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Abstract

Spinocerebellar degenerations (SCDs) are a large class of sporadic or hereditary neurodegenerative disorders characterized
by progressive motion defects and degenerative changes in the cerebellum and other parts of the CNS. Here we report the
identification and establishment from a C57BL/6J mouse colony of a novel mouse line developing spontaneous progressive
ataxia, which we refer to as ts3. Frequency of the phenotypic expression was consistent with an autosomal recessive
Mendelian trait of inheritance, suggesting that a single gene mutation is responsible for the ataxic phenotype of this line.
The onset of ataxia was observed at about three weeks of age, which slowly progressed until the hind limbs became entirely
paralyzed in many cases. Micro-MRI study revealed significant cerebellar atrophy in all the ataxic mice, although individual
variations were observed. Detailed histological analyses demonstrated significant atrophy of the anterior folia with reduced
granule cells (GC) and abnormal morphology of cerebellar Purkinje cells (PC). Study by ultra-high voltage electron
microscopy (UHVEM) further indicated aberrant morphology of PC dendrites and their spines, suggesting both
morphological and functional abnormalities of the PC in the mutants. Immunohistochemical studies also revealed defects
in parallel fiber (PF)–PC synapse formation and abnormal distal extension of climbing fibers (CF). Based on the phenotypic
similarities of the ts3 mutant with other known ataxic mutants, we performed immunohistological analyses and found that
expression levels of two genes and their products, glutamate receptor delta2 (grid2) and its ligand, cerebellin1 (Cbln1), are
significantly reduced or undetectable. Finally, we sequenced the candidate genes and detected a large deletion in the
coding region of the grid2 gene. Our present study suggests that ts3 is a new allele of the grid2 gene, which causes similar
but different phenotypes as compared to other grid2 mutants.
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Introduction

Ataxia is defined as a neurological dysfunction that causes loss of

motor coordination such as gait imbalance associated with

appendicular ataxia and defects in gaze or speech [1–3]. Inherited

spinocerebellar degenerations (SCDs) are among the main causes

of ataxia. SCDs comprise the two most relevant forms of ataxia:

the autosomal recessive ataxias and the autosomal dominant

spinocerebellar ataxias (SCAs) [1]. The majority of recessive

ataxias are caused by loss-of-function (missense) mutations, while

SCAs are mostly caused by an insertion of multiple CAG-repeats

in the coding region of a particular gene, which is thought to result

in a toxic gain-of-function of the protein with poly-glutamine

(poly-Q) expansion [1]. Another group of inherited SCDs is the

hereditary spastic paraplegias (HSPs, numbered as SPG1-39)

characterized by progressive lower limb spasticity and weakness

due to distal axonopathy of the corticospinal tract axons [4,5].

Over the last two decades, genetic studies have identified many

genes responsible for the inherited SCDs, including 19 genes out of

27 known SCAs and 20 out of 36 established HSPs [3,5].

Increasing numbers of the animal SCD models representing

both sporadic mutant mice and genetically-engineered mice have

been reported [6–8], including hotfoot and Lurcher mutants

[9,10]. Their causative mutations were identified in the same gene,

grid2, encoding the ionotropic glutamate receptor delta-2 (GluD2)
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[11,12], which is selectively expressed in Purkinje cells (PC). At

least twenty alleles of the same gene, including ho4J, ho5J, ho7J,
ho8J, ho9J, ho11J, ho12J, ho13J, ho15J, tpr (tapdancer), 153Gso

and 154Gso have been identified from different mutant mice

[11,13–16], and a targeted null mutation in the grid2 gene (grid2
KO mice) has also been reported [17]. These grid2 mutants are

commonly characterized by cerebellar atrophy and motor

incoordination.

Lurcher (Lc) is a spontaneous semi-dominant mutation in which

homozygotes (Lc/Lc) die at birth, and heterozygotes exhibit

cerebellar deficiencies and ataxia [9,10]. It is the result of a single

missense mutation in the third transmembrane domain in the

grid2 gene [11]. Lc is an autosomal dominant and constitutive

active mutation which eventually leads to the death of PCs,

resulting in their near complete absence as well as the

accompanying loss of most GCs and 60–75% of olivary neurons

[12,18].

Hotfoot (ho) is a spontaneous, autosomal recessive mutation, and

one of the alleles, ho4j, was first shown to be caused by a mutation

in the grid2 gene [11]. In addition to the ataxic phenotypes

common to Lc/+, both hotfoot mutants and grid2 KO mice are

characterized by deficits in parallel fiber (PF)-PCs and climbing

fiber (CF)- PC synapse formation, as well as impaired induction of

long-term depression (LTD) [16,17]. Phenotypic similarities

between hotfoot mutants and grid2 KO mice suggest that hotfoot
is a loss-of-function mutation. In fact, sensorimotor learning

deficits exhibited by hotfoot mutants are greater than those

demonstrated by Lc/+ mutants[19,20], although loss of cerebellar

cells in hotfoot mutants is less severe [18,21].

Here, we have established a mouse line with an autosomal

recessive gene mutation characterized by progressive ataxia and

significant cerebellar atrophy. Phenotypic and genetic analyses

suggest that the mutation is a new allele of the grid2 gene and

another loss-of function mutation.

Materials and Methods

Mice
Experimental protocols for mice were approved by committees

at the National Institute of Biomedical Innovation (DS 23-35),

Kinki University (KAME-22-012), Osaka University (FBS 07-001).

