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Abstract

Understanding the root molecular and genetic causes driving complex traits is a fundamental challenge in genomics and
genetics. Numerous studies have used variation in gene expression to understand complex traits, but the underlying
genomic variation that contributes to these expression changes is not well understood. In this study, we developed a
framework to integrate gene expression and genotype data to identify biological differences between samples from
opposing complex trait classes that are driven by expression changes and genotypic variation. This framework utilizes
pathway analysis and multi-task learning to build a predictive model and discover pathways relevant to the complex trait of
interest. We simulated expression and genotype data to test the predictive ability of our framework and to measure how
well it uncovered pathways with genes both differentially expressed and genetically associated with a complex trait. We
found that the predictive performance of the multi-task model was comparable to other similar methods. Also, methods like
multi-task learning that considered enrichment analysis scores from both data sets found pathways with both genetic and
expression differences related to the phenotype. We used our framework to analyze differences between estrogen receptor
(ER) positive and negative breast cancer samples. An analysis of the top 15 gene sets from the multi-task model showed
they were all related to estrogen, steroids, cell signaling, or the cell cycle. Although our study suggests that multi-task
learning does not enhance predictive accuracy, the models generated by our framework do provide valuable biological
pathway knowledge for complex traits.
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Introduction

A fundamental challenge in genomics is discovering and

understanding the molecular and genetic basis of complex traits.

A deeper understanding of complex traits will potentially lead to a

better diagnosis and treatment of complex diseases. A number of

studies have used gene expression assays to model, at a molecular

level, direct influences driving phenotypic variation. A shortcom-

ing of this approach is that gene expression differences may be

driven by many genomic and environmental factors, including

underlying genetic variation [1]. In this study, we developed a

framework to integrate complementary evidence of differential

expression and genotype variation associated with a complex

phenotype. Results based on this framework aim to uncover

pathways that influence phenotype with biologically relevant

differences, specifically differential gene expression, genetic

variation, or a combination of the two. Pathways showing both

expression and genetic differences suggest that transcriptional

variation may be driven in part by genetic variation. The goal of

this framework is to better model the genetic and molecular causes

of complex traits, including complex diseases.

Several previous efforts have explored integrating different

genomic data types [2–11]. Many have focused on using gene

expression and DNA copy number data. For example, one study

modeled gene expression based on the copy number variation for

genes on the same chromosome arm [2]. Others looked for regions

with high copy number alterations and then searched for

important genes within these regions [3–6]. In one study focused

on colorectal cancer, they calculated fold changes in expression

and copy number data between normal and diseased samples,

ordered all probes based on chromosomal location, and then

searched for large chromosomal segments showing coordinated

expression and copy number changes [3]. This analysis revealed

many regions with copy number gain or loss along with differential

expression of genes in the region, and they identified several

candidate genes in regions of interest for further study.

Other studies searched for significant differences in individual

genes for multiple genomic data [7–9]. For example, one study

integrated gene expression, copy number, DNA methylation, and
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loss of heterozygosity (LOH) data for breast cancer [7]. They

looked for genes that had significant changes in all of these data

types when compared to normal. This analysis revealed that

ERBB2, an important breast cancer gene, simultaneously showed

amplification, loss of heterozygosity, loss of methylation, and a

drastic increase in gene expression.

Genome-wide association studies generally utilize genotype data

by itself, but a few studies have integrated this genotype data with

other genomic data. One study integrated genotype data with gene

expression data for various cancer types to find genes with

expression changes driven by genotype differences [10]. They

selected cancer-associated genes whose expression profiles are

known to predict treatment outcome and looked for genotype

patterns within these genes. They created a model in which

expression profiles and genotype patterns for selected genes were

combined and used to predict the treatment success of prostate

and breast cancer patients.

Some studies performed a pathway-level integrative analysis

[3,8,11]. For example, one study integrated gene expression and

somatic mutation data to identify pathways frequently altered in

prostate cancer [3]. A single tumor was considered to have an

altered pathway if one or more genes in the pathway had a somatic

mutation or had an expression level that was significantly different

than in normal prostate. Pathways altered in a large percentage of

the samples were considered frequently altered. This study

identified three well-known cancer pathways as frequently altered:

PI3K, RAS/RAF, and RB.

Our study provides a new framework for integrating different

genomic data types that consists of two key steps, sample-specific

pathway analysis and multi-task learning, that individually have

proven useful in classification analyses but have never been used

together. Most previous integrative approaches performed se-

quential or independent analyses of each data type. Our method

differs from these approaches in that genome-wide expression and

genotype data, encoded as pathway enrichment scores, are

simultaneously used to build the final predictive model. This

eliminates the restriction of using results from one independent

analysis to filter results from the other, and instead allows the

model to equally and simultaneously consider data from each

experiment.

