
Association Studies with Imputed Variants Using
Expectation-Maximization Likelihood-Ratio Tests
Kuan-Chieh Huang1, Wei Sun1,2, Ying Wu2, Mengjie Chen1,2, Karen L. Mohlke2, Leslie A. Lange2,

Yun Li1,2,3*

1 Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America, 2 Department of Genetics, University of North Carolina,

Chapel Hill, North Carolina, United States of America, 3 Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, United States of

America

Abstract

Genotype imputation has become standard practice in modern genetic studies. As sequencing-based reference panels
continue to grow, increasingly more markers are being well or better imputed but at the same time, even more markers
with relatively low minor allele frequency are being imputed with low imputation quality. Here, we propose new methods
that incorporate imputation uncertainty for downstream association analysis, with improved power and/or computational
efficiency. We consider two scenarios: I) when posterior probabilities of all potential genotypes are estimated; and II) when
only the one-dimensional summary statistic, imputed dosage, is available. For scenario I, we have developed an
expectation-maximization likelihood-ratio test for association based on posterior probabilities. When only imputed dosages
are available (scenario II), we first sample the genotype probabilities from its posterior distribution given the dosages, and
then apply the EM-LRT on the sampled probabilities. Our simulations show that type I error of the proposed EM-LRT
methods under both scenarios are protected. Compared with existing methods, EM-LRT-Prob (for scenario I) offers optimal
statistical power across a wide spectrum of MAF and imputation quality. EM-LRT-Dose (for scenario II) achieves a similar
level of statistical power as EM-LRT-Prob and, outperforms the standard Dosage method, especially for markers with
relatively low MAF or imputation quality. Applications to two real data sets, the Cebu Longitudinal Health and Nutrition
Survey study and the Women’s Health Initiative Study, provide further support to the validity and efficiency of our proposed
methods.
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Introduction

Genotype imputation has become standard practice in modern

genetic studies [1] [2][3] [4]. For each untyped variant imputed,

standard imputation methods estimate posterior probabilities of all

possible genotypes. For example, when the untyped variant is bi-

allelic with alleles A and B, we obtain posterior probabilities for A/

A, A/B, and B/B with the constraint of summation being one.

Such probability information can be further summarized into

degenerate one-dimensional summary statistics including the

mode (the best guess genotype, or the genotype with the highest

posterior probability), or the mean (the imputed dosage).

Since association analysis with phenotypes of interest rather

than genotype imputation per se is usually of the ultimate interest,

development and evaluation of post-imputation association

strategies have therefore attracted considerable attention from

the research community [5][6][7][8][9][10][11][12][13]. Among

them, imputation dosage based methods provide an attractive

compromise between modeling complexity, computational effi-

ciency and statistical power, have been shown analytically to be

optimal among methods based on one-dimensional summary

statistics [11], and thus have been most commonly adopted in

recent imputation-aided genome-wide association studies (GWAS)

and meta-analyses [14][15][16][17]. On the other hand, explicitly

modeling the probabilities of all possible genotypes using the

mixture of regression models (abbreviated Mixture hereafter and

detailed below) has the best performance in terms of statistical

efficiency, particularly with low imputation quality, but at the cost

of increased computational complexity [13].

Limited evaluations of existing methods (including methods that

explicitly model posterior probabilities) on variants with low

imputation quality suggest much reduced power compared with

accurately imputed variants, for instance, as demonstrated in

Figure 2 and 3 [13] and Figure 2 [11]. Analysis of variants with

low imputation quality is not surprisingly a challenging problem

due to the low correlation between imputed and true genotypes. It

is nevertheless an increasingly important problem because as

sequencing-based reference panels continue to grow [18][19], we
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have increasingly more well imputed markers but also even more

markers with relatively low imputation quality, particularly at

markers with lower allele frequencies [20][21][22][23][24]. It is

thus highly warranted to seek alternative and potentially more

efficient methods to model imputation uncertainty for these

markers. In this work, we develop expectation-maximization

likelihood-ratio tests (EM-LRT) that can accommodate either

posterior genotype probabilities, when available (EM-LRT-Prob),

or imputed dosages (EM-LRT-Dose). Simulations and real data

application demonstrate the validity of the proposed methods and

suggest them as a computationally more efficient alternative to the

best existing method (Mixture) for association analysis of variants

with low MAF or imputation quality.

Methods

We will first briefly review the Mixture method [13] given it is

the state-of-the-art method that models the posterior probabilities.

We will then proceed to introduce our methods by first

introducing a hierarchical modeling framework to simulate

genotype (including both the truth and imputed) and phenotype

data of interest, explicitly taking imputation quality (as measured

by R2, squared Pearson correlation between true and imputed

genotypes) into account. This framework allows us to simulate data

conditional on any desired R2, making it straightforward to

evaluate performance at any desired level of imputation quality.

We then describe our EM-LRT in two scenarios, namely when

posterior probabilities are available (Scenario I) and when only

imputed dosages are available (Scenario II).