Mice were maintained under standard conditions of light (8:00

am–8:00 pm) and temperature (23+/21uC). The ts3 mutant was

originally found in the C57BL/6 strain, and additional C57BL/6J

mice used for all experiments, including mating, were obtained

from SLC Japan. All surgery was performed under 1% isoflurane

anesthesia or pentobarbital anesthesia (100 mg/kg body weight,

i.p.), and all efforts were made to minimize suffering.

For in vitro fertilization, 4-week-old female C57BL/6J mice

were intraperitoneally injected with 5 IU pregnant mare serum

gonadotropin (PMSG; Serotropin, ASKA Pharmaceutical), fol-

lowed by 5 IU human chorionic gonadotropin (hCG; Puberogen,

Yell Pharmaceutical) 48 h later. Fifteen hours after hCG injection,

oocytes were dissected from the ampulla region of the oviducts and

placed in 200 ml droplets of HTF medium (Ark Resource) at 37uC
under 5% CO2 in air. Spermatozoa collected from the cauda

epididymis of ts3 males were incubated for 1–1.5 h in 200 ml

droplets of HTF medium to allow capacitation. Oocytes were then

inseminated by adding 3–5 ml of the sperm suspension and

incubated for 5 h. The fertilized oocytes were washed three times

and transferred to fresh drops of KSOM medium (Ark Resource)

and cultured overnight. The following day, the 2-cell stage

embryos (usually 10 embryos/oviduct) were surgically transferred

into the oviducts of pseudopregnant ICR females (0.5 day post

coitus) that had been mated with vasectomized males.

When taking footprints, soles of the hind feet were marked with

Chinese ink, and the mice were allowed to walk freely on flat

paper.

Micro-magnetic resonance imaging (micro-MRI)
An MRI apparatus for small animals at 11.7 T (Bruker,

AVANCE 500WB) was used for the experiments. Mice (n = 6)

were anesthetized with 1% isoflurane and MRI was performed

under different sequences as follows:

1) Sequence for brain imaging: T1 weighted image (Gradient

echo: FLASH);

FOV = 2.0 cm, matrix = 2566256, thickness = 0.5 mm, 12

slices,

TR/TE = 100 ms/2.3 ms, NS = 32, scan time = 13 min. MRI

was performed 20,24 h after IP injection of Mn solution

(0.4 mmol/kg MnCl2/4H2O, 100 mM).

2) Sequence for spinal cord/sciatic nerve imaging:

2-1) T2 weighted image (Spin echo: RARE)

FOV = 2.5 cm, matrix = 2566256, thickness = 0.5 mm, 12

slices,

TR/TE = 4000 ms/25.2 ms, NS = 8, scan time = 8 min.

2-2) Diffusion tensor image (Spin echo)

FOV = 2.5 or 3.0 cm, matrix = 1286128, thickness = 0.5 mm,

8 slices,

TR/TE = 2000 ms/27 ms, b = 1000 s/mm2, 6 directions,

NS = 4, scan time = 119 min.

Histology
Mice at the ages of 3 weeks, 4 months and 10 months were used

for histological studies. Following the MRI scan, mice were

anesthetized with pentobarbital and perfused with 4% parafor-

maldehyde. The brain was then removed, embedded in paraffin,

and used for histological analysis. The sections were stained with

hematoxylin-eosin (H&E), toluidine blue, Kluver-Barrera’s (KB)

stain, following standard protocols.

Immunohistochemistry
Under pentobarbital anesthesia, mice were fixed transcardially

with 4% paraformaldehyde in 0.1 M sodium phosphate buffer

(PB, pH 7.2), and cerebellar sections (50 mm in thickness) were

prepared using a microslicer (VT1000S, Leica). Immunohisto-

chemical incubations were done at room temperature using

phosphate-buffered saline (PBS, pH 7.2) containing 0.1% Tri-

tonX-100 (TPBS) for diluent and washing buffers. For immuno-

fluorescence, most sections were successively incubated in a free-

floating state with 10% normal donkey serum for 30 min, a

mixture of primary antibodies overnight (1 mg/ml), and a mixture

of Alexa Fluor-488-, indocarbocyanine (Cy3)-, and indodicarbo-

cyanine (Cy5)-labeled species-specific secondary antibodies (1:200,

Invitrogen; Jackson ImmunoResearch) for 2 h. For immunohisto-

chemical analysis with calbindin antibody, we used fresh frozen

sections mounted on silane-coated slide glasses which were fixed

with 4% PFA for 10 min and then subjected to immunofluores-

cence incubation as above. Images were taken with a

laser-scanning microscope (FV1000, Olympus) equipped with

HeNe/Ar laser, and PlanApo (10x/0.40) and PlanApoN (60x/

1.42, oil immersion) objective lens (Olympus). To avoid cross-talk

between multiple fluorophores, Alexa 488 (or FITC), Cy3, and

Cy5 fluorescent signals were acquired sequentially using the
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488 nm, 543 nm, and 633 nm excitation laser lines. Single optical

sections were obtained (6406640 pixels, pixel size 110 nm).

