluid shear stress.

In silico, a finite element (FE) model of an adherent cell was

constructed to identify maximal displacements of the cell nucleus

caused by vibration induced accelerations or vibration induced

fluid shear. In vitro, calcein stained MC3T3 (ATCC, CRL-2593,

VA) cells were parachuted onto osteocyte like MLO-Y4 [49] cells

via a dye transfer assay [31]. MC3T3 cells were used as donor cells

due to their ability to create functional gap junctions with MLO-

Y4 cells within 15 minutes [28]. Following a given vibration

regimen, the percentage of total GJIC positive MLO-Y4 cells

(GJIC+) was compared to non-vibrated controls using flow

cytometry. Cell-to-cell communication through gap junctions

was verified with 18a-glycyrrhetinic acid (18a-GA), a gap junction

inhibitor. To test whether Akt activation is involved in altered

GJIC, osteocytes were pre-treated with Akt inhibitor Akti1/2 and

both GJIC+ (flow cytometry) and Akt activation (Ser473, western

blots) were measured following exposure to vibrations.

Application of high-frequency oscillations and
determination of fluid shear

The horizontal vibration system generating the mechanical

signals is described in detail elsewhere [46]. Briefly, an actuator

was attached to a linear frictionless slide. This system can

simultaneously vibrate up to three cell culture plates. Vibrations

were applied at peak magnitudes of 0.15 g or 1 g and

frequencies of either 30 Hz or 100 Hz, resulting in four distinct

oscillatory regimes. Cells were oscillated for 30 min at RT.

Control samples were handled exactly the same except that the

actuator was not turned on. During vibrations, out-of-phase

motions of the cell culture medium within the well and the

resulting fluid shear stress were determined with an experimen-

tally validated finite element model [46]. At 100 Hz and 0.15 g,

peak fluid shear stresses reached 0.04Pa, a level that increased to

0.14Pa at 30 Hz/0.15 g, 0.28Pa at 100 Hz/1g, and 0.94Pa at

30 Hz/1 g.

Finite element modeling of a cell
An adherent cell was modeled with FE software (Abaqus 6.9.1,

Simula, RI) and vibration induced nuclear displacements were

estimated via dynamic stress analysis. Cell geometry was adopted

from previous models of adherent cells [50,51] with a cell contact

radius of 19.2 mm and a cell height of 7.6 mm. The nucleus was

modeled as an ellipsoid with a major axis of 7.5 mm and a minor

axis of 2.5 mm. These cell dimensions are comparable to those

from confocal images of osteocytes within the lacunar-canalicular

network [52].

The modeled cell comprised three components: cell mem-

brane, cytoplasm, and nucleus (Fig. 1). Material properties were

assumed to be elastic because mechanical vibrations were applied

at a frequency of 30 Hz or higher, well below the measured

viscoelastic relaxation times of about 40 s [53]. Density ratios

(1:1.2:0.4) were approximated from refractive index measure-

ments between the cytoplasm, nucleus, and cell membrane

(triglycerides) [54,55]. The density of the cytoplasm was assumed

to be 50% greater than that of water (1500 kg/m3). A bending

modulus 1.17610219Nm was assigned to the cell membrane

[56]. Based on atomic force microscopy (AFM) measurements of

an osteoblast nucleus, nuclear stiffness was set at 6kPa [53]. Since

the nucleus was found to be four times stiffer than the cytoplasm

[57], cytoplasm stiffness was set at 1.5kPa. All simulations were

repeated for 50% and 300% of the initially assumed material

properties, covering a nuclear modulus range of 3–18kPa, similar

to the previously reported range of 2.6–8.3kPa across osteoblasts

and osteocytes [58].

To calculate cellular deformations produced either by vibration

induced accelerations or by vibration induced fluid shear, two

distinct simulations were performed (Fig. 1). For acceleration

simulations, the cell substrate was subjected to sinusoidal motions

in a horizontal plane with accelerations of 0.15g or 1g and

frequencies of 30 Hz or 100 Hz. For fluid shear simulations, the

cell substrate was fixed so that it was not able to move. Sinusoidal

dynamic forces with magnitudes that matched the vibration

induced fluid shear magnitudes [46] were applied to the cell

membrane.

