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Abstract

Severe trauma renders patients susceptible to infection. In sepsis, defective bacterial clearance has been linked to specific
deviations in the innate immune response. We hypothesized that innate immune modulations observed during sepsis also
contribute to increased bacterial susceptibility after severe trauma. A well-established murine model of burn injury, used to
replicate infection following trauma, showed that wound inoculation with P. aeruginosa quickly spreads systemically. The
systemic IL-10/IL-12 axis was skewed after burn injury with infection as indicated by a significant elevation in serum IL-10
and polarization of neutrophils into an anti-inflammatory (‘‘N2’’; IL-10+ IL-122) phenotype. Infection with an attenuated P.
aeruginosa strain (DCyaB) was cleared better than the wildtype strain and was associated with an increased pro-
inflammatory neutrophil (‘‘N1’’; IL-102IL-12+) response in burn mice. This suggests that neutrophil polarization influences
bacterial clearance after burn injury. Administration of a TLR5 agonist, flagellin, after burn injury restored the neutrophil
response towards a N1 phenotype resulting in an increased clearance of wildtype P. aeruginosa after wound inoculation.
This study details specific alterations in innate cell populations after burn injury that contribute to increased susceptibility to
bacterial infection. In addition, for the first time, it identifies neutrophil polarization as a therapeutic target for the reversal of
bacterial susceptibility after injury.
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Introduction

Each year traumatic injury accounts for over 40 million

emergency room visits and 2 million hospital admissions across

the United States [1]. Severe trauma predisposes patients to

infection with rates as high as 37% of patients [2]. Infectious

complications, such as sepsis and pneumonia, increase the length

of hospitalization and cost of treatment [3,4]. Furthermore,

infection increases a traumatically injured patient’s mortality rate

by 5-fold [5].

It is clear that severe burn-injury results in a complex

interaction of both innate and adaptive immunity that leads to

immune dysfunction, infection and often sepsis. Much work has

been focused on defining alterations in the adaptive immune

system, with T cell apoptosis [6,7], lymphopenia [8], T cell

cytokine polarization [9–12] and upregulation of regulatory T cell

(Treg) suppressive function [13–15] being key players. However, in

healthy individuals, the innate immune system is sufficient for

clearing most invading bacteriaNeutrophils, which are considered

the first-responders of the innate immune system, have a wide

variety of anti-microbial functions including phagocytosis, release

of granule proteins, and generation of neutrophil extracellular

traps (NETs) [16–18]. Macrophages and dendritic cells are also

phagocytic, and antigen presentation and pro-inflammatory

cytokine secretion (such as TNF-a and IL-12) by these cells

induce and shape the adaptive immune response [19,20]. Toll-like

receptors (TLRs), which recognize conserved microbial products,

are vital for detection of invading pathogens. TLR signaling leads

to the induction or suppression of hundreds of inflammatory genes

that further influence an immune response [21,22]. Collectively,

these innate immune responses lead to clearance of invading

bacteria.

During sepsis, defective bacterial clearance has been linked to

alterations in the innate immune response. TLR expression and

signaling is often altered leading to hypo- or hyper-responsiveness

[23,24]. In addition, macrophages and neutrophils, which are

extremely plastic, tend to be polarized into an anti-inflammatory

phenotype due to TLR-signaling by danger-associated molecular

patterns (DAMPS) released from damaged tissue [25–29]. These

polarized macrophage (M2) and neutrophil (N2) cells secrete high

amounts of IL-10, a potent anti-inflammatory cytokine and have
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been implicated in burn injury [30–33]. IL-10 can limit tissue

damage by dampening the exaggerated production of pro-

inflammatory cytokines observed during sepsis and induce tissue

healing [34,35]. However, excessive IL-10 has been shown to be

detrimental for bacterial clearance by attenuating protective pro-

inflammatory cytokines, such as IL-12 [36–38]and correlates with

worse outcome after burn injury [39]. Additionally, in various

models of trauma a Ly6g+ CD11b+ myeloid cell population has

been shown to arise [40,41] which are thought to be analogous to

the Myeloid-derived Suppressor Cells (MDSC) that mediate

immune suppression in the tumor microenvironment although

their role in injury is controversial [40,42]. We hypothesized that

these innate immune modulations observed during sepsis also

contribute to increased bacterial susceptibility after severe trauma.