For immunohistochemical analysis, we used affinity-purified

primary antibodies raised against the following molecules (host

species): mouse calbindin (goat, [22]), mouse cerebellin 1 (cbln1,

guinea pig, [23]), mouse glial fibrillary acidic protein (GFAP,

rabbit, [24]), mouse parvalbumin (guinea pig, [25]), mouse

glutamate receptor GluD2 (rabbit, [26]), rat vesicular glutamate

transporters VGluT1 and VGluT2, (guinea pig, [27]), and mouse

vesicular inhibitory amino acid transporter (VIAAT, guinea pig,

[27]).

Electron microscopy
Brains from 10-month-old (30 weeks) mice were perfused with

4% paraformaldehyde/2.5% glutalaldehyde and fixed for 2 hours

in the fixative solution. The cerebella were cut in small pieces

(about 1 mm3) and washed with phosphate buffer, postfixed in

sodium cacodylate-buffered 1.5% osmium tetroxide for 60 min at

4uC, dehydrated using a series of ethanol concentrations, and

embedded in Epon resin. The samples were examined under an

electron microscope (H-7650, Hitachi or JEM1400, JEOL).

Ultra-high-voltage electron microscopy (UHVEM)
An ultra-high voltage (3MV) electron microscope (H-3000,

Hitachi) was used. Mouse brain (4 months old) was fixed with 4%

Figure 1. Isolation of a mouse line with behavioral abnormalities. A) Mutant mice fall frequently and display an inability to right themselves
easily. B) Determination of hereditary pattern by IVF. Squares and circles indicate male and female, respectively. Black-fill indicates mice, possibly
homozygote of the mutated allele, with behavior abnormalities. Half-filled and open symbols are presumed to be heterozygote and WT with normal
behavior. Numbers indicate number of offsprings. C) Hind heel footprints for normal and mutant mice. D) Frequent limb-clasping displayed by older
mice (30-week old).
doi:10.1371/journal.pone.0107867.g001
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paraformaldehyde/2.5% glutalaldehyde solution overnight and

sagittal brain slices (500 mm thickness) were prepared using

Microslicer (Matsunami). Golgi stain was performed on the slices

following standard protocol. Following several rinses in 8% sucrose

in phosphate buffered saline (PBS), the slices were immersed for

2 h in a mixture of 2.5% paraformaldehyde, 2.5% glutalaldehyde

in PBS. After fixation with 1% osmium tetraoxide for 1 h, the

thick sections were dehydrated through a graded series of ethanol

(60%–100%) and propylene oxide. Finally, they were embedded in

Quetol 812 at 45uC for 1 day, and then at 60uC for 2 days. The

embedded sections were mounted on epoxy block and cut on an

ultramicrotome (Ultracut E; Reichert-Jung) at 10 mm thickness

and mounted on 50-mesh grids. Specimens were examined with

an ultra-high voltage electron microscope H-3000 (Hitachi) at an

accelerating voltage of 2000 kV. Images were recorded with a

4 k64 k slow scan charge-coupled device (SSCCD) camera

F486BK with a pixel size of 15 mm615 mm (Hitachi) at a nominal

magnification of 2,0006.

Figure 2. Cerebellar atrophy in the ts3 mutant mice revealed by Micro-MRI and histological analysis. A) Brain images acquired by micro-
MRI (left and middle panels). Horizontal (left) and sagittal (middle) images of cerebella indicate cerebellar atrophy in the ts3 mutant (lower panels)
and WT control (upper panels). The right panels show H&E-stained cerebellar sagittal sections of the ts3 mutant (lower) and WT control (upper). Scale
bar indicates 1 mm. B, C) Cerebellar size of ts3 mutants and WT controls. First, the lengths of major and minor axes (mm) of the whole cerebellum
were measured by micro-MRI (B, upper panels). They were consequently multiplied and compared between two genotypes (C, upper, n = 6, unit:
mm2). To examine significant anterior folial atrophy in ts3 cerebella, we also measured the length of the folia (shown in B, lower) and compared in ts3
and WT mice (C, lower, n = 6, unit: mm). *P,0.05, **P,0.01.
doi:10.1371/journal.pone.0107867.g002
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RT-PCR
Reverse transcription PCR (RT-PCR) was performed according

to standard protocol. Briefly, cerebella were sampled from ts3
mice and wild-type controls. Total RNAs were extracted using

Trizol reagent (Thermo Scientific) and cDNAs were synthesized

from the RNAs using Superscript II Reverse Transcriptase (Life

Technologies) with either oligo (dT) or random primers (Life

Technologies), according to the manufacturers’ protocols. Nested

PCR was performed to amplify the grid2 cDNA from ts3 and

wild-type cerebella using Ex-Taq (TaKaRa) and primers as

follows: 5’-ATGGAAGTTTTCCCCTTGCT-3’, 5’-TCATATG-

GACGTGCCTCGGTCG -3’. PCR parameters are as follows:

94uC 2 min; 30 cycles of 94uC 1 min, 60uC 1 min; 72uC 3 min,

72uC 7 min.

Western blotting
Western blotting was performed according to standard protocol.

Briefly, sampled cerebella were homogenized in RIPA buffer with

protein inhibitors and proteins were extracted by sonication and

centrifugation. 10 mg of each protein was electrophoresed using

SDS-PAGE gel, blotted on PVDF membrane (Bio-Rad), and

incubated overnight at 4uC with anti-GluD2 antibody (1: 2000

dilution, rabbit, [26]), anti-Cbln1 antibody (1: 250 dilution, rabbit,

[23]), anti-a-tubulin antibody (1: 10,000 dilution, rabbit, MBL) or

anti-b-actin antibody (1: 400,000 dilution, mouse, Sigma).