Total force applied to the cell membrane was estimated from

previously quantified peak fluid shear stresses [50]. At 0.94Pa fluid

shear, for example, the total tangential force acting on the cell

surface was 0.94pN/mm261470 mm2 = 1381.8pN, where

1470 mm2 is the total surface area of the cell. Total force was

equally divided between all 5768 elements of the cell membrane.

Nuclear motion (relative to input signal) was selected as an

outcome variable and defined as the relative motion between the

nucleus center and the cell contact surface in the direction of the

vibration (horizontal).

Cell culture
MLO-Y4 cells [59] were graciously donated by Dr. Lynda F.

Bonewald. Cells were cultured in 75 cm2 cell culture flasks (BD

Biosciences, NJ) at a density of 5000cell/cm2. a-MEM (Invitrogen,

NY) supplemented with 2.5% fetal bovine serum (FBS, Gibco,

CA), 2.5% bovine calf serum (BCS, Thermo Scientific, IL) and 1%

Penicillin-Streptomycin (PS, Gibco, CA) was used as cell culture

medium. MC3T3 cells were plated at 5000cell/cm2 in 100 mm

cell culture dishes (Corning Inc., NY) and maintained in a-MEM

supplemented with 10% FBS and 1% PS. All cells were

maintained at 37uC and 5% CO2 and passaged at 70%

confluency.
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Blocking reagents
Cells were either pre-treated with 75 mM 18a-GA gap junction

blocker for 3 h (Sigma, MO) or with 40 mM Akt inhibitor AKTi1/

2 for 1 h (Sigma, MO). Controls were treated with DMSO only.

Blockers were maintained in cell culture medium during

experiments. To confirm that a dose of 75 mM 18a-GA was not

toxic, we performed a toxicity analysis with MLO-Y4 cells.

Following pretreatment, cells were exposed to 75 mM 18a-GA

(n = 6 per group). Using a live/dead cell cytotoxicity kit

(Invitrogen, L-3224), cells were stained with calcein (4mM) and

EtBr (2 mM). Immediately after staining, cells were washed with

PBS, trypsinized and sorted using a flow cytometer (10,000 cells

per sample).

Parachute assay
MLO-Y4 cells were seeded in 24-well plates (CLS3527,

Corning Inc.) coated with 0.15 mg/ml rat tail collagen I (Cell

Applications Inc., CA) using 0.5 ml of culture medium at a

density of 10,000 cell/cm2. Cells were incubated for 72 h to

reach 80–90% confluence. Four hours prior to vibration

treatment, MC3T3 cells (70% confluent) were treated with

1 mM calcein AM for 30 min according to the manufacturer’s

instructions (L-3224, Invitrogen) and returned to the incubator.

Immediately after vibration treatment, donor MC3T3 cells were

parachuted on top of MLO-Y4 at a ratio of 1:500. Plates were

returned to the incubator for 1 hr to allow GJIC to occur. Cells

were then processed for flow cytometry to measure calcein

positivity, for RNA extraction to measure transcriptional levels,

or for western blotting to measure changes in protein levels.

Experiments were repeated at least three times with a sample size

of six per group. Results from individual experiments were

pooled yielding a minimum of n = 18 per group.

Flow cytometry
A total of 5000 live cells were analyzed by flow cytometry

(FACScan, BD) capable of reading calcein 495/515 nm spectra.

Cells that were between negative controls (no calcein) and

positive controls (only donor cells) on the fluorescence intensity

scale were selected as GJIC positive cells (GJIC+). The effect of

vibration treatment was quantified through the relative difference

of total GJIC+ cells between the treated and the control group.

Flow cytometry analysis was performed using Flowjo software

(Tree Star Inc., OR). Calcein dye transfer between cells was also

visualized by fluorescence microscopy (Zeiss, NY).

RNA extraction and qPCR
Cells were lysed with 600 ml of TRIzol (Ambion, TX) and

stored in 280uC. Total RNA was isolated (RNeasy Mini Kit,

Qiagen, CA) and its quality and concentration were determined

(NanodropND-1000, Thermo Scientific, NY). Upon reverse

transcription (High Capacity RNA to cDNA kit, Applied

Biosystems, CA), RT-PCR was performed (Step-One Plus,

Applied Biosystems, CA) using Taqman primer probes (Applied

Biosystems, CA) for Cx43 (GJA-1) and GAPDH which served as

referent. Expression levels were quantified with the delta-delta CT

method [60] and results were reported relative to non-vibrated

control.