Utilizing a well-established murine model of burn injury to

replicate infection following trauma, we found that burn mice

were highly susceptibility to systemic wildtype P. aeruginosa

infection after wound inoculation. The systemic IL-10/IL-12 axis

was skewed after burn injury and infection demonstrated by a

substantial elevation in serum IL-10. Furthermore, a significant

number of neutrophils, but not macrophages, were polarized into

an IL-10+ IL-122 N2 anti-inflammatory phenotype. To confirm if

neutrophil polarization played a role in bacterial clearance after

burn injury, mice were then infected with attenuated P. aeruginosa

strain (DCyaB). We found that better clearance of DCyaB compared

to the wildtype strain was associated with an increased N1

response in burn mice. Also, we were able to skew the neutrophil

response towards a pro-inflammatory N1 phenotype by the

administration of a TLR5 agonist, flagellin, immediately after

burn injury that correlated with an increased clearance of wildtype

P. aeruginosa after wound inoculation.

These findings, for the first time, detail specific alterations in

innate cell populations after burn injury that contribute to

increased susceptibility to bacterial infection and reveal neutrophil

polarization as a therapeutic target for the reversal of bacterial

susceptibility after injury.

Methods

Animals
Wildtype C57BL/6 (B6) mice were purchased from Taconic

Farms (Hudson, NY). All mice used in the study were maintained

under specific pathogen-free conditions in the Animal Association

of Laboratory Animal Care-accredited University of North

Carolina Department of Laboratory Animal Medicine Facilities.

All protocols were approved by the University of North Carolina

Institutional Animal Care and Use Committee and performed in

accordance with the National Institutes of Health guidelines.

Mouse Burn Injury
Eight to 12 week old (.18 grams), female B6 mice were used for

all experiments. Animals were anesthetized by inhalation of

vaporized isoflurane (Baxter Healthcare, Deerfield, IL) and had

their dorsal and flank hair clipped. A subcutaneous injection of

morphine (3 mg/kg body weight; Baxter Healthcase) was given

prior to burn injury for pain control, and an intraperitoneal

injection of lactated Ringer’s solution (0.1 mL/g body weight;

Hospira, Lake Forest, IL) was given immediately after burn injury

for fluid resuscitation. To create a full-contact burn of approxi-

mately 20% total body surface area (TBSA), a 65 g rod copper rod

(1.9 cm in diameter), heated to 100uC was used. Four applications

of the rod, each for 10 seconds, to the animal’s dorsal/flank

produced the wound. Previous studies analyzing skin biopsies of

the burn wound have demonstrated full-thickness cutaneous burn

with visible unburned muscle beneath when following this

procedure. Animals were returned to individual cages, provided

food and morphinated water ab libitum, and monitored twice a day.

Sham controls with 0% TBSA underwent all described interven-

tions except for the actual burn injury. There was negligible

mortality (,1%) after burn injury alone.

Bacterial strains and preparation
A wildtype strain (PAK) and a mutant strain (DCyaB) of P.

aeruginosa were obtained from M. Wolfgang (University of North

Carolina, Chapel Hill, NC) [43]. Bacteria were grown from frozen

stock at 37uC overnight in Luria-Bertani (LB) broth then

transferred to fresh medium and grown for an additional 2 hours

or until mid-log phase. The cultures were centrifuged at

13,000 rpm for 30 seconds, and the pellet washed with 1 mL of

1 % protease peptone in phosphate buffered saline (PBS +1%PP).

Following a second wash, the bacterial concentration was

determined by assessing optical density at 600 nm. After diluting

the bacteria to obtain the desired concentration, the inoculum was

verified by plating serial 10-fold dilutions on LB agar plates

containing 25 ug/L irgasan (Sigma-Aldrich, St. Louis, MO).

Animal infections
Twenty-four hours following burn or sham injury, mice were

anesthetized by intraperitoneal injection of Avertin (0.475 mg/g

body weight; Sigma-Aldrich). A subcutaneous injection of bacteria

was injected in the mid-dorsal region. For burn mice, this was in

unburned skin surrounded by burn wound. Initial experiments

monitored survival until 120 hours post infection (hpi). In

subsequent experiments, mice were sacrificed at 48hpi to

enumerate bacterial load and analyze immune responses. In select

experiments, mice were administrated flagellin two hours prior to

infection. Ultrapure flagellin from S. typhumurium (InvivoGen; San

Diego, CA) was given intraperitoneally at a concentration of

0.125 ng/100 ul per mouse.