Brief Review of the Mixture Method
The following mixture of regression model is fit for trait Yi and

genotype probability vector Fi~ fi0,fi1,fi2ð Þ :

Yi~
X2

j~0

fij
:gj b0,b1,c,eið Þ

where gj b0,b1,c,eið Þ~b0zj:b1zcZizei, Zi is the covariate

vector, ei*N 0,s2
� �

, and i = 1, 2, …, N with N being the sample

size. To estimate the parameters b0,b1,cð Þ, the log-likelihood

function is maximized using the Nelder-Mead Simplex Method

[25], implemented in R package optim.

A Hierarchical Modeling Framework to Simulate Data
We adopt a hierarchical model that generates posterior

probabilities, imputed dosages, and true genotypes using marker-

specific information including minor allele frequency (MAF) and

imputation quality measure (R2), as well as a quantitative trait with

which we test for genetic association. The model has three stages:

the first stage generates genotype probabilities based on marker-

specific information (genotype probability stage); the second stage

employs a multinomial distribution with probabilities from the first

stage to generate allele counts (allele count stage); and the final

stage fits a linear regression model to generate quantitative trait

values (trait stage).

Genotype Probability Stage. For a specific marker with

MAF q and imputation quality R2, the genotype probability vector

Fi~ fi0,fi1,fi2ð Þ for the i-th sample is drawn from a Dirichlet

distribution with parameters a~ a0,a1,a2ð Þ, where fij is the

Figure 1. MAF Threshold: Rejection Sampling (Black) vs. Dosage Approximation (Grey). The MSE (Y-axis) between sampled genotype
probability f̂f1 and true f1 using rejection sampling (black) and dosage approximation (grey) is compared across a spectrum of R2.
doi:10.1371/journal.pone.0110679.g001
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probability of having j copies of the minor allele for the i-th sample

and
P2

j~0 fij~1. The parameters in the Dirichlet distribution are:

a0~ 1{qð Þ2=c , a1~2q 1{qð Þ=c , a2~q2=c with c~R2=

1{R2
� �

. We provide details to justify this choice the parameters

a~ a0,a1,a2ð Þ in Appendix S1. Here we give some brief

explanations. First, this distribution gives reasonable expected

values for Fi~ fi0,fi1,fi2ð Þ such that E fi0ð Þ~ 1{qð Þ2,

E fi1ð Þ~2q 1{qð Þ, and E fi2ð Þ~q2, which are the expected

probabilities of having 0, 1, or 2 copies of minor alleles assuming

Hardy-Weinberg Equilibrium. Next, when R2 approaches to 1,

Fi~ fi0,fi1,fi2ð Þ approaches to a distribution that takes three

possible values, (1,0,0), (0,1,0), and (0,0,1) (i.e., the probability of

having a particular genotype is either 0 or 1), which is the expected

situation when there is no imputation ambiguity. Given the

genotype probability vector, the imputed dosage is Di~fi1z2fi2.

Allele Count Stage. The allele count vector

Xi~ xi0,xi1,xi2ð Þ for the i-th sample is drawn from a multino-

mial distribution with genotype probabilities specified in the

previous stage, where xij~1 if the i-th sample has j copies of the

minor allele; and 0 otherwise, with the constraint ofP2
j~0 xij~1. Additionally, the genotype Gi for the i-th sample

is generated using this allele count vector, specifically

Gi~xi1z2xi2. Our simulation framework, taking imputation

Table 1. Rejection Sampling vs. Dosage Approximation for fi1 Estimation.

Rejection Sampling Dosage Approximation

R2 MAF Cutoff MSE Runtime (Sec.) MSE Runtime (Sec.)

0.95 20% 1.01E-02 5.82 1.42E-02 7.60E-04

0.75 30% 4.49E-02 3.04 6.39E-02 6.80E-04

0.50 30% 5.98E-02 2.3 6.29E-02 7.14E-04

0.30 30% 5.71E-02 2.42 6.11E-02 8.10E-04

0.25 30% 5.32E-02 2.61 6.06E-02 8.36E-04

0.20 25% 3.82E-02 2.41 3.93E-02 7.56E-04

0.10 20% 1.69E-02 2.35 1.99E-02 7.04E-04

MAF: Minor allele frequency.
MSE: Mean square error.
doi:10.1371/journal.pone.0110679.t001

Figure 2. Spearman Correlation with Gold Standard P-values. The Spearman correlation (Y-axis) between gold standard p-values and p-
values from different methods is displayed across a spectrum of MAF and R2.
doi:10.1371/journal.pone.0110679.g002
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quality R2 into account using c above, renders corr2 Gi,Dið Þ~R2

[proof in Appendix S1; Figure S2 and S3].

Trait Stage. In the final stage, a linear regression model is

used to generate quantitative trait Yi using genotype Gi and

covariates Zi.

Yi~b0zb1GizcZizei

where ei*N 0,s2
� �

and i = 1, 2, …, N.

Expectation-Maximization Likelihood-Ratio Tests
Our primary goal is to test for marker-trait association when

marker genotypes G are not directly observed but rather

imputed. We propose the following expectation-maximization

likelihood-ratio tests (EM-LRT). We consider two common

scenarios after genotype imputation: 1) when posterior

probabilities of genotypes are available and 2) when only

dosages are available.