Western Blotting
Whole cell lysates were prepared using an radio immunopre-

cipitation assay (RIPA) lysis buffer (150 mM NaCl, 50 mM Tris

HCl, 1 mM EDTA, 0.24% sodium deoxycholate,1% Igepal,

pH 7.5) to protect samples from protein degradation. NaF

(25 mM) and Na3VO4 (2 mM), Aprotinin, leupeptin, pepstatin,

and phenylmethylsulfonylfluoride (PMSF) were added to the lysis

buffer. Whole cell lysates (20 mg) were separated on 9%

polyacrylamide gels and transferred to polyvinylidene difluoride

(PVDF) membranes. Membranes were blocked with milk (5%,

w/v) diluted in Tris-buffered saline containing Tween20 (TBS-T,

0.05%). Blots were then incubated overnight at 4uC with

appropriate primary antibodies. Antibodies included those

targeting Akt (#4685), pAkt (Ser-473, Cell Signaling, Danvers,

MA), Cx43 (abcam, gja1,ab11370, MA) and tubulin (abcam,

ab7291, MA). Following primary antibody incubation, blots were

washed and incubated with horseradish peroxidase-conjugated

secondary antibody diluted at 1:5,000 (Cell Signaling) at RT for

1 h. Chemiluminescence was detected with ECL plus (Amersham

Figure 1. Finite element model of an adherent cell to identify vibration induced nuclear displacements. The elastic FE model comprised
the cell membrane, cytoplasm and nucleus (top). Vibration induced fluid shear and accelerations were evaluated in separate dynamic simulations.
Fluid shear was simulated by applying dynamically oscillating forces to the cell membrane (bottom left). Oscillatory accelerations were applied
directly to the cell contact surface (bottom right).
doi:10.1371/journal.pone.0090840.g001
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Biosciences, Piscataway, NJ) and densitometry was performed via

NIH ImageJ software.

Statistical analysis
Results were presented as mean 6 SEM. Differences between

groups were identified by one-way analysis of variance (ANOVA)

followed by Newman-Keuls post-hoc tests (flow cytometry and

westerns). Non parametric Spearman Rank tests were used to

assess the association between GJIC and mechanical variables

obtained from the FE model. P-values of less than 0.05 were

considered significant.

Results

Nuclear motions determined by finite element modeling
To explore cellular deformations during vibration, we gener-

ated a FE model of an elastic cell. Considering the greater

stiffness and density of the nucleus, nuclear displacement was

selected as outcome variable and measured under the application

of either dynamic acceleration or fluid shear (Table 1). Nuclear

displacements were found to be modulated by the magnitude of

the applied acceleration. When averaged across 30 Hz and

100 Hz vibration frequencies, nucleus displacement was 127 nm

at 0.15 g and 780 nm at 1 g. The difference between 30 Hz-

0.15 g and 30 Hz-1 g was 27% greater than the difference

between 100 Hz-0.15 g and 100 Hz-1 g groups, demonstrating

that, at least to some degree, vibration frequency interacts with

acceleration to determine nuclear displacement.

Nuclear displacement was inversely proportional to cell

stiffness. Averaged across all groups, decreasing cell stiffness by

50% increased nuclear displacement by 229617% while

increasing stiffness by 300% decreased nuclear displacement by

6763%. Relative differences between individual groups were also

stiffness dependent. At a nuclear stiffness of 6kPa, the 30 Hz-1 g

treatment group had a 17% greater nuclear displacement than

the 100 Hz-1 g group. When cell stiffness was decreased by 50%

or increased by 300%, nuclear displacement in the 100 Hz-1 g

was 16% and 21% larger than the corresponding displacement in

cells exposed to 30 Hz-1 g. Accelerations caused 10 to 100 times

larger nuclear displacements compared to fluid shear induced by

the same vibration frequency/acceleration (Table 1).