Determination of bacterial infection
At time of sacrifice, a 5 mm skin biopsy of the initial injection

site, the left lobe of the liver, and the lungs were aseptically

removed and placed in 0.5 mL of LB broth. The tissues were

homogenized using 3.2 mm stainless steel beads and a Bullet-

Blender (Next Advance; Averill Park, NY). Serial dilutions of tissue

homogenates were plated on LB agar containing irgasan and

incubated overnight at 37uC.

CD11b+ cell enrichment
Cells suspensions were prepared from spleens of mice. CD11b+

cells were positively selected using the BD Imag Mouse CD11b

Magnetic Particles according to manufacturer’s instructions (BD

Biosciences). This method routinely provided a highly enriched

population of CD11b+ cells.

In vitro stimulation
Following the CD11b enrichment, both CD11b+ and CD11b2

cells were resuspended in RMPI containing 10% fetal bovine

serum to achieve 106cells/mL. Cells were plated in a 48 well plate

and cultured for 6 hours with 0.1 ng/mL of LPS (Sigma-Aldrich)

at 37uC at 5% CO2. During the last 4 hours of the stimulation,

3.0 ul/mL of brefeldin-A solution (eBioscience; San Diego, CA)

was added to block protein secretion.

Neutrophil Polarization after Burn Injury
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Flow cytometric analysis
Splenocytes were incubated with anti-mouse CD16/32 (BD

Biosciences; San Jose, CA) at a concentration of 1 ug per million

cells for 5 min at 4uC to block Fc receptors. The panel of mAbs

used for flow cytometric analyses were anti-Gr1 (RD-8C5), anti-

CD11b (M1/70), anti-Ly6C (AL21), anti-Ly6G (1A8), anti-CD11c

(N418), anti-F4/80 (BM8), anti-NK1.1 (PK136), anti-TLR2 (6C2),

anti-TLR4 (MTS510), anti-TLR5 (85B152.5), anti-IL-10 (JES5-

E16E3), and anti-IL-12 (p40/p70), which were purchased from

BD Biosciences, eBiosciences, and BioLegend (San Diego, CA).

Intracellular staining was performed using BD Cytofix/Cytoperm

Kit (BD Bioscience). Data were collected on a Dako CyAN and

analyzed using Summit software (Dako; Carpinteria, CA).

Serum cytokine analysis
Submandibular bleeds were performed on mice prior to organ

harvest. Serum was collected using MicroTubes with gel and

following manufacturer’s protocol (IRIS International, Westwood,

MA). Serum IL-10 and IL-12 levels were determined using the BD

Cytometric Bead Array (Becton Dickinson, San Diego, CA).

Statistical analysis
Data were analyzed using Student’s t test for differences in CFU

recovery, cell staining, and cytokine assays; log-rank analysis was

used to test differences in mouse survival; two way ANOVA with

Tukey post-test was used to test differences in TLR expression

GraphPad Prism version 5 was used for the analyses. Statistical

significance was defined as p#0.05 unless indicated otherwise.

Results

Burn mice, but not sham mice, developed a systemic
infection following wound inoculation with wildtype P.
aeruginosa

Initial studies assessed survival of burn and sham mice following

wound infection with a wildtype strain of P. aeruginosa, PAK. At

24 hours following burn or sham procedure, mice were anesthe-

tized and given a subcutaneous injection of bacteria (26103,

26104, or 26105 CFU/100 ul) at the mid-dorsum. There was

100% survival of sham mice, even with the highest dose of 26105

CFU (Figure 1A). Burn mice, however, exhibited mortality that

was dose dependent (Figure 1A). Mortality of infected burn mice

began as early as 1 day after inoculation. To evaluate bacterial

clearance in burn and sham mice various tissues were harvested

48 hours following infection (26104 CFU/100ul), which was

before significant mortality occurred. As shown in Figure 1B,

sham mice had no bacteria recovered from skin biopsies of the

injection site while all burn mice had bacteria detected.

Furthermore, the amount of bacteria recovered from the skin of

burn mice was 1–4 logs higher than the initial inoculum. This

suggests bacterial recovery was not solely due to a lack of

clearance, but that bacteria were actively replicating in the skin.