Scenario I: When Posterior Probabilities Are Available

[EM-LRT-Prob]. Under this scenario, the true genotype Gi is

missing but genotype probability vector Fi~ fi0,fi1,fi2ð Þ is estimat-

ed, i = 1, 2, …, N with N being the sample size. Given the

observations yi,Gi,zi,fið Þ where fi is the observed value for Fi, the

complete data likelihood is.

Table 2. Type I Error at Significance Level = 5E-02.

R2 MAF Dosage EM-LRT-Dose EM-LRT-Prob Mixture Truth

0.3 0.2 4.99E-02 5.01E-02 5.01E-02 5.01E-02 4.99E-02

0.1 5.01E-02 5.02E-02 5.03E-02 5.03E-02 4.99E-02

0.05 4.99E-02 5.01E-02 5.01E-02 5.01E-02 4.99E-02

0.025 5.01E-02 5.03E-02 5.03E-02 5.03E-02 5.01E-02

0.01 4.98E-02 4.96E-02 4.96E-02 4.96E-02 4.99E-02

0.2 0.2 5.00E-02 5.02E-02 5.03E-02 5.03E-02 5.00E-02

0.1 4.99E-02 5.02E-02 5.03E-02 5.03E-02 5.00E-02

0.05 5.00E-02 5.03E-02 5.03E-02 5.03E-02 5.01E-02

0.025 4.99E-02 5.03E-02 5.03E-02 5.03E-02 5.01E-02

0.01 5.00E-02 5.02E-02 5.01E-02 5.01E-02 4.99E-02

0.1 0.2 5.00E-02 5.08E-02 5.05E-02 5.05E-02 5.01E-02

0.1 5.00E-02 5.06E-02 5.08E-02 5.08E-02 5.00E-02

0.05 5.01E-02 5.11E-02 5.13E-02 5.13E-02 5.01E-02

0.025 5.01E-02 5.15E-02 5.14E-02 5.14E-02 5.01E-02

0.01 5.00E-02 5.09E-02 5.07E-02 5.07E-02 4.98E-02

doi:10.1371/journal.pone.0110679.t002

Table 3. Type I Error at Significance Level = 5E-05.

R2 MAF Dosage EM-LRT-Dose EM-LRT-Prob Mixture Truth

0.3 0.2 4.85E-05 5.00E-05 4.94E-05 4.94E-05 5.24E-05

0.1 5.09E-05 4.98E-05 5.23E-05 5.23E-05 5.43E-05

0.05 4.71E-05 5.03E-05 5.07E-05 5.07E-05 5.41E-05

0.025 4.95E-05 4.92E-05 4.80E-05 4.80E-05 4.97E-05

0.01 5.35E-05 4.79E-05 4.69E-05 4.69E-05 4.97E-05

0.2 0.2 4.58E-05 4.57E-05 4.58E-05 4.58E-05 5.00E-05

0.1 4.67E-05 4.71E-05 4.84E-05 4.84E-05 5.30E-05

0.05 5.08E-05 5.09E-05 5.05E-05 5.05E-05 5.14E-05

0.025 5.23E-05 5.02E-05 5.09E-05 5.09E-05 5.06E-05

0.01 4.78E-05 4.41E-05 4.26E-05 4.26E-05 4.92E-05

0.1 0.2 4.93E-05 5.53E-05 5.19E-05 5.19E-05 5.02E-05

0.1 5.08E-05 5.27E-05 5.24E-05 5.24E-05 5.35E-05

0.05 5.05E-05 5.09E-05 5.23E-05 5.22E-05 4.85E-05

0.025 4.98E-05 5.15E-05 5.04E-05 5.04E-05 4.93E-05

0.01 5.02E-05 5.05E-05 4.95E-05 4.95E-05 5.27E-05

doi:10.1371/journal.pone.0110679.t003
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Figure 3. Power Comparison. The statistical power (Y-axis) of the different methods is shown across a spectrum of R2 and MAF.
doi:10.1371/journal.pone.0110679.g003

Figure 4. Q–Q Plot for Null Variants with Low Imputation Quality in the CLHNS Study. The observed (Y-axis) vs. expected (X-axis) –log10[p-
values] are shown for 1,135 SNPs in the CLHNS data set. These SNPs are considered to be under the null hypothesis (true p-value .561026), and all
have low imputation quality (R2,0.3).
doi:10.1371/journal.pone.0110679.g004
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L� b,s,cDy,G,z,fð Þ

~PN
i~1 f yi DGi,zi,fið Þ:P Gi Dzi,fið Þ

~PN
i~1 f yi DGi,zið Þ:P Gi Dfið Þ!PN

i~1 f yi DGi,zið Þ

where the second equality holds because trait yi is independent of

genotype probability vector fi conditional on true genotype Gi and

true genotype is independent of covariates zi conditional on

genotype probability vector. Therefore, with Gaussian distribu-

tion, the corresponding complete-data log-likelihood is

l� b,s,cDy,G,z,fð Þ!
XN

i~1
{logs{ yi{ b0zb1Gizczið Þ½ �2

.
2s2

In this complete data log-likelihood, terms involving true

genotype Gi, namely Gi and Gi
2, are not observed and will be

replaced in the E-step by their conditional expectations given the

observed data. Their conditional expectations are.