Secondary antibodies, anti-rabbit IgG (donkey, GE Healthcare)

or anti-mouse IgG (sheep, GE Healthcare) were used for detection

of anti-rabbit (GluD2, Cbln1, or a-tubulin) or anti-mouse (b-actin)

primary antibody, respectively. ECL Prime Western blotting

reagent (GE Healthcare) was used for chemiluminescence

detection and images were captured using MYECL Imager

(Thermo Scientific).

Statistics
All data are expressed as the mean 6 SEM (or SD if specifically

described). Statistical significance was evaluated by Student’s t-test

and was set at the p,0.05 level, except in a case where chi-square

(x2) analysis was performed to compare frequency distribution of

dendritic spine morphology between WT and ts3 mice in the four

different categories.

Figure 3. Normal morphology for spinal cord and sciatic nerves. A) No significant abnormality in the sciatic nerve (arrow) was detected in ts3
mutants by micro-MRI. B) Toluidine blue (left) and H&E staining (right) shows normal morphology of sciatic nerves in both genotypes. Scale bar:
25 mm. C) Micro-MRI sagittal images of brain stem and spinal cord in ts3 and WT mice. No abnormalities were detectable in ts3. Ce: cerebellum, MO:
medulla oblongata, SC: spinal cord. D) Toluidine blue and H&E-stained spinal cord of ts3 and WT mice. Spinal cord morphology was normal in both
genotypes, and no significant difference was observed. Scale bar indicates 100 mm.
doi:10.1371/journal.pone.0107867.g003
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Results

Isolation of a mouse line with behavioral abnormality
While maintaining the C57BL/6J mouse population, we

discovered some mice with the ataxic phenotype. The mice could

not move smoothly and also fell frequently, most likely due to

abnormal control of their hind limbs (Fig. 1A). To clarify

hereditary mode of the ataxic phenotype, the mice were mated

with normal C57BL/6J mice. However, both male and female

failed to produce offspring under natural breeding conditions,

presumably due to ataxia. Consequently, we performed in vitro

fertilization (IVF) in order to obtain offspring.

As shown in Fig. 1B, one male mouse with ataxia was born via

IVF using sperm from a mutant male and oocytes from a mutant

female. In contrast, when oocytes from normal females were used

for IVF, no offspring displayed abnormality at F1 generation. At F2

generation, however, about 25% of offspring exhibited the same

phenotype as the original mice, suggesting that the ataxic

phenotype is recessively inherited and that a single gene is

responsible for the phenotype. We referred to the mutant mice as

ts3.

Progressive changes in abnormal behavior
To characterize the behavioral abnormalities of the ts3 mice

more precisely, we first collected footprints of hind soles from

mutants and control littermates (Fig. 1C). The mutant mice

displayed a short-stepped gait and moved their toes parallel to the

direction of movement. Moreover, the ts3 mice did not attach

their heels on the ground, suggesting that this behavioral

Figure 4. Morphological abnormality of Purkinje cells in ts3 cerebella. A) Kluver-Barrera’s stain was performed on ts3 and WT cerebella.
Number and morphology of Purkinje cells were normal in ts3 mutants. In contrast, however, GC numbers were reduced, and the size of the nuclei was
significant smaller than WT. Scale bars, 50 mm (upper panel); 20 mm (lower panel). B) Immunohistochemisty was performed on cerebella in ts3 and
WT mice using anti-calbindin antibody as a Purkinje cell marker. Purkinje cell morphology became progressively altered commensurate with mouse
age. Note that dendrites of ts3 Purkinje cells at 30 weeks of age look significantly thicker than their WT counterparts. Dendrite branching was also
abnormal in ts3 mutants. Scale bar, 20 mm. C) Significant reduction in granule cell density (cell number/mm3) in old ts3 mutants (30 weeks old). D)
The PC dendrite is significantly thicker in ts3 mutants at 30 weeks of age (n = 70 each, averaged diameters of the thickest regions). *P,0.05, ***P,
0.001.
doi:10.1371/journal.pone.0107867.g004
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abnormality is one of the characteristics of spinocerebellar ataxia.

Although the extent of hind limb abnormality was not significant

during suckling period (2 weeks old), after weaning (3 weeks old)

the mutant mice began to fall frequently. Finally, at 6-weeks, the

mice began to walk dragging their hind limbs.

Because mice with spinocerebellar ataxia display frequent limb-

clasping, normal and mutant mice were examined by hanging test.

When young mice (6-week old) were tested, both normal and ts3
mice were well balanced by opening their limbs (Fig. 1D, upper

panel). Some of the older ts3 mice (i.e. after 12 weeks; the figure

shows 30-week-old mice), however, exhibited frequent limb-

clasping (Fig. 1D). In addition, tail-muscle tonus (not shown) and

hind-limb tonus were observed in older ts3 mice after having an

object stuck between the thigh and the abdomen, suggesting that

the mutant is a potential model for recessive spinocerebellar ataxia

and that pathological abnormality progresses after weaning.

Interestingly, the ts3 mice showed characteristic traits of paraple-

gia but no sign of spasticity, suggesting that the mutants should not

be considered a model for human hereditary spastic paraplegia

(HSP). We also found that the ataxic ts3 mice were significantly

smaller than normal littermates (Fig. S1).