Distal organs were also analyzed to examine bacterial dissemina-

tion. The liver, lungs, wound-draining lymph nodes and spleen of

sham mice had no detectable bacteria, whereas the organs of burn

mice had a high bacterial load (Figure 1C–1F). These data show

that burn mice develop a systemic infection by 48 hours following

wound inoculation with a wildtype strain of P. aeruginosa (PAK).

Innate cell populations had altered TLR expression with
the combination of burn injury and infection

We and others have shown that Toll-like receptor (TLR)

mRNA[30,44] and protein [30] levels changes after burn injury.

Since TLR2, TLR4, and TLR5 are involved in control of P.

aeruginosa infection by recognizing outer membrane lipoproteins,

LPS, and flagellin, respectively [45–47], we hypothesized that

decreased bacterial clearance after burn injury was due to reduced

expression of these TLRs on innate immune cells. In order to

perform a systemic and detailed quantification of various immune

cell populations after burn injury and infection, we devised a flow

cytometric staining panel to differentiate between innate cell

populations (Neutrophils, Gr1+, Ly6C+, Ly6G+, CD11b+,

CD11c+, F4/80-; macrophages, Gr1+, Ly6C+, Ly6G-, CD11b+,

CD11c-, F4/80+; dendritic cells, Gr1-, Ly6C-, Ly6G-, CD11b+,

CD11c+, F4/80- and Gr1+ myeloid MDSC, Gr1+, Ly6C+,

Ly6G+, CD11b+, CD11c-, F4/80-). The absolute number of these

innate populations were similar in all treatment groups (data not

shown). Adaptive cell populations (T and B cell) were also largely

unchanged (data not shown), with a significant decrease in CD8 T

cell number only upon injury, as we have documented before [8].

Upon bacterial infection, splenic neutrophils and Ly6G+ CD11b+

myeloid cells from burn mice had significantly reduced TLR2,

TLR4 and TLR5 expression compared to uninfected burn and

infected sham mice (Figure 2A and 2B). In contrast, splenic

macrophages from infected burn mice had increased TLR2 and

TLR4 but unchanged TLR5 expression compared to uninfected

burn and infected sham mice (Figure 2C). These data demonstrate

that on specific innate cell populations there are acute alterations

in TLR expression in response to bacterial infection after burn

injury.

Infection following burn injury resulted in a systemic
increase in IL-10

Many studies have shown that IL-10 is deleterious whereas IL-

12 is beneficial for clearance of P. aeruginosa [36–38]. Therefore, we

hypothesized that infected burn mice would have a skewing in the

IL-10/IL-12 axis towards an IL-10 response. Three days following

burn or sham treatment, there was no detectable IL-10 in the

serum (data not shown). Infection of burn mice resulted in a

substantial elevation of serum IL-10 while infection of sham mice

did not induce an IL-10 response (Figure 3A). Burn and sham

mice also had no detectable IL-12 at three days post treatment

(data not shown). However, infection caused an increase in serum

IL-12 for both groups of mice (Figure 3B). In summary, infection

following burn injury led to a predominant systemic IL-10

response, while infection after sham treatment induced an IL-12

response.

Infected burn mice had an increased polarization of
neutrophils, but not macrophages, into an IL-10+ IL-122

phenotype
Macrophages and neutrophils can be polarized into pro- (M1/

N1) and anti-inflammatory states (M2/N2) [25–28] after TLR

stimulation, particularly in the context of injury where there is

release of tissue DAMPs [29]. Infected burn mice had a systemic

anti-inflammatory response following infection, which was marked

by elevated serum IL-10 levels; therefore, we hypothesized the

innate cells were polarized towards an anti-inflammatory pheno-

type (IL-10+ IL-122) following burn and infection. Splenocytes

were harvested at 48 hours post infection and underwent

intracellular staining for cytokine analysis without further stimu-

lation in vitro. IL-10 producing Gr1+ CD11b+ cells were readily

detected in the spleen of the infected burn mice (representative

histogram, Figure 4A). Due to these data along with previous

reports about IL-10 production by innate cells following burn

injury [32,48], we focused our subsequent studies on these cell

Neutrophil Polarization after Burn Injury
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types. Splenocytes were harvested at 48 following infection then