E Gi Dyi,fi,zið Þ

~
X2

Gi~0
Gi
:P Gi Dyi,fi,zið Þ~C{1:

X2

Gi~0
Gi
:P yi DGi,zið Þ:P Gi Dfið Þ

E G2
i Dyi,fi,zi

� �

~
X2

Gi~0
G2

i
:P Gi Dyi,fi,zið Þ~C{1:

X2

Gi~0
G2

i
:P yi DGi,zið Þ:P Gi Dfið Þ

where C~
P2

Gi~0 f yi DGi,zið Þ:P Gi Dfið Þ, and

P Gi Dfið Þ~f
I Gi~0ð Þ

i0 f
I Gi~1ð Þ

i1 f
I Gi~2ð Þ

i2 .

In the M-step, the maximum likelihood (ML) estimates of the

parameter h~ b0,b1,c,sð Þ are obtained as follows:

b̂b0,b̂b1,ĉc
� �

~ I ,G,Z½ �T I ,G,Z½ �
n o{1

I ,G,Z½ �T

Y~

IT I IT G IT Z

GT I GT G GT Z

ZT I ZT G ZT Z

2
664

3
775

{1
IT Y

GT Y

ZT Y

2
664

3
775

ŝs2~ Y{b̂b0{b̂b1G{ĉcZ
� �T

Y{b̂b0{b̂b1G{ĉcZ
� ��

n

We repeat the E-step and M-step until convergence (dv10{6).

To speed up the EM algorithm, we suggest using the naı̈ve

parameter estimates as starting values, that is, the parameter

estimates derived by fitting a simple linear regression on trait Y using

dosage D and covariates Z (a.k.a Dosage or standard method). Our

EM-LRT-Prob approach shares some similarity with the seminar

work by Lander and Botstein [26] for interval mapping, in which

the authors also used mixture model framework, treating genotypes

at quantitative trait loci as missing data.

Table 4. Associated Variants with R2#0.3 in the CLHNS Study.

P-values

Coordinate* R2 Dosage EM-LRT-Dose EM-LRT-Prob Mixture Truth#

chr16:82646152 0.251 2.13E-11 1.45E-11{ 4.68E-11 4.68E-11 6.77E-20

chr16:82650717 0.282 2.88E-11 1.83E-11{ 5.87E-11 5.87E-11 1.35E-21

chr16:82663288 0.268 2.67E-10{ 7.78E-10 6.46E-10 6.46E-10 2.16E-25

chr16:82670249 0.270 2.04E-08 1.45E-08{ 1.59E-08 1.61E-08 1.72E-12

chr16:82670539 0.249 9.26E-09 1.27E-08 4.79E-09{ 4.83E-09 1.25E-12

chr16:82670636 0.230 1.22E-08 2.01E-08 7.32E-09{ 7.33E-09 1.78E-12

*: Coordinates are in genome build 37.
Bold with {: The most significant p-value among the four methods.
Bold without {: The second most significant p-values among the four methods.
#: Truth was established by regressing phenotype on true genotypes.
doi:10.1371/journal.pone.0110679.t004

Table 5. Associated Variants with MAF ,5% in the WHI Study.

P-value

SNP Trait Meta p-value Dosage EM-LRT-Dose

snp.684276 hematocrit 5.70E-11 5.85E-11* 8.94E-11

snp.177048 log(WBC) 3.00E-13 3.95E-08 2.73E-08*

snp.177015 log(WBC) 4.30E-13 6.11E-08 4.72E-08*

snp.41127 platelet 1.50E-11 2.52E-08 3.71E-09*

*: The most significant p-value among the two methods.
doi:10.1371/journal.pone.0110679.t005

Association Studies with Imputed Variants Using EMLRT

PLOS ONE | www.plosone.org 6 November 2014 | Volume 9 | Issue 11 | e110679



Scenario II: When Only Dosages Are Available [EM-LRT-

Dose]. We propose a framework that first uses the conditional (on

dosages) distribution to sample genotype probabilities given the

imputed dosages, and then apply the EM algorithm detailed above

in Scenario I.

First, we derive the probability density function for fi1, the

probability of having one copy of the minor allele conditioning on

imputed dosage.

Figure 5. Computing Time: Mixture Method vs EM-LRT-Prob. The computing time of the Mixture method and our proposed EM-LRT-Prob
method is displayed across a range of sample sizes. For each sample size, computing time is averaged across 2,000 simulated datasets.
doi:10.1371/journal.pone.0110679.g005

Table 6. One-sample T-test for Type I Error.

