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Abstract

Background: Pulmonary GVHD (pGVHD) is an important complication of hematopoietic cell transplant (HCT) and is thought
to be a consequence of the HCT conditioning regimen, allogeneic donor cells, and posttransplant lung exposures. We have
previously demonstrated that serial inhaled lipopolysaccharide (LPS) exposures potentiate the development of pGVHD after
murine allogeneic HCT. In the current study we hypothesized that allogeneic lymphocytes and environmental exposures
alone, in the absence of a pre-conditioning regimen, would cause features of pGVHD and would lead to a different T cell
expansion pattern compared to syngeneic cells.

Methods: Recipient Rag12/2 mice received a transfer of allogeneic (Allo) or syngeneic (Syn) spleen cells. After 1 week of
immune reconstitution, mice received 5 daily inhaled LPS exposures and were sacrificed 72 hours after the last LPS
exposure. Lung physiology, histology, and protein levels in bronchoalveolar lavage (BAL) were assessed. Lung cells were
analyzed by flow cytometry.

Results: Both Allo and Syn mice that undergo LPS exposures (AlloLPS and SynLPS) have prominent lymphocytic
inflammation in their lungs, resembling pGVHD pathology, not seen in LPS-unexposed or non-transplanted controls.
Compared to SynLPS, however, AlloLPS have significantly increased levels of BAL protein and enhancement of airway
hyperreactivity, consistent with more severe lung injury. This injury in AlloLPS mice is associated with an increase in CD8 T
cells and effector CD4 T cells, as well as a decrease in regulatory to effector CD4 T cell ratio. Additionally, cytokine analysis is
consistent with a preferential Th1 differentiation and upregulation of pulmonary CCL5 and granzyme B.

Conclusions: Allogeneic lymphocyte transfer into lymphocyte-deficient mice, followed by LPS exposures, causes features of
pGVHD and lung injury in the absence of a pre-conditioning HCT regimen. This lung disease associated with an expansion
of allogeneic effector T cells provides a novel model to dissect mechanisms of pGVHD independent of conditioning.
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Introduction

Pulmonary complications after hematopoietic-cell transplant

(HCT) are an important cause of morbidity and mortality. Non-

infectious pulmonary complications are thought to be a manifes-

tation of pulmonary graft-versus-host disease (pGVHD) but are

poorly understood and difficult to treat [1–3]. In fact, it is unclear

why some patients recover well from HCT but later develop

pGVHD. It is postulated that the constant exposure to the

environment potentiates innate immune pathways in the lungs and

augments pGVHD. Lymphocytic bronchiolitis (LB), airway

obstruction, and long-term development of fibrotic airway

obliteration are features of pGVHD [4,5].

Our laboratory has focused on the role of environmental stimuli

as triggers of pGVHD. We have previously demonstrated that, in

mice recipient of allogeneic HCT, inhaled LPS, as a prototypic

innate immune stimulus, potentiates pGVHD [6,7]. The low

grade LPS exposures used in our HCT model replicate human

airway gram-negative bacterial colonization as well as workplace
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and domestic environmental exposures [8,9]. It is assumed that the

pre-conditioning HCT regimen, including chemotherapy and

radiation, and not only the presence of allogeneic cells, contribute

to systemic GHVD as well as pGVHD. However, given that

pGVHD often develops much later than and independently of

systemic GHVD, we postulated that pGVHD can develop without

a conditioning regimen. We hypothesized that allogeneic lympho-

cytes by themselves, without irradiation or chemotherapy, are

capable of causing features of pGVHD in the setting of an

environmental trigger.

In this study, we demonstrate that transfer of allogeneic

splenocytes into lymphopenic Rag12/2 mice, followed by serial

pulmonary LPS exposures, leads to more severe airway injury and

lymphocytic bronchiolitis, consistent with pGVHD. This lung

injury pattern is associated with increased CD8 T cells and

increased effector CD4 T cells.

Materials and Methods

Ethics Statement
All experiments were approved by the Institutional Animal Care

and Use Committees at Duke University (protocol number A056-

09-02) and strictly followed the National Institutes of Health

recommendations cited in the Guide for the Care and Use of

Laboratory Animals. All potentially painful procedures were

performed under isoflurane anesthesia and all efforts were made

to minimize suffering.

Mice
Male 6–8 week old B6.129S7-Rag1tm1Mom/J (Rag12/2, H2Db),

CD45.1-expressing B6. SJL-PtprcaPepcb/BoyJ (B6, H2b), and

C3HeB/FeJ (B/Fe, H2k) mice were purchased from Jackson

Laboratories (Bar Harbor, ME). All animals were housed in a

pathogen-free facility at Duke University on LPS-free bedding

(Alpha Dri bedding, Shepherd Specialty Papers Inc., Kalamazoo,

MI) and were fed irradiated food (PicoLab Mouse Diet 20 5058,

Purina Mills, Richmond, IN).

Splenocyte Transfer
Donor B6 and B/Fe mice were euthanized using CO2.