underwent CD11b enrichment by magnetic selection. CD11b+

cells were cultured in the presence of LPS and brefeldin-A to

measure intracellular accumulation of IL-10 and IL-12. Cell

surface, intracellular staining and side/forward scatter indicated

that neutrophils (Gr1+, Ly6C+, Ly6G+, CD11b+, CD11c+, F4/

80-),but not macrophages (Gr1+, Ly6C+, Ly6G-, CD11b+,

CD11c-, F4/80+), were the major immune cell type producing

IL-10 in the spleen. Furthermore, infected burn mice had a

significantly higher percentage of splenic neutrophils producing

IL-10 than infected sham mice (Figure 4B). As for IL-12

production, infected burn mice had a significantly lower percent-

age of splenic neutrophils, dendritic cells, and macrophages

producing this cytokine than infected sham mice (Figure 4C–E).

These data, along with the serum cytokine response, suggest that

following burn injury, the immune system mounts an inappropri-

ate systemic IL-10 response with neutrophils exhibiting a N2

phenotype upon bacterial infection.

Increased resistance of burn mice to systemic infection
with an attenuated strain (DCyaB) P. aeruginosa
correlated with reduced N2 polarization of neutrophils
DCyaB is a mutant strain of P. aeruginosa that has been previously

reported to be attenuated in an adult mouse model of acute

pneumonia [49]. We predicted that burn mice could control

infection with DCyaB better than wildtype PAK. Also, we

hypothesized that any differences in the innate immune response

between DCyaB and PAK infection would reveal mechanisms that

contribute to enhanced bacterial clearance and thus identify

potential targets for immune modulation. Twenty-four hours

following burn or sham treatment, mice were given a subcutane-

ous injection of wildtype PAK or DCyaB mutant (26104 CFU/

100 ul). At 48 hours following infection, skin biopsies at the

injection site were harvested to measure localized bacterial

clearance. Distal organs were also harvested to assess bacterial

dissemination from the injection site. Regardless of P. aeruginosa

strain, infected sham mice had no bacteria recovered from their

skin, liver, and lung samples (data not shown). Infection with PAK

or DCyaB following burn injury resulted in a similar bacterial load

at the injection site (data not shown). In contrast, burn mice

infected with DCyaB had significantly less bacterial recovery in the

Figure 1. Burn mice, but not sham mice, exhibit dose-dependent mortality and develop a systemic infection following a P.
aeruginosa wound inoculation. Wildtype P. aeruginosa (PAK) was administered subcutaneously at 24 hours after burn or sham treatment. A)
Various doses of bacteria (26103, 26104, or 26105 CFU/100 ul) were given and survival was monitored for 120 hours post infection (hpi). B–F) Using
a dose of 26104 CFU, bacterial load at the injection site and distal organs was assessed at 48 hpi in sham (open circles) and burn (closed circles) mice.
(n = 4–9 per group) *, p#0.05. **, p#0.005. These experiments were repeated three times with similar results.
doi:10.1371/journal.pone.0085623.g001
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Figure 2. TLR expression is decreased on splenic neutrophils and Ly6G+ CD11b+ myeloid cells, but not macrophages, after burn
injury with infection. Splenocytes were harvested and mean fluorescence intensity (MFI) of TLR2, TLR4, and TLR5 expression was elevated on
splenic A) neutrophils, b) Ly6G+ CD11b+ cells, and B) macrophages at 3 days post burn (solid) or sham (open) treatment combined with (PAK) or
without (-) P. aeruginosa wound inoculation. Data expressed as mean 6 SEM. (n = 4–10) *, p#0.05. **, p#0.005. ***, p#0.0005. ****, p,0.0001 by two
way ANOVA with Tukey post test. These experiments were repeated three times with similar results.
doi:10.1371/journal.pone.0085623.g002

Figure 3. Burn mice, but not sham mice, mount a robust serum IL-10 response after P. aeruginosa wound inoculation. Twenty-four
hours after sham (open) or burn (solid) treatment, mice were given a subcutaneous injection of wild-type P.aeruginosa PAK. Forty-hours following
infection, serum was collected to determine circulating levels of A) IL-10 and B) IL-12 by cytometric bead array. Data expressed as mean 6 SEM.
(n = 10–15) *, p#0.05.
doi:10.1371/journal.pone.0085623.g003
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distal organs than burn mice infected with PAK (Figure 5A and

5B). These data indicate that burn mice are more resistant to

developing systemic infection with an attenuated strain of P.

aeruginosa than with wildtype PAK. Therefore, burn mice retain

some antibacterial activity which allows for improved control of

the attenuated strain.