P-values

MAF Method R2 = 0.05 R2 = 0.1 R2 = 0.3 R2 = 0.5

0.025 Dosage 6.75E-01 2.72E-01 4.97E-01 7.33E-01

0.05 2.03E-01 6.38E-01 9.21E-01 1.88E-01

0.1 9.62E-01 8.75E-01 2.01E-01 6.78E-01

0.025 EM-LRT-Dose 8.96E-183* 3.00E-65* 2.00E-01 9.05E-01

0.05 6.15E-216* 5.11E-35* 3.89E-01 7.33E-03

0.1 1.40E-69* 9.73E-12* 4.73E-03 4.17E-02

0.025 EM-LRT-Prob 2.34E-111* 2.51E-55* 2.49E-01 8.69E-01

0.05 1.54E-174* 3.38E-40* 2.50E-01 4.81E-03

0.1 4.24E-134* 1.04E-24* 5.01E-04 2.91E-02

0.025 Mixture 5.45E-111* 3.72E-55* 2.52E-01 8.70E-01

0.05 2.94E-174* 4.79E-40* 2.55E-01 4.98E-03

0.1 7.60E-134* 1.22E-24* 5.30E-04 2.95E-02

*: P-value ,5E-4.
doi:10.1371/journal.pone.0110679.t006
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f fi1~pDDið Þ~ C’
B að Þ

: 1{0:5 Dizpð Þ½ �a0{1
pa1{1 0:5 Di{pð Þ½ �a2{1

where C9 is the normalizing constant, p[ 0,min 2{Di,1,Dið Þ½ �, and

B(.) is the beta function [Appendix S2]. Second, we select the envelope

function g pð Þ~ max
p

f fi1~pDDið Þ such that f pð Þƒg pð Þ for all p.

Third, we perform the following steps to sample fi1: 1) generate

p*U 0,min 2{Di,1,Dið Þð Þ; 2) generate U*U 0,1ð Þ; 3) accept p if

Uvf pð Þ=g pð Þ . Finally, we calculate fi0 and fi2 using the relationship

Di~fi1z2fi2 and
P2

j~0 fij~1.

The drawback of the above rejection sampling approach is that

it can be computationally rather expensive especially when the

envelope function is large. Fortunately, we can use an approxi-

mation approach when MAF is not high. For example, when MAF

is low enough, the probability of having two copies of the minor

allele is close to zero. In that case, we adopt an approximation

approach (referred hereafter as dosage approximation approach)

by setting the probability of having one copy of the minor allele to

dosage when MAF is below certain threshold depending on the

imputation quality [details are shown below in subsection

Numerical Simulation: MAF Threshold].

Hypothesis Testing
To assess whether a variant is associated with phenotypic trait of

interest Y, we perform the following hypothesis testing H0 : b1~0
vs. H1 : b1=0. Note that the same b1 is assumed across all three

possible genotypes. We propose to use the likelihood-ratio test for

this purpose. Specifically, hypothesis testing is performed as

follows: 1) use the EM algorithm described previously to find the

ML estimates ĥh for h~ b0,b1,c,sð Þ, and then compute the log-

likelihood l� ĥh
� �

; 2) find the ML estimates ĥh under H0; and 3)

compute the likelihood-ratio statistics (LRS):

LRS~2 l� ĥh
� �

{l� ~hh
� �h i

. The LRT will reject the H0 if

LRSwx2
a, where x2

a is the 1{að Þ100th percentile of the x2
a-

distribution with degree of freedom (d.f.) = 1.

Numerical Simulation
MAF Threshold. To achieve optimal balance between

performance and computational efficiency, we use extensive

simulations to find the MAF threshold between the choice of

rejection sampling and dosage approximation. Given R2, we

calculate two sets of mean squared error (MSE) between sampled

genotype probability f̂fi1 and truth fi1 using rejection sampling and

dosage approximation, respectively.

Type I Error Evaluation. We assess the validity of EM-

LRT-Dose, Dosage, EM-LRT-Prob, Mixture and gold-standard

(based on true genotypes) under various combinations of R2 and

MAF. Specifically, we simulate data sets each with 2,000 samples

using pre-specified marker-specific information R2 and MAF,

which allows us to generate genotype probabilities, dosages, and

true genotypes. Next, we simulate the trait values Yi according to

the linear model for sample i with a set of pre-specified

parameters, where i = 1, …, 2,000. For simplicity, we set

b0,b1,c,sð Þ~ 1,0,1,1ð Þ.
We repeat the simulation ten million times. For each simulated

data set, we perform association testing based on the true

genotypes (truth), as well as based on imputed data using the

standard Dosage method, Mixture method, and our proposed

EM-LRT-Prob and EM-LRT-Dose methods. The empirical type

I error of each method is calculated as the proportion of observed

p-values that fall below the specified significance level. In addition,

we calculate the Spearman correlation between the observed and

gold-standard (true genotype based) p-values.

Statistical Power Assessment. To evaluate the statistical

power of different methods, we again simulate data sets each with

2,000 samples using a combination of marker-specific information

R2 and MAF, and parameters b0,b1,c,sð Þ~ 1,b1,1,1ð Þ where

b1[ 0,1:5½ �. We again repeat the simulations one million times.

Similarly, for each simulated data set, we performed the same set

of tests. The power of each method is calculated as the proportion

of observed p-values that fall below the significance threshold

a~5|10{5.