Splenocytes were isolated from their spleens via homogenization

and filtration. All donor cells were washed in media, filtered

through 70 um filters (BD, Franklin Lakes, NJ), counted on a

hemocytometer, and resuspended at an appropriate concentration

in media containing 10% FBS (Hyclone, Logan, UT), 1% L-

Glutamine (Sigma-Aldrich, St. Louis, MO) and 1% Penicillin/

Streptomycin (Sigma-Aldrich). Rag12/2 recipient mice were

injected intravenously via the retro-orbital route with 56106

donor splenocytes in a total volume of 0.5 mL.

LPS Exposures
LPS exposures, starting 1 week after splenocyte transfer, were

performed by aerosol inhalation using lyophilized LPS from E. coli

0111:B4 (Sigma-Aldrich, St. Louis, MO). The LPS solution was

Figure 1. Splenocyte transfer followed by inhaled LPS leads to pGVHD pathology. Rag12/2 mice received allogeneic (Allo) or syngeneic
(Syn) splenocytes or no splenocyte transfer (Rag12/2NT). Additional wild-type C57BL/6 (B6) mice without splenocyte transfer (B6NT) were used as
controls. Allo, Syn, Rag12/2NT and B6NT mice underwent daily exposures to aerosolized LPS for 5 days starting 1 week after splenocyte transfer. Mice
were euthanized 72 hours after the last LPS exposure. (A) Lung pathology assessment shows perivascular and peribronchiolar mononuclear
inflammation in the AlloLPS and SynLPS mice (H&E, 100X). Only minimal inflammation is seen in AlloNoLPS and SynNoLPS lungs. Rag12/2NT mouse
lung pathology is shown for additional comparison and is similar to that of B6NT mouse lungs. After LPS, all NT mice have rare mononuclear cells
visible in the perivascular and peribronchiolar structures. This is similar to pathology seen in B6NT mice. (B) Lung pGVHD pathology was graded in a
blinded fashion using a 0–9 semi-quantitative grading schema to express the thickness of the mononuclear infiltrate around airways and around
vessels as well as the overall extent of the pathology in the lung. SynLPS and AlloLPS lungs have a grade of about 8, which is significantly higher than
the grade of non-LPS exposed controls where the grade is about 2.5 (AlloLPS vs. AlloNoLPS p = 0.003 and SynLPS vs. SynNoLPS p = 0.0005). As
measured by this grading, LPS led to low-grade background inflammation in NT mice as shown in the graph. Data represent the average +/2 SEM
and **represents p,0.005. Data have been replicated in 3 independent experiments.
doi:10.1371/journal.pone.0097951.g001
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prepared as previously described [10]. Aerosol was delivered to a

20 L inhalation chamber using a constant-output six-jet atomizer

model 9306 (TSI Inc., Shoreview, MN) at 35 psi, which generates

aerosol droplets with a mean diameter of 0.5 um at a flow rate of

about 3.3 L/min. This achieves a final LPS chamber concentra-

tion of approximately 4.5 ug/m3 [10,11]. Mice were placed into

stainless steel caging and put into the inhalation chamber and

exposed to LPS for 2.5 hours/day for 5 consecutive days. Mice

were euthanized either without LPS exposure or 72 hours after the

final LPS exposure.

Bronchoalveolar Lavage (BAL)
Mice were euthanized using CO2 and their lungs were

surgically exposed. The trachea was cannulated and the lungs

were lavaged with 5 aliquots of 800 mL of 0.9% saline (VWR

International, West Chester, PA). Bronchoalveolar lavage (BAL)

fluid supernatant was stored at 280uC until further use. BAL fluid

total protein was quantified with a total protein assay kit using

Bicinchoninic Acid (Thermo Scientific, Waltham, MA) and

Granzyme B was measured using a specific ELISA kit (R&D

systems, Minneapolis, MN). Cytokine analysis was performed on

the BAL fluid using mouse 23-plex and 9-plex cytokine assays that

included detection of IFN-c, IL-4, IL-5, IL-13, IL-17, IL-10, IL-

15, and CCL5 (Bio-Rad Laboratories, Hercules, CA).

Lung Tissue Extraction and Processing
After BAL, lungs were perfused with 0.9% saline. The right lung

was placed in a HEPES-based buffer (Sigma-Aldrich) for

subsequent processing for flow cytometry. The left lung was

gravity-inflated with 10% formalin (VWR International), fixed in

10% formalin solution for 24 hours, and then transferred into 70%

EtOH. The left lung was subsequently embedded in paraffin and

5 mm sections were stained with H&E for histologic analysis.

Pathological severity of perivascular and peribronchiolar lympho-

cytic lung inflammation was graded on a 9-point scale as described

previously [6]. Additional sections were stained with rabbit anti-

CD3 (Lab Vision Corp, Fremont, CA) (diluted 1:100). Rabbit Ig

(diluted 1:60,000, Dako USA, Carpinteria, CA) was used as

negative control. Primary antibody was detected with anti-rabbit

horseradish-peroxidase (Dako USA).