Infection of burn mice, regardless of bacterial strain, caused an

elevation of serum IL-10 compared to sham mice (Figure 5C). In

contrast to PAK, infection with DCyaB following burn injury

resulted in a significant increase in serum IL-12 levels (Figure 5D).

In both treatment groups, the main source of IL-10 in the spleen

was neutrophils. Also, the percentage of splenic neutrophils

producing IL-10 was similar in burn mice infected with DCyaB

and those infected with PAK (Figure 5E). DCyaB infection also

resulted in a higher percentage of IL-12+ neutrophils within the

spleen (Figure 5F). Hence, infection with DCyaB following burn

injury results in a higher percentage of IL-12+ cells within the

spleen and an increase in serum IL-12. TLR2, TLR4, and TLR5

expression on the various immune cells was comparable between

PAK and DCyaB infected burn mice (data not shown). These data

suggest that the reduced susceptibility to DCyaB in the burn mice is

due to a skewing of the IL-10/IL-12 balance to a protective IL-12

response.

Treatment of mice with flagellin after burn injury
enhanced clearance of wildtype P. aeruginosa

Flagellin, the ligand of TLR5, has been shown to increase IL-12

production [29,50]. Therefore, we hypothesized that flagellin

could improve clearance of wildtype P. aeruginosa (PAK) in burn

mice by increasing the protective IL-12 response. Burn mice were

resuscitated after burn injury and received an intraperitoneal

injection of flagellin (0.125 ng/100 ul) twenty-hours later. Twenty-

four hours after burn they were then infected subcutaneously with

PAK. Forty-eight hours following infection with or without

treatment with flagellin, various organs were harvested to

determine bacterial load. Pretreatment with flagellin did not affect

bacterial recovery from skin biopsies at the injection site (data not

shown). However, there were significantly less bacteria recovered

from the liver and lungs of burn mice pretreated with flagellin

compared to untreated controls (Figure 6A and 6B). The reduced

bacterial load in the periphery correlated with an increased

percentage of IL-12 producing neutrophils whereas IL-10

production by neutrophils was unchanged (Figure 6C and 6D).

The absolute number of innate and adaptive cells were unchanged

between flagellin and flagellin-untreated burn mice. These data

suggest that a single treatment with flagellin after injury is

sufficient to reduce the systemic infection of wildtype P. aeruginosa

by skewing more neutrophils towards a pro-inflammatory pheno-

type.

Figure 4. Infected burn mice have a higher percentage of IL-10+ neutrophils and a lower percentage of IL-12+ neutrophils, dendritic
cells, and macrophages than infected sham mice. A) Splenocytes were harvested at 48 hours post infection and underwent intracellular
staining for cytokine analysis without further stimulation in vitro. Shown is a representative histogram from an infected burn mouse, which indicates
that IL-10 is being produced by Gr1+ CD11b+ cells within the spleen. B–E) Splenocytes were collected at 48 following infection and underwent CD11b
enrichment by magnetic selection. CD11b+ cells were cultured in the presence of LPS and brefeldin-A then were subjected to cell surface and
intracellular staining. Percentage of B) IL-10+ neutrophils, as well as IL-12+ C) neutrophils, D) dendritic cells, and E) macrophages were measured for
infected sham (open) and burn (solid) mice. Data expressed as mean 6 SEM. (n = 6, 7) **, p#0.005. ***, p#0.0005. ****, p,0.0001. These experiments
were repeated three times with similar results.
doi:10.1371/journal.pone.0085623.g004
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Discussion

Severe trauma results in a period of immune impairment that

predisposes the patient to infectious complications, such as sepsis.

However, the specific mechanisms that contribute to diminished

bacterial clearance are not clearly defined. In this study, we

utilized a murine model of severe burn injury and challenged mice

with a clinically relevant pathogen to reveal specific trauma-

induced deviations in the innate immune response that contribute

to increased susceptibility to infection. Within 48 hours of wound

inoculation with a wildtype strain of P. aeruginosa (PAK), bacteria

replicate to a high titer and spread to distal organs resulting in

bacterial sepsis. Neutrophils and Ly6g+ CD11b+ myeloid cells

have decreased TLR expression. In addition, the neutrophils are

profoundly polarized into an anti-inflammatory (‘‘N2’’; IL-10+ IL-

122) phenotype.