Identification of cerebellar atrophy in ts3 mice by Micro-
MRI

To investigate the cause of ataxia in the ts3 mice, we first

performed micro-MRI on ts3 and WT brains. We found that the

cerebella of ts3 mutant mice were significantly smaller than that of

WT controls (4 months old, n = 6 each, Fig. 2A, B), measuring the

size of different regions of the cerebella for both genotypes and

confirming significant cerebellar atrophy in the ts3 mutants

(Fig. 2C, D, Fig. S2). We also performed histological analyses on

the same animals, with results consistent with those from micro-

MRI (Fig. 2A, B). Finally, we examined micro-MRI and histology

of the spinal cords and sciatic nerves of the ts3 mice when

compared to the WT controls (4 months old, n = 3 each, Fig. 3,

Fig. S3). No detectable abnormality (e.g., demyelination or

degeneration of upper/lower neurons) was observed in either

sciatic nerves (Fig. 3A, B) or spinal cords (Fig. 3C, D, S3) of the ts3
mutants.

Abnormality in the Purkinje and granule cells of the
anterior folia in ts3 cerebella

The atrophy observed in the ts3 cerebella was further examined

histologically. Fig. 4 shows KB-stained sections of the ts3 and WT

cerebella. Reduced numbers of GCs were observed in older ts3
mutants when compared to the WTs (30 weeks old, Fig. 4A, C).

Figure 5. ts3 purkinje cells demonstrate a characteristic of
senescent cell as observed by electronmicroscopy. Electron
photomicrographs of PC cells in 30-week-old WT (A, B) and ts3 (C, D, E).
Lipofuscin accumulation in cell bodies (arrowheads in B and C),
representing senescent postmitotic neurons, was observed in ts3, but
not in WT PC cells. Scale bars, A, B, 5 mm; C, D, 2 mm; E, 0.5 mm.
doi:10.1371/journal.pone.0107867.g005

Figure 6. Abnormal morphology of dendrites and spines of the
Purkinje cells in ts3 mutants. A) Representative ultra-high voltage
electron microscopy (UHVEM) images of Purkinje cell dendrites in ts3
mutant and WT mice (2000x). The arrow in the lower panel indicates
isthmic portions of dendrites observed in ts3 mutants. Note the
significant difference in morphology between ts3 and WT cerebella.
Whereas the bulbous shape of dendritic spines is observed in WT
controls, dendritic spines in ts3 mutants are smaller and irregularly-
shaped, as indicated by arrowheads. Scale bar indicates 5 mm. B)
Dendritic spine density (number of spine/mm2) was comparable in ts3
and WT controls. C) Morphology of the dendritic spines is significantly
different in ts3 mutants when compared to that of WT controls.
Whereas stubby or mushroom-shaped spines, which are characteristic
of normal and mature PCs, are commonly observed in WT cerebella,
thin (filopodia-like or headed) spines, representing a deficit in spine
maturation, are predominant in ts3 mutants. Double-headed spines,
including branched spines, were rarely observed in either genotype.
‘‘Unknown’’ indicates spines that could not be categorized from HVEM
images by gross observation due to high density of dendritic spines in
PCs. The x2 test indicated that the difference in dendritic morphology
between two genotypes is statistically significant (p,0.01).
doi:10.1371/journal.pone.0107867.g006
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Next, we performed immunohistochemistry using anti-Calbindin

antibody to examine PC morphology. As shown in Fig. 4B,

dendrite branching of PCs in the molecular layer of ts3 cerebella

was abnormal, and each dendrite was significantly thicker in the

30-week-old mutants than in WT control (Fig. 4B, D). Average

number of PCs in each lobule was also calculated from serial

sections, and significant decreases were observed in lobules VII

and VIII in the 30-week-old ts3 mutants (Fig. S4).

Electron microscopic analysis of Purkinje cells in ts3
mutants

To further analyze PC abnormality in the ts3 cerebellum, we

performed an electron microscopic study on mutant and normal

cerebella. In ts3 cerebella, we observed electron dense accumu-

lations in cell bodies of PC cells (30 weeks old, Fig. 5B, D, E,

arrowheads). Higher magnificent images demonstrated that the

aggregates contain electron dense and electron lucent compart-

ments (Fig. 5E), which are characteristics of lipofuscin. Lipofuscin

is composed of highly oxidized cross-linked protein aggregates and

lipids. Previous reports suggest that lipofuscin accumulation is a

consequence of oxidative stress and is a characteristic feature of

senescent postmitotic cells including neurons [28]. These granules

were not observed in WT PC cells (Fig. 5A, B).