Lung Flow Cytometry
Fresh lung tissue was homogenized, digested with 1 mg/mL

collagenase A (Roche Diagnostics, Mannheim, Germany) and

0.2 mg/mL DNAse I (Sigma-Aldrich), filtered through a 70 um

filter (BD), red cell lysed and washed. Lung cells were resuspended

in 500 mL of flow cytometry buffer containing phosphate-buffered

sodium solution (Sigma-Aldrich) with 3% FBS (Hyclone), 0.05%

sodium azide (VWR International), and 10 mM EDTA (Sigma-

Aldrich). Cells were blocked for 10 minutes using flow cytometry

buffer with the addition of 5% normal mouse serum, 5% normal

rat serum, and 1% Fc receptor block (Affinity purified anti-mouse

CD16/32) (BioLegend, San Diego, CA). Cells were subsequently

stained with conjugated antibodies for 30 minutes. The flow

cytometry lymphocyte staining panel included FITC-conjugated

anti-mouse CD3, PE-Cy7-conjugated anti-mouse CD8, APC-

Cy7-conjugated anti-mouse CD4 (BioLegend), PE-conjugated

anti-mouse CD44, APC-conjugated anti-mouse CD62L (BD

Biosciences, San Jose, CA), and PerCP-Cy5.5-conjugated anti-

mouse CD25 (eBioscience, San Diego, CA). The myeloid staining

panel included FITC-conjugated anti-mouse MHCII, PE-conju-

gated anti-mouse H2Kk or CD45.1 (BD Bioscience), PE-Cy7-

conjugated anti-mouse CD11b, PerCP-Cy5.5-conjugated anti-

mouse CD45 (BioLegend), and APC-conjugated anti-mouse

CD11c (eBioscience). The natural killer (NK) cell staining panel

included the NK-specific APC-conjugated anti-mouse CD49b

(clone DX5) (eBioscience). The FOXP3 Transcription Factor

Staining Buffer set (eBioscience) was used for intracellular staining

with PE-conjugated anti-mouse FOXP3 along with extracellular

staining using APC-conjugated anti-mouse CD25, PerCP-Cy5.5-

conjugated anti-mouse CD4 (eBioscience), PE-Cy7-conjugated

anti-mouse CD3, and APC-Cy7-conjugated anti-mouse CD8

(BioLegend). Cell fluorescence was measured using a BD FACS

Canto II flow cytometer with BD FACSDiva software (BD). Flow

cytometry analysis was performed using FlowJo software (Tree

Star Inc., Ashland, OR). A singlet gate (based on forward scatter

height by area plot) was used to exclude cell aggregates, followed

Figure 2. Allogeneic splenocyte transfer followed by inhaled LPS leads to lung injury and airway hyperreactivity (AHR). Rag12/2

mice received allogeneic (Allo) splenocytes or syngeneic (Syn) splenocytes and underwent daily exposures to aerosolized LPS for 5 days starting
1 week after splenocyte transfer. Airway physiology was studied and mice were euthanized 72 hours after the last LPS exposure. (A) BAL fluid protein
levels were measured and were found to be significantly higher in AlloLPS mice as compared to SynLPS (p,0.0001). (B) Airway resistance was
measured in vivo in response to increasing doses of aerosolized methacholine. Airway resistance in AlloLPS mice was significantly enhanced in dose-
related manner as compared to AlloNoLPS and SynLPS controls (p = 0.045). Data represent the average +/2 SEM and * = p,0.05, *** = p,0.0005.
Data have been replicated in 2 independent experiments.
doi:10.1371/journal.pone.0097951.g002
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Figure 3. After allogeneic lymphocyte transfer followed by inhaled LPS, pulmonary donor-derived cells are comprised primarily of
lymphocytes while myeloid cells are of recipient origin. Rag12/2 mice received a transfer of allogeneic (Allo) or syngeneic (Syn) splenocytes
and underwent daily exposures to aerosolized LPS for 5 days starting 1 week after splenocyte transfer. Mice were euthanized 72 hours after the last

Allogeneic Lung Injury after Lipopolysaccharide
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by an all-cell gate (based on forward scatter by side scatter plot) to

exclude small debris and dead cells, followed by a CD45+ cell gate

to define all white blood cells. Percentage of all cells was converted

to an absolute cell number by multiplying by the corresponding

live-cell count.

Airway Resistance Measurement
Lung physiology measurements were performed in vivo using the

flexiVent mechanical ventilator and data acquisition system

(SCIREQ, Montreal, PQ, Canada). Mice were anesthetized

(Nembutal, 60 mg/kg, IP), then paralyzed with pancuronium

bromide (0.82 mg/kg, IP), and a tracheal cannula was inserted. A

differential pressure transducer was connected to the tracheal

cannula and ventilation was maintained at a rate of 120 breaths/

minute, with a tidal volume of ,8 ml/kg and a positive end-

expiratory pressure of ,3 cmH2O. Values for total resistance (R)

and for total lung compliance were obtained over 6 cycles of total

lung capacity maneuvers. To assess airway responsivity, mice were

challenged with increasing doses of aerosolized methacholine (0.0–

100.0 mg/ml) as previously described [12]. Values were averaged

for each animal.