Furthermore, we hypothesized that some antimicrobial effector

functions are retained after severe burn injury and that amplifying

these responses therapeutically can enhance bacterial clearance

even if in face of overt immune suppression. To identify these

potential targets, mice were infected with an attenuated strain of P.

aeruginosa (DCyaB). We found that burn mice have greater control

of DCyaB infection than wildtype PAK infection, which is

exhibited by reduced bacterial recovery systemically. By compar-

ing various aspects of the innate immune response, it appears that

increased neutrophil polarization towards a pro-inflammatory

phenotype (N1; IL-12+ IL-102) is responsible for improved

clearance of DCyaB in the periphery. We next investigated the

Figure 5. Reduced bacterial load at distal organs following wound inoculation with an attenuated P. aeruginosa strain (DCyaB) is
associated with an increased serum IL-12 and pro-inflammatory neutrophil (N1; IL-102IL-12+) response in burn mice. Forty eight
hours following wildtype PAK (circles/solid bars) or DCyaB (triangles/checkered bars) wound infection, various organs were harvested from burn mice.
Bacterial load in A) liver and B) lung samples was determined by colony forming unit (CFU) assay. Serum C) IL-10 and D) IL-12 levels were assessed by
cytometric bead array. Also, the percentage of splenic neutrophils producing E) IL-10 and F) IL-12 was determined by flow cytometric analysis. Data
expressed as mean 6 SEM. (n = 8, 8) *, p#0.05. **, p#0.005. ****, p,0.0001. These experiments were repeated three times with similar results.
doi:10.1371/journal.pone.0085623.g005
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effectiveness of flagellin, a natural TLR5 ligand that can induce

IL-12 production, as a therapeutic agent in our model [29,50]. We

found that treatment with flagellin after burn injury enhances

clearance of wildtype P. aeruginosa (PAK) in the periphery and

increases the percentage of IL-12 producing neutrophils in the

spleen. Nevertheless, IL-10 production by splenic neutrophil

remained elevated compared to sham controls. These data suggest

that although infection following burn injury polarizes neutrophils

towards an anti-inflammatory phenotype, flagellin administration

can tilt this back towards a pro-inflammatory response that is

beneficial for bacterial clearance.

Previous studies have attempted to delineate cellular mecha-

nisms underlying the increased susceptibility to infection after

injury, which is a very pressing clinical need. This study utilized a

very precise panel of antibodies for the flow cytometric identifi-

cation of specific innate cell populations so that their role in

infection after burn injury could be better assessed. Using cell

surface markers CD11b, CD11c, F4/80, Gr1, Ly6C, and Ly6G,

we can clearly define neutrophils (F4/802 Gr1+ (Ly6C+ Ly6G+)

CD11b+ CD11c+), macrophages (F4/80+ Gr1+ (Ly6C+ Ly6G2)

CD11b+ CD11c2), a Ly6g+ CD11b+ myeloid population (F4/80+

Gr1+ (Ly6C+ Ly6G+) CD11b+ CD11c2) and dendritic cells (F4/

802 CD11b+ Gr12 CD11c+). Using such an in depth staining

panel and gating scheme allowed for quantification of various

immune innate cell populations after injury that has not been

reported to date.

Controversy exists as to whether the Ly6g+ CD11b+ cells that

arise after trauma are analogous to the Myeloid-derived Suppres-

sor Cells (MDSC) that mediate T cell suppression in the tumor

microenvironment [40]. Our laboratory has recently described

that burn-induced Ly6g+ CD11b+ cells suppress T cell prolifer-

ation [51] and polarize T cells towards a Th2-anti-inflammatory

response [52] suggesting they mimic aspects of MDSC function.