Results

MAF Threshold
We used simulations to determine the MAF threshold specific to

each R2 such that the rejection sampling is advantageous

(quantified by lower MSE in estimating fi1, the probability of

having one copy of the minor allele) over dosage approximation

when exceeding the MAF threshold (Figure 1 and Table 1). We

observed the two sampling methods have similar performance

(measured by MSE) when MAF is not high (below 20%–30%

depending on R2). In such cases, we chose the simple dosage

approximation method due to computational efficiency (Runtimes

for rejection sampling and dosage approximation based on 2,000

samples are also shown). We also observed inferior performance

(larger MSE) of both methods for low MAFs with intermediate R2

values. Both can be explained by a combination of the imputation

quality and the variation in fi1 as a function of both imputation

quality R2 and MAF q. Specifically, we have Var(fi1) = R2 62q(1–

q) 6 (1–2q(1– q)), which increases with MAF q as well as with R2.

Low imputation quality R2 coupled with low MAF leads to

relatively little variation in fi1, rendering both sampling methods

capable of estimating it relatively accurately. On the other hand,

high imputation quality implies dosages close to true genotype

values 0, 1, and 2, as well as fi1 close to 0 or 1, thus allowing

accurate inference of fi1 despite the larger variation in the values of

fi1 across individuals. In the intermediate R2 range, variation in fi1

coupled with imputation uncertainty makes inference challenging

for both approaches.

Empirical Type I Error Simulation Results
As shown in Table 2 (at significance level 5E-02) and Table 3

(at significance level 5E-05), all the methods have proper control of

type I error across in the range of R2 and MAF examined: 0.1#

R2#0.3 and 1% # MAF #20%. Next, as shown in Figure 2,

Spearman correlation with true p-values increases for every

method when R2 increases. The overall correlation is low in the

range of MAF and R2 examined. This low correlation is expected

given the high level of imputation uncertainty and consistent with

previous results [13], confirming that association inference is

challenging with low frequency variants, or with variants imputed

with a high level of uncertainty. Although the absolute perfor-

mance of all methods is not particularly impressive, we observe

that EM-LRT methods always show slightly higher Spearman

correlation than Dosage method especially when MAF is low,

suggesting that the EM-LRT p-values better approach gold-

standard p-values. When R2 and MAF are high, all methods

perform similarly (results not shown), consistent with results shown

in literature [11] [13].
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Empirical Power Simulations Results
When R2 and MAF are high, all methods have similar

performance. In this work, we focus on scenarios where 0.1#

R2#0.3 and 1% # MAF #20%. As shown in Figure 3, EM-LRT-

Prob and Mixture methods are consistently the most powerful

methods among all methods evaluated. However, these methods

are not applicable in scenario II when only imputed dosages are

available. It is thus valuable to notice that EM-LRT-Dose method

approaches the statistical efficiency of EM-LRT-Prob, outper-

formng the standard Dosage method especially when R2 or MAF

is low. For example, when R2 = 0.1 and MAF = 0.05, the power

for EM-LRT-Prob, Mixture, EM-LRT-Dose and Dosage are

84.5%, 84.5%, 82.1%, and 61.4% under b1 = 1.

Application to CLHNS Data Set
We applied the proposed EM-LRT methods as well as other

existing methods to the Cebu Longitudinal Health and Nutrition

Survey (CLHNS) study of 1,800 unrelated Filipino women. We

performed association analysis across chromosome 16, where we

have previously identified the variants near CDH13 gene

associated with plasma adiponectin level [27].

We conducted association testing with standardized adiponectin

level measured in 2005 on a log scale as the quantitative trait and

adjusted for age and BMI also measured in 2005. Additionally, we

excluded subjects from the analysis if they met one or more of the

following criteria: 1) subjects with adiponectin level missing or

outside of the range mean +/24 standard deviations (n = 19); 2)

subjects carrying the R221S variant (n = 53) [28]; and 3) subjects

with missing age or BMI covariate information (n = 20). In total,

1,717 subjects were tested for association with adiponectin level.

These 1,717 subjects were genotyped on the Affymetrix

Genomewide Human SNP Array 5.0 GWAS chip [29] and also

on the Illumina HumanExome Beadchip. Specifically, we first

established the truth by employing PLINK [30] to perform

association on the true genotypes separately, finding 10 true

positives (p-value ,561026) on Affymetrix 5.0 and 5 on exome

chip (with 2 overlapping). Next, to mimic a setting of low

imputation quality, we masked all neighboring GWAS SNPs

within 2 kb of the 13 true positives before genotype imputation (22

SNPs were masked). Finally, we performed imputation using the

MaCH imputation software [31] using the ASN panel from the

Phase I 1000 Genomes Project (March 2012 release, version 3) as

reference. To evaluate the performance of the proposed methods

along with other alternatives, we used markers overlapping

between the ASN reference panel and the exome chip, but not

on the Affymetrix 5.0, at which we have both imputed genotypes

and true genotypes (from exome chip genotyping). We then

conducted association testing on the imputed genotypes (dosages

or probabilities) using our proposed EM-LRT methods, Dosage,

and Mixture method.