Abnormal morphology of dendrites and spines in ts3
mutants revealed by ultra-high voltage electron
microscopy

We next performed ultra-high voltage electron microscopy to

further analyze abnormalities in PCs of the ts3 mutants. As shown

in Fig. 6A (indicated by arrowheads), morphology of the dendrites

and dendritic spines in the PCs of the ts3 mutants differed from

those in the WT cerebella (4 months old). To quantify the

difference in dendritic spine morphology, we compared spine

density (Fig. 6B) and shapes (Fig. 6C) according to previous report

[29]. Dendritic spine density was comparable between ts3 and WT

controls (Fig. 6B), however, frequencies of spine morphology,

which was categorized as thin, stubby, mushroom and double-

headed, were significantly different between the two genotypes

(Fig. 6C, P,0.01). Strikingly, not only spines but also dendrites

were malformed; unlike WT, the thickness of dendrites was not

Figure 7. Distal expansion of CF territory in ts3 mutants. (A-N)
Immunofluorescence for calbindin (A, C, green in E, F, blue in K, M),
VGluT2 (B, D, red in E, F), VGluT1 (G, I), VIAAT (H, J), parvalbumin (red in
K, M) and GFAP (L, N) in control (A, B, E, G, H, K, L) and the ts3 mutants
(C, D, F, I, J, M, N). Note that VGluT2-positive CF terminals are markedly
increased in number and distributed throughout the molecular layer in
ts3 mutants (E, F). Scale bars, A, 1 mm; E, G, K, 20 mm.
doi:10.1371/journal.pone.0107867.g007

Figure 8. Free spines and mismatched PF-PC synapses in ts3
mutant cerebella. (A-E) Conventional electron microscopy in control
(A, B) and ts3 mutant (C-E). A) Asterisks indicate PC spines contacting
with PF terminals. B) Higher magnification image of a normal spine in
WT. C) Letters f and m indicate free spines and mismatched PF–PC
synapses, respectively. High-power images of free spine (D) and
mismatched synapse (E). Note that PSD, as indicated between two
arrowheads, is well-matched with the synaptic terminal in normal
control (B). In contrast, the free spine and mismatched synapse do not
have any contact with PF synaptic terminal (D) or has a significantly
longer PSD (E), respectively. Scale bars, 500 nm. F) Percentage of
normal synapses, mismatched synapses, and free spines in ts3 and WT
cerebella. Majority of spines observed in ts3 cerebella were either
mismatched or free spines. ***P,0.001.
doi:10.1371/journal.pone.0107867.g008
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constant with isthmic portions at intervals observed in the ts3
mutants (Fig. 6A, arrows). These morphological abnormalities

have not been described in previous studies.

Distal extension of climbing fiber territory in ts3 mutants
To investigate changes in cellular morphology and neuronal

projection in the cerebellum of ts3 mutants, we performed

immunohistochemical studies using antibodies to calbindin,

VGluT2 (vesicular glutamate transporter 2), VGluT1, VIAAT

(vesicular inhibitory amino acid transporter), parvalbumin and

GFAP (glial fibrillary acidic protein) (4 months old, Fig. 7).

Through calbindin immunofluorescence, cerebella in ts3 mutants

was normal in foliation, laminated organization, and monolayer

alignment of PCs, although cerebellar size was smaller than

control mice as described in Fig. 2 (Fig. 7A-D). However, a

striking phenotype was found in the distribution pattern of

VGluT2-stained CF terminals. In control mice, CF terminals were

distributed along calbindin-stained PC dendrites in the basal four-

fifths of the molecular layer (Fig. 7B, E). In contrast, in the ts3
mutants CF terminals were markedly increased in number and

distributed throughout the full extent of the molecular layer

(Fig. 7D, F). No such genotypic differences were noted for

VGluT2-stained PF terminals (Fig. 7G, I), VIAAT-stained inter-

neuron terminals (Fig. 7H, J), parvalbumin-stained inhibitory

neurons (Fig. 7K, M) or GFAP-stained Bergmann fibers (Fig. 7L,

N).

Impaired PF–PC synapse formation in ts3 cerebella
Similar expanded distribution of CF terminals has been

reported in mutant mice expressing defective glutamate receptor

GluD2, Cbln1, or carbonic anhydrase-related protein 8 (Car8)

[17,30,31]. In these mutants, PF-PC synapse formation is

commonly impaired, as reflected in the emergence of ’’free

spines’’ lacking synaptic contact with PF terminals and of

’’mismatched synapses’’, in which the postsynaptic density (PSD)

in PC spines is longer than the active zone in PF terminals [17,31–

33]. Therefore, we investigated the formation of PF–PC synapses

in ts3 mutants by electron microscopy (4 months old). In control

mice, most PC spines contacted PF terminals in a one-to-one

fashion, and the PSDs and active zones were well matched at PF-

PC synapses. In ts3 mutants, we frequently observed free spines

(f in Fig. 8C, D) and mismatched synapses (m in Fig. 8C, E).

Fig. 8F shows frequencies of normal synapses, mismatched

synapses and free spines in the two genotypes. Whereas normal

synapses were observed in about 99% of the PF–PC synapses in

WT mice, the majority of the synapses/spines observed in ts3
mutants were either mismatched (17.861.4%) or free

(39.464.4%, P,0.001).

Significant reduction of GluD2 and Cbln1 expression in
ts3 cerebella

As the phenotypes in ts3 mutants with abnormalities in PF–PC

synapses are similar to those of GluD2, Cbln1 and Car8 mutants,

we compared expression of these three gene products by

immunohistochemistry (4 months old, Fig. 9). Severe reduction

or loss of immunoreactivity was observed in GluD2 (Fig. 9A-D)

and Cbln1 (Fig. 9E-H) but not Car8 (Fig. 9I-L), in the cerebella of

ts3 mutants. We also performed western blotting analyses and

found that, whereas GluD2 expression was not detectable in ts3
cerebella (Fig. 10B), expression level of Cbln1 was comparable in

the mutant cerebella when compared with that of WTs (Fig. S5).