Statistical Analysis
Data are expressed as means 6 SEM. Individual comparisons

between groups were performed using a Student’s t-test. Curves

for airway resistance in response to increasing doses of

methacholine were compared using a two-way ANOVA for

repeated measures analysis. Throughout the graphs, star (*)

indicates a p-value of ,0.05, two stars (**) p,0.005, and three

stars (***) p,0.0005. Experimental groups included 3 to 10

animals and experiments were performed at least twice.

Results

Splenocyte Transfer into Lymphopenic Rag12/2 Mice
Followed by Inhaled LPS Leads to pGVHD Pathology

We had previously demonstrated that murine allogeneic HCT,

which uses irradiation pre-conditioning followed by inhaled LPS

(iLPS) exposures, leads to pGVHD similar to that seen in humans

[6,7]. We set off to assess the effect of allogeneic lymphocytes on

LPS-exposed lungs in the absence of irradiation injury. Allogeneic

(Allo) and Syngeneic (Syn) splenocytes were transferred into

Rag12/2 lymphopenic mice. Two weeks post splenocyte transfer,

Allo and Syn mice have 100% survival and no signs of systemic

GVHD such as weight loss, diarrhea, or skin changes (data not

shown). At two weeks post splenocyte transfer, without any LPS

exposures, the Allo and Syn mice also have minimal pulmonary

pathology with rare lymphocytes in the perivascular and

peribronchiolar spaces (figure 1A&B). One week after splenocyte

transfer, Allo and Syn mice underwent 5 daily iLPS exposures

(AlloLPS mice and SynLPS) and their lungs were assessed

72 hours after the last iLPS exposure. Assessment of pulmonary

pathology demonstrates that splenocyte transfer followed by iLPS

leads to lymphocytic inflammation, preferentially located around

the airways, similar to pGVHD in our murine HCT model as well

as in humans (figure 1A). Surprisingly, this lymphocytic inflam-

mation is similar in AlloLPS and SynLPS mice (figure 1A&B). To

demonstrate that this is not a normal pulmonary response to sub-

acute iLPS, non-transplanted (NT) Rag12/2 mice (figure 1A), as

well as non-transplanted (NT) wild-type C57BL/6 (B6) mice

underwent the same iLPS exposures. Strikingly, both sets of non-

transplanted mice have minimal inflammation after sub-acute

iLPS and do not show pGVHD pathology (figure 1B).

Only Allogeneic Splenocyte Transfer Followed by Inhaled
LPS Leads to Increased Lung Injury

We assessed whether in the setting of iLPS, in spite of similar

pGVHD pathology, allogeneic splenocyte transfer into Rag12/2

mice (AlloLPS) leads to more lung disease compared to the

syngeneic controls (SynLPS). BAL total protein levels are increased

in AlloLPS mice compared to SynLPS (figure 2A), demonstrating

a loss of epithelial integrity and increased lung injury. Additionally,

there is increased airway hyperresponsiveness (AHR) to aerosol-

ized methacholine in AlloLPS mice as compared to the SynLPS

controls (figure 2B), also consistent with injury and alteration of

airway function. The overall lung tissue compliance is not different

between AlloLPS and SynLPS (data not shown), suggesting

minimal injury to the alveolar and interstitial lung compartments,

consistent with a preferential injury to the airways.

After Allogeneic Lymphocyte Transfer Followed by
Inhaled LPS, Pulmonary Donor-derived Cells are
Comprised Primarily of Lymphocytes While Myeloid Cells
are of Recipient Origin

Splenocytes are predominantly comprised of lymphocytes.

While there is a small percentage of myeloid cells in the spleen

single-cell suspension used for reconstitution of Allo and Syn mice,

we find almost no donor-derived myeloid cells in the lungs of

AlloLPS and SynLPS mice (figure 3A&B). Myeloid cells are

defined as CD45+MHCII+CD11c+ cells and CD45+CD11b+ cells

(figure 3B–D) as previously described in the literature [13,14]. The

donor-derived lung cells at the 2-week time point in AlloLPS and

SynLPS mice are essentially all lymphocytes, defined as CD45+

MHCII+CD11c2CD11b2small B cells (figure 3B&C) and

CD45+MHCII2CD11c2CD11b2small T cells (figure 3B&D).