Figure 4 shows the Q–Q plot for the 1,135 SNPs on

chromosome 16 with R2 # 0.3 and true p-value .561026. Q–

Q plots are used to assess the number and magnitude of observed

associations between tested SNPs and the trait under study, by

comparing the observed –log10 p-values to what is expected under

the null hypothesis of no association. Early departure from the

identity line suggests either that there is uncontrolled confouding

leading to false positives (for example, due to population

stratification) or that a considerable proportion of SNPs are

associated with the trait of interest (and thus not under the null

distribution). Focusing on variants with p-values .561026 based

on experimental genotypes allowed us to examine the type I error

empirically. Overall, this Q–Q plot suggests that all methods have

proper control of type I error with all points falling within the 95%

confidence bands with the exeption of one variant. The single

potential false positive, rs8045889 with a true p-value = 0.0148;

R2 = 0.0736; and MAF = 0.4271, was identified by Dosage, EM-

LRT-Prob, and Mixture (EM-LRT-Dose has a borderline p-value

of 0.0002). In addition, we observe overall deflation in the test

statistics (observed larger p-values) of all methods when compared

with truth. The median (mean) p-values are 0.6407, 0.5614,

0.5568 and 0.5568 (0.6075, 0.5552, 0.5512, and 0.5543) for

Dosage, EM-LRT-Dose, EM-LRT-Prob and Mixture respective-

ly, compared with the true median (mean) of 0.5008 (0.5009). The

tendency towards large p-values is expected and driven by the loss

of information due to imputation uncertainty.

While establishing the validity is crucial, we are more interested

in the power to identify genuine associations. Table 4 tabulates p-

values from all four methods together with the truth for variants

with R2,0.3 and true p-value ,561028. Although all variants

reach the genome-wide significance threshold regardless of the

method, we observed that EM-LRT-Dose or EM-LRT-Prob

generated more significant p-values (and better approached truth

in all cases) than the alternatives for five out of the six variants

interrogated, suggesting power enhancement using our methods.

Application to the Women’s Initiative Study of Blood Cell
Traits

We have previously identified several variants associated with

blood cell traits using whole exome sequencing in 761 African

Americans coupled with imputation in .13,000 African Ameri-

cans with GWAS data from genome-wide Affymetrix 6.0

genotyping [14]. The samples are drawn from several cohorts

including WHI, ARIC, CARDIA and JHS. Association analyses

were performed separately for WHI and CARe cohorts (ARIC,

CARDIA and JHS) and subsequently meta-analyzed across the

two. Due to the ascertainment of variants through whole exome

sequencing, 56% of our analyzed variants had MAF ,5%.

Here, we use meta-analysis results from our previous study as a

gold standard to define true positives and investigate the p-values

in the WHI cohort using our EM-LRT-Dose and standard Dosage

method, which had been adopted by the original study. We did

not keep a copy of the posterior probabilities because of the large

number of samples imputed and because standard analyses do not

involve the posterior probabilities. Therefore, this is a real data

example of scenario II. Table 5 presents all variants with MAF ,

5% reported to reach genome-wide significant threshold in the

original study, comparing p-values from our EM-LRT-Dose and

the standard Dosage method. We notice that EM-LRT-Dose

generated slightly more significant p-values at the associated

variants in three out of the four tests performed. In one case

(snp.177015 with white blood cell count [WBC]), the p-value from

EM-LRT-Dose (p-value = 4.7261028) reached the conventionally

employed genome-wide significance threshold of 561028 while

that from Dosage was marginally genome-wide insignificant (p-

value = 6.1161028).

Discussion

It is crucial to take imputation uncertainty into consideration

when performing association testing. Existing methods have

focused on common variants, which have been the focus of the

past wave of GWAS using HapMap-based imputation. With the

deluge of next generation sequencing data being generated,

increasingly denser reference panels are allowing imputation of a

much larger number of variants, including an increasing number

of relatively rare or poorly imputed variants. It is thus highly

warranted to re-visit potential strategies for post-imputation
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association analysis and to seek more powerful or efficient

statistical methods.

In this work, we have proposed EM-LRT methods explicitly

incorporating marker level imputation quality statistic into

association tests. We considered two scenarios: when posterior

probabilities of all potential genotypes are available and when only

dosages are available. We evaluated the performance of the

proposed methods along with existing alternatives using simulation

studies and by application to real data sets.

In scenario I, our proposed EM-LRT-Prob demonstrated

nearly identical performance as the Mixture model, which has

been shown to be the best post-imputation association method

particularly when imputation uncertainty is high [13]. While our

EM-LRT-Prob effectively also fits a mixture model (therefore in

terms of the underlying statistical model essentially the same as the

Mixture method [13]), we have proposed and implemented a

much more computationally efficient algorithm to fit the model.

Mixture method used R function optim() to find ML estimates.

Technically, the optim() function uses numerical differentiation to

obtain ML estimates based on the score function and Hessian

matrix, which is considerably slower than our proposed EM

algorithm. To quantify the computational efficiency, we conduct-

ed association testing on a CLHNS data set of 1,717 subjects and

13,801 SNPs, using EM-LRT-Prob and Mixture methods with the

same starting values (the Mixture method tends to run even slower

without using the suggested starting values). We observed that the

association tests required 279 seconds computing time and 0.91

GB RAM for EM-LRT-Prob and 1,505 seconds computing time

and 1.23 GB RAM for the Mixture method on a 2.93 GHz Intel

Xeon Processor X5670. Computing time scales linearly with

sample size for both EM-LRT-Prob and the Mixture method

(Figure 5).