Gap junctional communication
Calcein positive cells (excluding donor cells) were measured

and compared to controls after exposure to one of four vibration

regimes for 30 min followed by 1 h incubation. All vibration

regimes significantly increased (p,0.001) the number of GJIC+
cells compared to non-vibrated controls (Fig. 2). Cells vibrated

at 30 Hz-1g showed the greatest increase in calcein transference

(3365%, p,0.001) but no significant differences were observed

between individual vibrated groups. Microscope images qualita-

tively showed that vibrations caused transfer of calcein to cells

farther from the donor cells (Fig. 2), suggesting a vibration

induced increase in the transfer efficiency of gap junctions. We

confirmed that the observed increase in GJIC was facilitated

through gap junctions by blocking gap junctions for three hours

with 18a-GA gap junction blocker. Application of 75 mM 18a-

GA was not toxic to MLO-Y4 cells with 98.8% of the cell

population remaining viable compared to DMSO treated

controls (data not shown). Blocking gap junction function

decreased calcein transference by approximately 80% (p,

0.0001) (Fig. 3).

Although the number of GJIC+ cells was not significantly

different between the vibrated groups, we correlated the results

T
a

b
le

1
.

N
u

cl
e

ar
d

is
p

la
ce

m
e

n
ts

in
d

u
ce

d
b

y
e

it
h

e
r

vi
b

ra
ti

o
n

in
d

u
ce

d
ac

ce
le

ra
ti

o
n

s
o

r
vi

b
ra

ti
o

n
in

d
u

ce
d

fl
u

id
sh

e
ar

.

F
re

q
u

e
n

cy
C

y
to

p
la

sm
st

if
fn

e
ss

A
cc

e
le

ra
ti

o
n

m
a

g
n

it
u

d
e

F
lu

id
sh

e
a

r
st

re
ss

0
.1

5
g

1
g

0
.0

4
P

a
0

.1
4

P
a

0
.2

8
P

a
0

.9
4

P
a

1
0

0
H

z
0

.7
5

kP
a

3
5

2
n

m
1

8
4

0
n

m
0

.0
9

6
n

m
-

6
.7

2
n

m
-

1
.5

kP
a

1
3

7
n

m
7

1
7

n
m

0
.0

4
4

n
m

-
3

.0
8

n
m

-

4
.5

kP
a

4
5

n
m

2
8

3
n

m
0

.0
1

3
n

m
-

0
.9

2
n

m
-

3
0

H
z

0
.7

5
kP

a
2

5
8

n
m

1
5

5
4

n
m

-
3

.3
6

n
m

-
2

.5
0

n
m

1
.5

kP
a

1
1

7
n

m
8

4
4

n
m

-
1

.5
4

n
m

-
1

0
.3

4
n

m

4
.5

kP
a

3
7

n
m

2
2

6
n

m
-

0
.4

6
n

m
-

3
.1

0
n

m

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
9

0
8

4
0

.t
0

0
1

Vibrations Enhance Osteocyte Communication

PLOS ONE | www.plosone.org 4 March 2014 | Volume 9 | Issue 3 | e90840



from GJIC experiments with mechanical variables from our FE

model, including vibration induced fluid shear, acceleration

magnitude, and estimated nuclear displacement. Acceleration

induced nuclear displacement, but not acceleration magnitude or

fluid shear, was significantly correlated with the observed GJIC

differences between groups (r= 0.28, p = 0.016).

Akt signaling
The increase in GJIC following vibration was not accompanied

by an increase in Cx43 mRNA expression (Fig. 4A). Fluid flow is

known to increase Akt activation [33] but vibration induced fluid

shear per se did not play a role in GJIC in this study. We therefore

asked whether vibrations can increase Akt activation in the

absence of significant fluid shear. To minimize fluid shear, we

tested the vibration regime that produced the lowest levels of shear

(100Hz-0.15 g, 0.04Pa). Cx43 protein levels remained unchanged

after vibration exposure and were independent of Akt activation

(Fig. 4B). Akt phosphorylation (ser473) increased 2.4-fold (p,

0.001) 1 h after vibration treatment (Fig. 4C), leading to a 29%

(p,0.001) greater number of GJIC+ cells. 1 h pre-treatment of

cells with Akt inhibitor AKTi1/2(40 mM) caused calcein transfer-

ence to drop 31% below non-vibrated control levels (p,0.001).

Further, oscillatory vibrations did not increase GJIC when Akt was

inhibited (Fig. 4D).