The characterization of B cells as CD45+MHCII+CD11c2

CD11b2small cells was used because prior studies reported that

Rag12/2 mice have only immature B cells with low expression of

classic B cell markers such as B220 [15]. Figure 3 shows

representative flow cytometry plots of lung cells from AlloLPS

LPS exposure and lung cells were analyzed using flow cytometry. For flow analysis, a singlet gate was used to exclude cell aggregates, followed by an
all-cell gate to exclude small debris and dead cells, followed by a CD45+ cell gate to define all white blood cells (as described in methods). (A) All
CD45+ cells were separated into donor and recipient-derived cells based on their expression, or lack thereof, of the donor marker CD45.1 (in the case
of SynLPS mice on the left) or H2Kk (in the case of AlloLPS mice on the right). The subsequent graphs show flow cytometry plots for AlloLPS lung cells
but the same analysis was performed for SynLPS and yielded similar results. (B) Donor- (left) and recipient-derived (right) lung cells were analyzed
separately. Representative flow cytometry plots show gating of MHC+CD11c+ antigen-presenting myeloid cells, which are mainly present in the
recipient cells (42.2% vs. 0.9% in donor cells) and are large based on the side by forward scatter graph (far right). The MHCII+CD11c2 cells are
classically comprised of B cells and CD11b+MHCII+ myeloid cells. MHCII2CD11c2 cells are usually comprised of neutrophils, monocytes, and T cells. (C)
Representative flow cytometry plots show the population of MHCII+CD11c2 cells and gating of the CD11b2 B cells that are more abundant among
donor cells compared to recipient cells (90.6% vs. 1.66%). The far right graph, showing a side by forward scatter plot, demonstrates that these donor
MHCII+CD11c2CD11b2 B cells are indeed small cells. (D) Representative flow cytometry plots show the population of MHCII2CD11c2 cells and gating
of the CD11b2 T cells that are more abundant among donor cells compared to recipient cells (94.5% vs. 1.11%). The far right graph, showing a side by
forward scatter plot, again demonstrates that these donor MHCII2CD11c2CD11b2 T cells are indeed small cells.
doi:10.1371/journal.pone.0097951.g003
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Figure 4. Allogeneic splenocyte transfer followed by inhaled LPS leads to preferential expansion of CD8 T cells. Rag12/2 mice
received a transfer of allogeneic (Allo) or syngeneic (Syn) splenocytes and underwent daily exposures to aerosolized LPS for 5 days starting 1 week
after splenocyte transfer. Mice were euthanized 72 hours after the last LPS exposure and lung lymphocytes were analyzed using flow cytometry and

Allogeneic Lung Injury after Lipopolysaccharide
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mice where donor cells are based on their expression of H2Kk.

The same analysis was performed for SynLPS, using the donor

marker CD45.1, and yielded similar results.

Allogeneic Lymphocyte Transfer Followed by Inhaled LPS
Results in Increased Pulmonary CD8 T Cells

The total number of cells is not different between AlloLPS and

SynLPS lungs (figure 4F), consistent with the similarities seen on

gross pathology. To elucidate the mechanism that may be

responsible for the more severe lung injury (characterized by

increased AHR and BAL protein) after allogeneic splenocyte

transfer and LPS, we focused on characterizing the exact

composition of the cellular infiltrates specifically between AlloLPS

and SynLPS mice. Because the donor-derived cells in the lungs of

AlloLPS and SynLPS mice are primarily lymphocytes (figure 3),

we undertook a detailed analysis of lymphocyte sub-populations.

The lymphocytic inflammation in both AlloLPS and SynLPS

lungs is comprised mostly of CD3+ T cells (figure 4G, gating based

on either 4B, 4C, or 3B&D give the same results), rather than B

cells (figure 4G, gating shown in figure 3B&C), as seen by flow

cytometric analysis. Furthermore, CD3+ T cells are abundant in

the peribronchiolar space of AlloLPS and SynLPS mice by

immunohistochemistry (figure 4E). When specifically analyzing T

cell sub-populations, there is no significant difference in total CD4

T cells between AlloLPS and SynLPS (figure 4B&H). However,

CD8 T cells are significantly elevated in the lungs of AlloLPS mice

compared to SynLPS (figure 4C&I). Of note, CD49+ NK cells are

not significantly different between AlloLPS and SynLPS

(figure 4D&J).

Allogeneic Lymphocyte Transfer Followed by Inhaled LPS
Leads to Expansion of CD8 T Cell Subsets and Preferential
Expansion of CD4 Effector T Cells

To better understand the T cell expansion that occurs after

inhaled LPS in Allo and Syn lungs, we assessed the expression of

CD25, CD44, and CD62L to identify sub-populations of T cells

[16]. We specifically identified CD252CD44+CD62L2 effector

memory T cells (TEM), CD252CD442CD62L+ naı̈ve T cells

(TN), CD25+CD442CD62L2 effector T cells (Teff) within both

CD4 and CD8 T lymphocytes. We also measured

CD4+CD25+CD44+ regulatory T cells (CD44+Treg). We show

that all sub-populations of CD8 T cells are elevated in AlloLPS

lungs compared to SynLPS, including CD8 TEM (figure 5A&B),

CD8 TN (figure 5A&C), and CD8 Teff (figure 5A&D). There is no

significant change in CD4 TEM (figure 5A&E), CD4 TN

(figure 5A&F), or CD4 CD44+Treg (figure 5A&H) between

AlloLPS and SynLPS lungs. However, CD4 Teff are significantly

elevated in AlloLPS lungs compared to SynLPS (figure 5A&G).