Identification of a large deletion of the grid2 gene and

protein in ts3 mutants. Ultimately, we sequenced the two

genes and also performed PCR on genomic DNA or cDNA from

ts3 and wild-type cerebella to investigate the possibility that a

mutation in one of these genes might be responsible for the defects

in ts3 mutant mice. We detected a large deletion of exons in the

grid2 gene ranging from exon 3 to 8, resulting in a 1001 bp

deletion in the grid2 cDNA (Fig. 10A, C, D, S6A). By genomic

PCR analysis, we also discovered the absence of the 3’ portion of

the intron 2, suggesting the existence of a mutation within the

intron 2 (Fig. 10C). Based on sequencing analyses, deletion of the

grid2ts3DNA also resulted in a frame-shift mutation, causing a

GluD2ts3 amino acid substitution from the amino acid 83 and

following amino acids (Fig. 10C, D, S6B) and also termination of

translation at the amino acid 124 (Fig. 10C, D). The results from

Western blotting were consistent in that the GluD2ts3 protein was

undetectable using an antibody that recognizes the C-terminus of

GluD2ts3 (Fig. 10B).

Discussion

The present study demonstrated that the aforementioned novel

mutant mice exhibit progressive ataxia, with onset at approxi-

mately 3 weeks of age. The major symptoms of ataxia are

paraplegia and gait imbalance, possibly due to hind limb

incoordination. Cerebellar atrophy, morphological abnormality

of PCs, reduced number of GCs and evidence for aberrant PF–PC

Figure 9. Severe reduction of GluD2 and Cbln1 immunoreac-
tivities in ts3 mutants. (A-L) Immunohistochemistry for GluD2 (A-D),
Cbln1 (E-H) and Car8 (I-L) in control (A, B, E, F, I, J) and ts3 mutants (C, D,
G, H, K, L). Scale bars, A, E, I, 500 mm; B, F, J, 20 mm.
doi:10.1371/journal.pone.0107867.g009
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Figure 10. Identification of the ts3 mutation in the grid2 gene. A) RT-PCR was performed on mRNA extracted from either ts3 or WT cerebella.
A band that was roughly 1 kb shorter was detected from the mutant cDNA, suggesting a large deletion in the grid2 DNA of ts3 mice. B) Proteins were
extracted from the ts3 and WT cerebella and Western blotting was performed using anti-GluD2 and b-actin antibodies. The GluD2 protein was not
detected in ts3 mutant cerebella. C) Schematic representation of the deletion in ts3 genomic DNA (a) and protein (b). a) The 6 exons (exon 3 to 8) are
missing, and only portions of intron 2 and 9 were detected by genomic PCR (DNA sequences between the two Xs in the WT are missing in the ts3
mutants). b) The deletion in the grid2 DNA results in protein truncation (from amino acids 83 to 145) and also a frame-shift mutation. The resulting
gene product in ts3 mutants is 124 amino acids in length. D) Sequencing analyses confirmed that whereas exon 4 (enclosed sequences in the upper
line) follows exon 3 sequences in the WT cDNA, exons 9 (shaded sequences in light gray) and 10 (shaded in dark gray) follow exon 3 in grid2ts3. The
deletion in the grid2ts3 gene causes a frame-shift mutation from amino acid 83 (C to W) and following amino acids in the GluD2ts3 protein and
terminates the protein in a truncated, 124 amino acid form due to a termination codon (tga, *).
doi:10.1371/journal.pone.0107867.g010
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synapse formation in ts3 mutants strongly suggest that ataxia is

caused by progressive dysfunction in the cerebellar network.

Morphological analyses in the present study revealed that PC

dendritic spines were abnormal. Electron microscopic studies

further demonstrated that PF–PC synapses were also abnormal in

ts3 mutants, with a large number of ‘‘mismatched synapses’’ and

‘‘free spines’’ being observed [34]. In normal PF-PC synapses,

length of the postsynaptic density (PSD) of the PC spine is well-

matched with that of the active zone of PF. In contrast, PSD in ts3
mutants was significantly longer than the active zone of the PF

terminal, which is similar to previous observations in Car8, grid2,

and Cbln1 mutant mice [30,31,33].

In previous studies, all three mutants demonstrated cerebellar

dysfunctions, resulting in abnormalities such as motor dyscoordi-

nation, defects in PF–PC synapse formation, and expansion of CF

territory. There are, however, differences in the phenotypes of

these mutants when compared to that of ts3. For instance, Car8
KO mice demonstrated expansion of CF territory and free spines,

but mismatched synapses were not observed [30]. Phenotypes of

Cbln1- and grid2-disrupted (KO) mice were similar according to

previous reports, demonstrating motor dyscoordination, increase

in the number and distribution of CF terminals, and significant

rates of free/mismatched synapses [17,31,35]. However, our study

indicated that there are also discrepancies between ts3 mutants

and Cbln1-/grid2 KO mice, such as lower body weight, failure to

produce offspring, and significant individual differences observed

in ts3 but not in the two KO mice.

Our immunohistochemical data indicated that expression levels

of both GluD2 and Cbln1 in ts3 mutant cerebella were

significantly reduced or undetectable, respectively, whereas the

protein level of Car8 was comparable to that of WT controls

(Fig. 9). However, the results were inconsistent with our western

blotting data, showing that Cbln1 expression levels were compa-

rable in ts3 and control cerebella (Fig. S5). It had previously been

reported that Cbln1 immunoreactivity was not detectable in the

grid2-disrupted mice [36]. In contrast, expression levels of GluD2

protein are normal in Cbln1 mutant mice (our unpublished data).