Ly6g+ CD11b+ cells employ various mechanisms, such as arginase,

IL-10, and nitric oxide production, to inhibit T cell proliferation

and activation [53–55]. This study did not reveal IL-10 secretion

by Ly6G+ CD11b+ myeloid cells after burn injury and/or an acute

bacterial infection, but we predict that these cells become a

predominant population at later time points after burn injury [51]

due to continuous myelopoeisis. IL-10 itself has many effects on

other immune cells, including upregulation of Treg suppression,

decreased effector T cell function. IL-10 can also downregulate

innate cell function including inhibition of reactive oxygen species

vital for killing of bacteria. The innate system is thought to drive

the resultant adaptive response. Further work is required to

determine if and how these cells impact both the innate and

adaptive arms of the immune system later after burn injury.

As for the other innate cells populations, we observed

neutrophil, but not macrophage, polarization in our model system.

Polarization of adaptive immune cells, such as naı̈ve CD4+ T cells

into a Th1 or Th2 phenotype, is well established [56]. However,

the polarization and plasticity of innate immune cell populations

has only been recently recognized. Most of the information within

the field originates from tumor research and mainly focuses on

macrophage polarization [57]. Although the details are still

unclear, the literature suggests that the local microenvironment

Figure 6. Administration of flagellin at burn resuscitation and prior to wound infection with wildtype P. aeruginosa (PAK) reduces
bacterial load in the periphery and increases the percentage of IL-12 producing neutrophils within the spleen. Burn mice were given
given an intraperitoneal injection of flagellin (circles/solid bars) or left untreated (squared/striped bars) twenty-two hours after burn injury. Twenty-
four hours after burn injury, mice were challenged with subcutaneous wound infection with PAK. Forty-eight hours following the bacterial challenge,
various organs were harvested. Bacterial load in A) liver and B) lung samples was determined by colony forming unit (CFU) assay. The percentage of
splenic neutrophils producing C) IL-10 and D) IL-12 was determined by flow cytometric analysis. Data expressed as mean 6 SEM. (n = 8–10) *, p#0.05.
**, p#0.005. These experiments were repeated three times with similar results.
doi:10.1371/journal.pone.0085623.g006
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in which a cell is activated determines the cell’s subsequent

phenotype and that changing this microenvironment can skew

polarization of the cell population. For example, a macrophage

can be polarized towards a pro-inflammatory phenotype (M1)

marked by production of IL-12, as well as other pro-inflammatory

mediators, when activated in the presences of interferon-gamma

[58]. However, if a macrophage is then exposed to IL-10,

glucocorticoids, or immune complexes in the presence of the TLR

ligands, it can exhibit an anti-inflammatory phenotype (M2, IL-

10+ IL-122) [59,60]. In our model system, we find that

neutrophils, not macrophages, are the main innate immune cell

population that is polarized. It appears that infection following

burn injury skews neutrophils towards an anti-inflammatory

phenotype. Yet when mice are administered flagellin, they exhibit

a mixed N1/N2 phenotype that correlates with enhanced bacterial

clearance in the periphery. In the context of sepsis, a predominant

M1 response is detrimental to local tissue since the robust pro-

inflammatory cytokine production by the macrophages can

exacerbate tissue damage [26]. Also, an overt M2 response is

believed to deleterious by significantly impairing bacterial

clearance [61]. Thus, a mixed M1/M2 response appears to be

ideal during sepsis. Our data support the idea that a mixed N1/N2

response is also beneficial after sepsis; however, future research is

needed to delineate this correlation in more detail.

Since infectious complications are a main cause of mortality

after traumatic injury, it is essential to identify biomarkers of

infection and drug targets to improve control of invading

pathogens. Numerous studies have linked high circulating levels

of IL-10 with poor outcome following burn injury, sepsis, and a

wide variety of bacterial infections [36,38,62]. In our model

system, serum IL-10 is elevated in infected burn mice, regardless of

strain, but not in uninfected controls. Collectively, this supports

the use of IL-10 as a useful biomarker of bacterial infection.

Taken together these data detail specific changes in innate cell

populations following burn injury that contribute to increased

susceptibility to bacterial infection and reveal neutrophil polari-

zation as a therapeutic target for the reversal of bacterial

susceptibility after injury. Future experiments should examine

other aspects of neutrophil function, such as phagocytosis and

NET formation, after burn injury and infection and determine if

flagellin administration impacts these antimicrobial activities.

Furthermore, the timing of treatment should be investigated to

determine if flagellin administration could improve clearance of an

established bacterial infection, which would be extremely valuable

in the clinical setting.
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