Additionally, the ratio of CD44+Treg to Teff among CD4 T cells

is significantly reduced in AlloLPS lungs (figure 5A&I). While

CD4+CD25+CD44+ T cells are comprised almost exclusively of

regulatory T cells based on recent reports [17], a more

comprehensive way to identify regulatory CD4 T lymphocytes is

by assessment of their expression of intracellular FOXP3. We

therefore assessed the expression of CD4, CD25, and intracellular

FOXP3 in the lung cells and found that there is no difference

between CD4+CD25+FOXP3+ Treg between AlloLPS and

SynLPS lungs (figure 5J&K). However, consistent with the prior

staining strategy, the ratio of CD4+CD25+FOXP3+ Treg to the

CD4+CD25+FOXP32 Teff is reduced in AlloLPS lungs as

compared to SynLPS (figure 5J&L). This suggests that in the

context of alloantigen exposure and an environmental stimulus,

there is preferential expansion of CD8 T cells and CD4 effector T

cells out of proportion to CD4 regulatory T cells.

Allogeneic Lymphocyte Transfer Followed by Inhaled LPS
Leads to Increased IFN-c, Granzyme B, and CCL5

We hypothesized that the T cell expansion in AlloLPS lungs, as

compared to SynLPS lungs, induces lung injury and AHR through

a specific cytokine pattern. We therefore measured a panel of

cytokines in the BAL, including cytokines related to helper T cell

differentiation as well as CD8-specific proteins. IFN-c, the

prototypic Th1 cytokine, is elevated in the BAL of AlloLPS mice

compared to SynLPS (figure 6A), suggesting a preferential Th1

CD4 T cell differentiation. Th2 cytokines, IL-4, IL-5, and IL-13,

are similar between AlloLPS and SynLPS (figure 6B–D). IL-17,

the main Th17 cytokine, is reduced in AlloLPS compared to

SynLPS (figure 6E) and IL-10, classically produced by Tregs, is

unchanged (figure 6F). IL-15, known to promote CD8 T cell

proliferation, is elevated in AlloLPS compared to SynLPS

(figure 6G). Granzyme B and CCL5, proteins known to be

produced preferentially by CD8 T cells, are increased in AlloLPS

versus SynLPS lungs (figure 6H&I).

Discussion

In this report, we demonstrate that lymphocyte transfer into

lymphopenic mice, without any conditioning regimen, followed by

sub-acute exposure to inhaled LPS, replicates the pathologic

features of pGVHD seen in humans [4,5] and in mouse models of

this disease [6,7]. Additionally, compared to syngeneic controls,

allogeneic lymphocytes confer a more severe phenotype with

increased AHR and alteration of epithelial integrity in this model.

The AlloLPS lung phenotype is associated with preferential

pulmonary expansion of CD8 T cells and an increase in CD4

effectors out of proportion to regulatory T cells.

In this novel system, using allogeneic splenocyte infusion into

Rag12/2 mice, our data suggest that that development of

pGVHD requires the combination of at least two injurious events.

Allogeneic lymphocytes by themselves do not cause any significant

lung inflammation but rather require the addition of environmen-

tal exposures to result in disease. We show that this can occur

independent of a conditioning regimen, such as irradiation or

chemotherapy, used in prior models of pGVHD [6,7,18].

Furthermore, the prominent pathology of lymphocytic bronchiol-

immunohistochemistry. Representative flow cytometry plots for SynLPS and AlloLPS show the gating of (A) small cells among all cells, (B) CD3 versus
CD4 gating among small cells, (C) CD3 versus CD8 gating among small cells where the percentage of CD8 T cells is higher in AlloLPS (17.1%)
compared to SynLPS (5.24%), and (D) gating of CD49+ NK cells among small cells. (E) Lung immunohistochemical staining for the CD3 antigen
demonstrates that CD3 T cells represent the majority of cells in the infiltrates around airways and blood vessels in AlloLPS and SynLPS mice. (F) By
flow cytometry, there is no difference in numbers of total cells between the lungs of AlloLPS and SynLPS mice. (G) Total CD3 T cells or B cells are also
not different between the lungs of AlloLPS and SynLPS mice. It is apparent, however, that CD3 T cells are much more abundant than B cells in both
AlloLPS and SynLPS. (H–I) Further analysis of T cells by flow cytometry shows that CD8 T cells are significantly increased in the lungs of AlloLPS mice
as compared to SynLPS (p = 0.03), while CD4 T cells are unchanged. (J) NK cell numbers, as identified by CD49b expression, are not significantly
different between AlloLPS and SynLPS mice. Numeric data represent the average +/2 SEM and * = p,0.05. Data have been replicated in 2
independent experiments.
doi:10.1371/journal.pone.0097951.g004
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Figure 5. Allogeneic splenocyte transfer followed by inhaled LPS leads to preferential expansion of all CD8 T cell subsets and of
effector CD4 T cells. Rag12/2 mice received a transfer of allogeneic (Allo) or syngeneic (Syn) splenocytes followed by daily exposures to
aerosolized LPS for 5 days starting 1 week after splenocyte transfer. Mice were euthanized 72 hours after the last LPS exposure and lung cells were
analyzed using flow cytometry. CD8 and CD4 T cells were gated as described in figure 4 and then further subdivided into CD25+ and CD252 cells. (A)
Representative flow cytometry plots for lungs cells from SynLPS (left column) and AlloLPS (right column) show expression of CD44 and CD62L. In the
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itis in the absence of alveolar or interstitial inflammation, as well as

the increase in dynamic airway resistance and normal lung

compliance, point to preferential airway injury in this model. Our

allogeneic pGVHD model is thus consistent with other published

models of pGVHD that also demonstrate lymphocytic pulmonary

infiltrates, lung injury, and increased airway resistance [2,6,7,18].