Discussion

We tested whether vibrations can increase osteocyte GJIC and

if so, whether this increase is related to a specific mechanical

variable altered by the application of oscillatory mechanical

signals. During vibrations, cells were subject to both accelerations

and fluid shear [43,46]. We included vibration groups that

created fluid shear up to 0.94Pa, a magnitude that is commonly

used for fluid flow experiments [61,62]. An FE model of an

adherent cell established that accelerations per se led to much

greater nuclear motions compared to vibration induced fluid

shear which accounted for only 1% of total nuclear displace-

ment. All vibration regimes caused significant increases in GJIC

activity compared to non-vibrated controls. Fluid shear magni-

tude did not influence the outcome with no differences in calcein

transference between the lowest (0.04Pa, 100 Hz20.15 g) and

highest fluid shear group (0.94Pa, 30 Hz21 g). Thus, vibrations

Figure 2. Vibrations increase gap junctional communication (GJIC) in MLO-Y4 cells. MLO-Y4 cells were exposed to one of four distinct
vibration regimes and GJIC+ cell number was compared to non-vibrated controls (left). Averaged across the four vibrational signals, GJIC+ cell
number was 25% greater than in controls (p,0.001) without significant differences between vibrated groups. Qualitative fluorescent microscopy
revealed that vibrated cells communicated farther than controls (right). ***: p,0.001 against control.
doi:10.1371/journal.pone.0090840.g002

Figure 3. Vibration induced calcein transference is gap junction specific. When gap junction function was blocked with 75 mM of 18a-GA,
GJIC+ cell number was significantly reduced compared to non-blocked groups (Normal) and none of the four vibration frequency/acceleration
combinations increased the number of GJIC+ cells. ***: p,0.001 against control.
doi:10.1371/journal.pone.0090840.g003
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may aid in osteocyte gap junctional communication through

nuclear motions induced directly by the transmitted oscillatory

accelerations.

A dynamic FE model of an adherent cell was used to

determine whether nuclear displacements may play a role in the

mechanotransduction of vibrations. Even though the in silico

data supported the hypothesis, simplifications and assumptions

regarding the geometry and material properties of the cell need

to be considered. Computational data have shown that the

viscoelastic properties of the cytoplasm serve to dampen force

transfer efficiency through the cytoskeleton by filtering certain

frequencies [65]. Although we assumed that the high frequency

of the mechanical signal justifies the use of elastic material

properties, complex interactions between the viscous cytoplasm

and the stiff cytoskeleton were not considered in our model.

While outside the scope of our current study, we recognize that

more realistic simulations that include a functional cytoskeleton

will be critical towards accurately predicting cellular deforma-

tions under vibration. Additionally, the large difference in

nuclear motions induced by fluid shear and acceleration could

change significantly as a function of nucleus size, geometry, and

density. This is less of a concern for this study as we focused on

relative differences between fluid shear and accelerations but the

true magnitude of nuclear displacement may turn out to be

greatly different from data reported here. To address the concern

of simplified cell properties, we tested a large range of cellular

material properties. For instance, a range of 2.6–8.3kPa for the

nuclear modulus of osteoblasts and osteocytes has been reported

previously [58] and simulations of our model exceeded this range

(3–18kPa). Together, we recognize the limitations of our

idealized model but believe that it is important to provide

preliminary data regarding the primary mode of cellular

deformation during vibrations.

It is imperative to investigate the effects of vibratory

mechanical signals in physiologically relevant models [21]. As a

basic step towards this goal, we chose a simple 2D in vitro model

that allows for the precise control of cellular fluid shear during

the application of vibrations [46]. Even though the coupling of

fluid shear with vibrations in our system is similar to the

mechanical conditions of bone cells in vivo, a future study that

completely separates vibratory effects from fluid shear will

provide valuable data for the identification of specific differences

in the cellular response to the two distinct mechanical signals.