In scenario II, the Dosage method has been shown analytically

as the optimal one dimensional summary statistic for association

testing in a typical linear model [11]. In this work, we extended the

utility of this optimal one-dimensional measure by employing it

together with the imputation quality measure R2 first to sample

posterior probabilities (in an attempt to rescue as much full

information as possible) and then to conduct association testing on

the sampled probabilities using our proposed EM-LRT method.

Our simulations suggest an advantage of the proposed methods

over the standard Dosage method when imputation quality is

relatively low, where imputation quality is measured by R2, the

squared Pearson correlation between the imputed dosages and the

unknown true genotypes. Since the calculation of R2 requires true

genotypes, it is not available in practice and imputation software

provides an estimate based on the observed dispersion in imputed

genotypes over its expected value. Such an estimate (Rsq in

MaCH [31], MaCH-Admix [32], minimac [33]; R2 for BEAGLE

[1] and INFO for IMPUTE/IMPUTE2 [34][35]) has been widely

used for the assessment of imputation quality and for post-

imputation quality control. However, as shown in Figure S1 (based

on the CLHNS data), MaCH Rsq is not a perfect measure of R2.

For example, it has been reported earlier to have the tendency of

underestimating true quality for common variants [36][22]. We

also observed the tendency of over-estimation towards the lower

end of the MaCH Rsq. Therefore, we still recommend post-

imputation quality filtering before application of our methods. We

suggest application to variants with estimated R2.0.1, which is

less stringent than what is typically recommended [20][22], but

above which imputation quality is typically under- rather than

over- estimated. To further examine the effectiveness of the

filtering threshold, we quantified type I error via simulations for

varying R2 (four values examined: 0.05, 0.1, 0.3, 0.5) in

combination with varying MAF (three values examined: 2.5%,

5% or 10%). Specifically, for each R2 and MAF combination, we

simulated A (A = 2500) (exchangeable) groups of data sets under

the null hypothesis. For each group, we simulated B (B = 2000)

data sets (again, under the null hypothesis) and calculated the p-

values by applying all methods to each of the B = 2000 simulated

datasets. We then calculated the group-specific type I error as the

proportion of B = 2000 p-values (in that group) below the

significance threshold of 0.05. We therefore obtained A = 2500

type I error estimates. Finally, we conducted the following one-

sample t-test on these 2500 type I error estimates H0: type I error

#0.05 vs. H1: type I error .0.05. Significant results from the t-test

indicate inflated type I error. Results are shown in Table 6. As we

can see the results suggest that the mixture model based methods

(EM-LRT-Dose, EM-LRT-Prob, and Mixture) have inflated type

I error when R2#0.1, which is likely caused by the tendency of the

mixture model over-fitting the data based on additional d.f.

compared to the null model.

In summary, we have proposed likelihood-ratio tests based on

expectation maximization algorithms for post-imputation associ-

ation testing. Simulation and real data analyses show our methods

have protected type I error. In addition, simulation and real data

results suggest slightly enhanced statistical power of our EM-LRT

methods over a standard Dosage test, which has been shown to be

the optimal one dimensional statistic for post-imputation associ-

ation testing; and computationally more efficient (average more

than fivefold reduction in computing time) than the Mixture

method, which has been shown to be the most powerful at

increased computational costs for variants imputed with high level

of uncertainty. We anticipate our methods will replace the Mixture

method for the analysis of low frequency variants or those imputed

with high uncertainty. We envision our methods being applied on

a larger scale for GWAS studies with imputation from sequencing

based reference panels, including in the public domain, the 1000

Genomes Project [37][18], the UK10K Project [38], and the

reference haplotypes assembled by the International Haplotype

Consortium [39], as well as study specific reference panels [22]

[40][14][41][20][42][43]. Our methods are implemented in

software package EM-LRT, freely available at http://www.unc.

edu/,yunmli/emlrt.html.

Supplementary Data

Supplemental Data, which include two appendixes and three

figures, can be found with the article.

Supporting Information

Figure S1 Estimated versus True Imputation Quality (Rsq vs.

R2). The MaCH estimated imputation quality Rsq (Y-axis) is

plotted against the true imputation quality R2 (X-axis), which were

calculated between genotype data from exome chip array and

imputed genotype data (dosages). The red 45-degree line

represents perfect estimation. A smooth density scatter plot is

employed such that darker color corresponds to larger density and

individual dots represent outliers.

(TIF)

Figure S2 Variance of Dosages vs. Variance of Genotypes. The

variance of dosages (Y-axis) is plotted against the variance of

genotypes (X-axis) computed using imputed dosages and genotype

data from exome chip array in the CLHNS study. The red 45-

degree line represents perfect correlation.

(TIF)
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Figure S3 Boxplot of Observed R2. The observed R2 (Y-axis) is

shown across a spectrum of true R2 (X-axis) and MAF.

(TIF)

Appendix S1 Simulation of data with desired imputation quality

R2.

(PDF)

Appendix S2 Derivation of the probability density function for

the probability of having one copy of the minor allele conditioning

on dosage.

(PDF)
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