To explore potential mechanisms of lung injury in AlloLPS

mice, we compared in detail the lymphocyte subtypes between

AlloLPS and SynLPS lungs. We show that the majority of

pulmonary T cells in AlloLPS and SynLPS mice are TEM cells

with a very small fraction of TN cells. This is consistent with

published studies of the T-cell-transfer colitis model where

injection of naı̈ve T cells into syngeneic Rag12/2 mice leads to

their proliferation and conversion to TEM cells [19,20]. However,

in contrast to syngeneic controls, allogeneic lymphocyte transfer

and LPS lead to a striking increase in pulmonary CD8 T cells,

including TEM, TN, and effector CD8 T cells. The IL-15

upregulation seen in AlloLPS mice is likely an important pro-CD8

T cell stimulus. Indeed, IL-15 has been shown to cause formation

of memory CD8 T cells, CD8 T cell proliferation, and CD8 IFN-c
production post HCT [21,22]. CD8 T cells have previously been

implicated in systemic GVHD pathophysiology [23,24]. CD8 T

cells have also been identified in the pulmonary inflammatory

infiltrates after HCT [7,18,25–27]. While it has not been

demonstrated whether CD8 T cells are necessary for post-HCT

pulmonary inflammation, allogeneic CD8 T cell activation and

proliferation has been shown to occur directly in the airways in

response to epithelial alloantigen expression [28]. Our study is

unique in showing that the preferential CD8 proliferation and

activation occurs in the setting of alloantigen exposure and

environmental stimulus, without a full HCT procedure and a

conditioning regimen.

Based on previously published studies, CD8 T cells may be the

primary mediators of airway injury and AHR pathogenesis in our

experiments. Notably, CD8 T cells have been shown to mediate

AHR in several animal models of allergic airways disease [29–33].

CD8 T cells are also known to produce IFN-c and granzyme B,

which are known to mediate airway injury. Additionally, the CD8-

derived cytokine CCL5 has been identified as a potential

modulator of AHR [34] [35] [36].

An additional factor that likely contributes to the overall T cell

expansion and lung injury in our model is the unopposed CD4

helper T cell effector action with a relative regulatory T cell

deficiency. Tregs, in fact, have been shown to decrease AHR in

asthma studies [37]. For example, Tregs are capable of

moderating systemic and pulmonary inflammation in GVHD

[38,39] as well as in acute lung injury models [40]. Future

experiments should focus on whether Treg administration can

reverse the lung injury phenotype in our model. The CD4 effector

T cell expansion in our experiments is associated with increased

IFN-c, which is consistent with Th1 polarization. In contrast, Th2

cytokines (IL-4, IL-5, and IL-13) are not elevated, suggesting that

AHR in this model is not Th2-mediated, contrary to AHR in

asthma models. Additionally, the AHR does not appear to be

mediated by Th17 cells given the reduced IL-17 levels in AlloLPS

lungs [41,42].

We would like to acknowledge several limitations of our present

study. First, exposures to an innate immune stimulus potentiate a

prominent localized pulmonary lymphocytic inflammation in both

the allogeneic and syngeneic setting. While the abnormal lung

pathology in SynLPS mice may have some features of syngeneic

GVHD, our model differs from the published models of syngeneic

GVHD models that utilize HCT conditioning [43–45]. The

lymphocytic accumulation in SynLPS lungs appears benign, with

little airway injury or T cell activation; we speculate that it is due

to homeostatic proliferation previously described in the setting of

lymphopenia in the T-cell-transfer model of chronic colitis [19].

Homeostatic proliferation is likely a major driver of lymphocyte

expansion in the lungs of both AlloLPS and SynLPS mice and, as

such, SynLPS mice serve as a control for this ‘‘background’’

homeostatic proliferation process. However, we acknowledge that

our experiments were not designed to specifically assess the role of

homeostatic proliferation in AlloLPS lung injury or the mecha-

nisms of the SynLPS pulmonary process. Second, we cannot fully

assess the relative contribution of the allogeneic cell transfer versus

LPS to the AHR in AlloLPS mice. Given that the allogeneic

transfer alone without LPS, and the LPS exposures without cell

transfer, lead to minimal pathology, we propose that the two

insults are synergistic. Third, the Rag12/2 mice received a

transfer of spleen cells, not isolated lymphocytes. This makes it

impossible to completely rule out the possibility that allogeneic

myeloid cells play a role in the development of airway injury.