Factors including hormonal PTH and extracellular calcium

concentration may alter Cx43 mediated GJIC [66], a process

known to play an important role in bone formation and fracture

healing in vivo [67], and inherently, our in vitro model cannot

capture these factors. Further, the functions of osteocytes appear

to be similar between different species [19] but it is clear that an

in vitro model cannot replicate the 3D environment of an

osteocytic network of any specie. Thus, conclusions from this 2D

in vitro study cannot directly be extrapolated to ex-vivo and in

vivo models. Finally, we did not monitor changes in Ca2+ or

ATP levels in this study but mechanically induced GJIC in

osteoblastic cells appears to be independent of Ca2+ signaling

[10,11]. In osteocytes (MLO-Y4 and in vivo), mechanical signals

Figure 4. Vibration induced GJIC is controlled by Akt signaling. One hour after vibration treatment, (A) Cx43 mRNA levels remained
unchanged. (B) Cx43 protein levels were also unaffected by vibrations (0.15 g–100 Hz) without and with Akt inhibition but (C) vibrations increased
Akt phosphorylation (ser 473) 2.4-fold. (D) Inhibition of Akt activation also inhibited the vibration induced increase in calcein transference. ***: p,
0.001 against control.
doi:10.1371/journal.pone.0090840.g004
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such as fluid flow and membrane stretch (hypotonic swelling)

increase VSCC-dependent (voltage sensitive Ca2+ channels) ATP

release mediated via ERK1/2 [12,13]. Although outside the

scope of current work, future studies that elucidate possible

interactions between VSCC and Cx43 signaling will be

important.

Unlike our previous studies with MSCs [48] and osteoblasts

[46], GJIC in osteocytes was not modulated by the acceleration

and frequency of the mechanical signal. We previously showed

that increasing RhoA activity may increase the sensitivity of MSCs

to vibrations and that transcriptional activity of cytoskeletal

adaptor proteins is positively correlated with acceleration magni-

tude [48]. If mechanotransduction of vibrations comprises a

response to forces generated within the cell, osteocytes appear to

have a lower threshold for mechanosensing than MSCs as they

responded to different accelerations and frequencies similarly.

Although the reason for this differential cellular sensitivity is not

clear, osteocytes have a more extensively developed cytoskeleton

than MSCs and are therefore stiffer [53]. While our FE model

suggested that greater cell stiffness decreases nuclear motions, a

stiffer cytoskeleton can more effectively transmit forces [63],

perhaps causing osteocytes to more readily sense mechanical

signals than MSCs [64]. Thus, it is conceivable that all mechanical

signals tested in this study exceeded an osteocytic response

threshold, giving rise to the lack of differences between the

vibration groups.

Nuclear motions within the cell impose forces on the

cytoskeleton, ostensibly initiating mechanotransduction pathways

including integrin related signaling. Akt signaling plays an

important role in activating cellular sensing involving the

cytoskeleton and formation of new focal adhesions and preserv-

ing cellular b-catenin levels in response to mechanical stretch

[37,68,69]. Here, we showed that vibrations increase Akt

activation in MLO-Y4 cells. Exposure to vibrations not only

increased Akt activation but inhibiting Akt activation also

inhibited the vibration induced increase in GJIC, suggesting that

vibration induced phosphorylation of Akt modulates Cx43

function. In MLO-Y4 cells, fluid flow induced PI3K signaling

increases Akt activation [33], potentially regulating Cx43

function through integrins [70] while in myocytes, b-catenin

co-localizes with Cx43, increasing gap junction related Ca2+
wave propagation speed [71]. Perhaps, vibrations enhance Cx43

function as a downstream of Akt signaling through integrins or

Cx43/b–catenin co-localization [71], a hypothesis to be tested in

future investigations.

We showed that independent of the magnitude of generated

fluid shear, vibrations can raise GJIC in osteocytes and that this

increase is dependent on Akt signaling. These results indicate

that at the cellular level, high-frequency acceleratory signals can

not only activate cell signaling that may ultimately alter protein

production but also contain basic information that enhances

cellular communication. If these data can be extrapolated to in

vivo models, our results imply that vibrations may modulate cell

metabolism not just locally but by orchestrating a response

through the through lacunar-canalicular network, they may elicit

a response across larger regions. Highlighting the important role

of GJIC in communicating anabolic signals, loss of Cx43 in

osteocytes results in delayed fracture healing and bone formation

[67]. Our mechanical cell model exposed to vibrations of

different frequencies and magnitude was consistent with the

hypothesis that nuclear motions but not fluid shear are involved

in converting mechanical information into biochemical signals.

Whether the anabolic [72] and anti-catabolic [42] effects of

vibrations or the vibration induced increase in cellular sensitivity

to mechanical [73] or biochemical signals [74] can be ascribed to

more efficient signaling between osteocytes is yet to be

determined.
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