Taken together, our data raised the possibility that either grid2 or

a gene affecting grid2 expression is mutated in ts3 mutant mice,

although the possibility that Cbln1 is mutated in ts3 mice could

not be excluded. We subsequently conducted further examination

by sequencing and PCR, resulting in identification of the grid2
deletion, ranging from exon 3 to 8. Discrepancy of phenotypes

between ts3 and other grid2 mutants suggests that the ts3
mutation, which disrupts the majority of the coding region but

retains N-terminal portion of the protein, causes phenotypic

differences when compared with other mutants. It has been

reported that the N-terminal domain of GluD2 (Arg321-Trp339)

[37], which is deleted in ts3 mutants, is crucial for Cbln1 binding

and induction of presynaptic differentiation, suggesting at least

that GluD2ts3 does not function through binding to Cbln1.

Alternatively, there is a possibility that another gene is also

mutated in ts3 mutants. Although our observations indicated that

only homozygous ts3 mice, but not heterozygotes or WTs, showed

phenotypic abnormalities, this does not entirely exclude the

possibility that mutations occur on multiple genes in a linkage

group on the same chromosome. Regarding any inconsistency

between our immunohistochemical and western blotting data on

Cbln1 expression, one possible explanation is that Cbln1 protein

was washed away during the process of immunostaining due to

lack of normal PF–PC synapse formation, as suggested in a

previous report [36].

In this study, we also found individual phenotypic differences

between ts3 mutants, although their genetic background is almost

identical. First, whereas most of those we observed developed

paraplegia, some mice developed mild appendicular ataxia,

including fore limbs. Rates of ataxic progression also displayed

individual differences. Second, severity of cerebellar atrophy also

differed between mice, which does not significantly correlate with

difference in behavioral abnormalities. Third, some mice showed

anterior folial atrophy in which the anterior part of the cerebellar

folia was significantly smaller in size than its posterior counterpart

(Fig. 2B, 4A), although this does not seem to directly correlate with

severity in ataxia (Fig. 4A). In other ts3 mutants, however, neither

the anterior part nor the whole cerebella were smaller than those

of WTs.

In summary, the present study demonstrated that the ts3
mutant is a SCD model that exhibits unique features in its

behavioral and neuropathological abnormalities when compared

with other known SCD model mice. Further studies, including an

electrophysiological approach, might address the fundamental

question of whether the mutated gene is involved in development,

survival, or playing a role in a signaling pathway in the cerebellar

neural network.

Supporting Information

Figure S1 Reduced bodyweights in ts3 mutant mice. The

average bodyweight (BW) of ts3 mutants and WT controls at 4, 8,

and 16 weeks of age (n = 3, means +/2SD). ***P,0.001, *P,

0.05. Note that the average BWs are significantly lower in ts3
mutants than in normal controls at all ages examined.

(TIF)

Figure S2 Relative cerebellar size is significantly small-
er in ts3 mutants. Cerebral and cerebellar sizes were measured

from MR images as shown in Fig. 2. A) MR images of the WT

and ts3 brains with long and short axes as indicated by red lines to

quantify cerebral size. B) Average cerebral size was measured by

multiplying length of long and short axes (mm, n = 3). C) To

examine whether relative cerebellar size is smaller than that of the

cerebrum, ratios of average cerebellar and cerebral sizes

(cerebellum/cerebrum, n = 3) in the two different genotypes are

shown. Note that relative cerebellar size (cerebellum/cerebrum) is

significantly smaller in ts3 mutant mice than that of WT controls,

although entire brain size is also smaller. D) Average body weight

for mice used in the experiments are shown (n = 3). *P,0.05,

***P,0.001.

(TIF)

Figure S3 Spinal cord morphology at different levels
along antero-posterior axis. Coronal sections of ts3 and WT

spinal cord were H&E stained to confirm normal spinal cord

morphology for both genotypes, as shown in Fig. 2.

(TIF)

Figure S4 Significant reduction in the average number
of Purkinje cells in older ts3 mutants. Average number of

Purkinje cells in each lobule (number/mm2) in ts3 mutant and

control mice at 4 weeks (A) and 1 year old (B). In 1-year-old ts3
mutant mice, significant decreases in PC cells were observed in

lobules VII and VIII of the mutant cerebella when compared with

WT controls. **P,0.01.

(TIF)

Figure S5 Expression level of Cbln1 in ts3 cerebellum is
comparable with that of control. Western blotting on ts3/+
and ts3/ts3 cerebella demonstrated that Cbln1 is expressed at

comparable levels in ts3 mutants and controls, whereas GluD2 is

not detectable in ts3 cerebella. This is in contrast to the results
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shown in Fig. 9 by immunohistochemistry, where Cbln1 was not

detectable in ts3 cerebella.

(TIF)

Figure S6 Detection of a large deletion of the grid2 DNA
and GluD2 protein in ts3 mutant mice. Sequencing analysis

revealed a 1001 bp deletion in the ts3 grid2 cDNA corresponding

to sequences from exon 3 to 8 (highlighted in A), causing deletion

of 333 amino acids (83-415) in the GluD2 protein (highlighted in

B). This DNA deletion also results in a frame-shift mutation, and

the final gene product is 124 amino acids in length (see Fig. 10B).

(TIF)
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