Nevertheless, there is minimal engraftment of donor-derived

myeloid cells at the time point studied, making it unlikely that

these cells are important in development of disease. Finally,

because IL-15 is also a potent stimulus for NK cell recruitment

and NK cells can represent an important source of IFN- c and

granzyme B [46], we measured total NK cells in the lungs of

AlloLPS and found them similar to those in SynLPS. However, we

cannot rule out the presence and contribution specifically of IFN-

c-producing NK cells or other innate lymphoid cells in AlloLPS

disease.

In summary, we demonstrate that allogeneic lymphocyte

transfer followed by sub-acute exposure to LPS leads to lung

first row, CD8+CD252 cells are subdivided in CD44+CD62L2 effector memory CD8 T cells (CD8 TEM), CD44+CD62L+ central memory CD8 T cells (CD8
TCM), and CD442CD62L+ naı̈ve CD8 T cells (CD8 TN). The majority of these CD252 CD8 T cells are TEM cells. In the second row, the subset of
activated CD8 effector T cells (CD8 Teff), which are negative for CD44 and CD62L, is shown as a percentage of all activated CD8+CD25+ cells. The CD8
Teff percentage is higher in AlloLPS lungs as compared to the SynLPS lungs. In the third row, CD4+CD252 cells are subdivided in CD44+CD62L2
effector memory CD4 T cells (CD4 TEM), CD44+CD62L+ central memory CD4 T cells (CD4 TCM), and CD442CD62L+ naı̈ve CD4 T cells (CD4 TN). The
majority of these CD252 CD4 T cells are TEM cells. In the fourth row, the subset of activated CD4 effector T cells (CD4 Teff), which are negative for
CD44 and CD62L, is shown as a percentage of all activated CD4+CD25+ cells. The CD4 Teff percentage is higher in AlloLPS lungs as compared to the
SynLPS lungs. The CD44+ sub-population of CD4+CD25+ activated T cells have been previously identified as regulatory T cells (Treg). The percentage
of these CD4 CD44+Treg is lower in AlloLPS compared to SynLPS. (B–I&K–L) Quantitative graphs are shown of absolute numbers of T cells in lungs of
AlloLPS and SynLPS mice. (B–D) CD8 TEM (p = 0.038), CD8 TN (p = 0.025), and CD8 Teff (p = 0.015) cell numbers are all increased in AlloLPS lungs
compared to SynLPS. (E–F) CD4 TEM and CD4 TN numbers are similar between AlloLPS and SynLPS lungs. (G) CD4 Teff cells are significantly increased
in AlloLPS compared to SynLPS lungs (p = 0.019). (H) While CD4 CD44+Treg cell numbers are similar between AlloLPS and SynLPS, (I) the ratio of
CD44+Treg to Teff is significantly lower in AlloLPS (p,0.0001). (J) Representative flow cytometry plots for CD4+CD25+ lungs cells from SynLPS (left)
and AlloLPS (right) show expression of intracellular FOXP3 and CD4. The percentage of FOXP3+CD4+CD25 regulatory T cells (Treg) is lower, while the
percentage of FOXP32CD4+CD25+ effector T cells (Teff) is elevated, in AlloLPS compared to SynLPS. (K) While FOXP3+CD4+CD25+ Treg numbers are
similar between AlloLPS and SynLPS, (L) the ratio of FOXP3+CD4+CD25+ Treg to FOXP32CD4+CD25+ Teff is significantly lower in AlloLPS (p = 0.049).
Numeric data represent the average +/2 SEM and * = p,0.05 and *** = p,0.0005.
doi:10.1371/journal.pone.0097951.g005
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Figure 6. Allogeneic splenocyte transfer followed by inhaled LPS leads to an increase in pulmonary IFN-c, granzyme B, and CCL5.
Rag12/2 mice received a transfer of allogeneic (Allo) or syngeneic (Syn) splenocytes followed by daily exposures to aerosolized LPS for 5 days starting
1 week after splenocyte transfer. Mice were euthanized 72 hours after the last LPS exposure and concentrations of proteins were measured in the BAL
of AlloLPS and SynLPS mice using multiplex and ELISA assays. (A) IFN- c is elevated in AlloLPS compared to SynLPS (p = ). (B–D) Th2 cytokines IL-4, IL-
5, and IL-13 are similar between AlloLPS and SynLPS. (E) IL-17 is reduced in AlloLPS compared to SynLPS (p = 0.0078). (F) IL-10 is unchanged between
AlloLPS and SynLPS. (G) IL-15 is elevated in the BAL of AlloLPS compared to SynLPS (p = 0.014). (H) Granzyme B (Gr B) is elevated in the BAL of AlloLPS
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injury and is associated with an increase in CD8 T cells, effector

CD4 T cells, and inflammatory cytokines. Furthermore, our

results establish a novel model of pGVHD that combines

allogeneic and environmental stimuli in the absence of a full

HCT and conditioning regimen. Future experiments should focus

on specific roles of CD8 T cells and Tregs in the pathogenesis of

lung injury in this model of murine pGVHD.
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