Gene set analysis explores biological data in the context of

pathways. This approach examines the simultaneous enrichment

of multiple genes belonging to particular pathways, in contrast to

single-gene analysis, which searches for differences in individual

genes. For complex traits, many phenotypic differences are

associated with perturbations in specific pathways [12–15]. Also,

pathway analysis provides results that are highly reproducible

between studies [16,17]. Many methods have been developed to

analyze data on the gene set level [16,18–21]. In general, these

provide a single measure of enrichment for each gene set across all

samples. In order to use multi-task learning to build a predictive

model, sample-specific pathway enrichment information is re-

quired. To obtain this information, our framework extends a gene

set enrichment software package called ASSESS (Analysis of

Sample Set Enrichment ScoreS) [22], which provides a measure of

pathway enrichment for each sample.

Although gene set enrichment analysis can improve the

interpretability of results [23] and increase predictive performance

[22], an additional advantage of our pathway analysis step is

providing a method to more easily integrate data types that may

have very different structure. For example, expression data consists

of gene-based continuous values, whereas genotype data consists of

discrete SNP-based genotypes. By first obtaining sample-specific

gene set enrichment scores for each data type, this also acts as a

normalization step to allow each data type to be combined with

other data types.

Multi-task learning [24] is a supervised learning approach to

building predictive models from data that contain complementary

information. While other supervised learning methods perform

well when there is a single data type, studies have shown an

improved performance in predictive accuracy in some instances

when simultaneously building multiple models from data with

related information [24–26]. Our framework builds predictive

models using the sample-specific enrichment scores from ASSESS

for different data types. Multi-task learning provides a way to

integrate these data types as different tasks in the model. Our

framework uses regularized multi-task learning [25], which is a

Support Vector Machine (SVM) [27] implementation of multi-

task learning. Multi-task learning aims to take advantage of data

with similar information between tasks while also incorporating

information unique to each task. In the context of our pathway-

based multi-task framework, similar information means similar

pathway enrichment among data types, whereas different infor-

mation means pathway enrichment that is unique to a data type.

In order to examine the ability of multi-task learning to

simultaneously utilize similar and different pathway enrichment

properties in our study, we compared the predictive ability of

multi-task learning to single-task learning and a concatenated data

learning model. Single-task learning independently builds separate

models for each task and does not consider whether there is similar

or different information between tasks. In this study, we performed

single-task learning by independently using a standard SVM to

build a predictive model for each data type. A concatenated data

model combines all data together by simply concatenating it into a

single data set to take advantage of all information together, but it

does not distinguish which task the information originated from. In

this study, we built concatenated data models by combining all of

the enrichment scores for all data types together into a single data

set and used a standard SVM to build a single predictive model.

Multi-task learning builds a model that attempts to take

advantage of the strengths of both single-task learning and

concatenated data models. It does this by calculating a common

effect shared among all tasks (see Methods), similar to a

concatenated data model. At the same time, it determines a

task-specific effect that is unique to each task (see Methods), similar

to a single-task model. Successful multi-task learning models

should show an improvement in predicative performance when

compared to a single-task model and a concatenated data model.

The framework we describe here can integrate several different

types of genomic data with each sample having been assigned to

one of two phenotypic classes, along with a collection of gene sets.

It uses this to produce a predictive model that can also identify

gene sets important in distinguishing phenotype.

In this study, we examine the performance of this framework

under a variety of conditions, and determine how useful this

framework is for genomic data. Although our framework can be

used to integrate many different genomic data types, this study

focuses on the integration of gene expression and genotype data.

Incorporating genotype data required the development of a novel

method for obtaining sample-specific enrichment scores for this

data. To test the performance of our framework, we generated

simulated data and compared the predictive accuracy of multi-task

learning to single-task learning and a concatenated data model.

Results show that multi-task learning has a similar predictive

accuracy as the single-task learning and concatenated data models.

We also show that models that consider all tasks, such as multi-task

or concatenated data models, are better at discovering gene sets

with pathways containing genes that are both differentially
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expressed and genetically associated with a phenotype. We also

used our framework to explore differences between estrogen

receptor (ER) positive and negative breast cancer. The top 15 gene

sets from the multi-task model were involved with estrogen,

steroids, cell signaling, or the cell cycle.

Results

An overview of the analysis pipeline for integrating gene

expression and genotype data within our framework is presented

in Figure 1. The two key steps are first a sample-based analysis on

the pathway level using ASSESS (Figure 1b–1c), and second the

integration of genomic data into a predictive model using a multi-

task SVM (Figure 1d).

In step one, ASSESS takes as input gene-based genomic data for

samples belonging to one of two phenotypic classes. It then

produces sample-specific enrichment scores for a collection of gene

sets. To do this, it first calculates a correlation statistic for each

gene in each sample that represents the degree to which the gene-

based data matches the summary profile of that gene in samples

from one phenotype class compared to the other (Figure 1b).

Then, it ranks all genes based on this correlation statistic for each

sample and uses gene set enrichment analysis to determine the

enrichment of pathways within samples (Figure 1c).

In step two, we use the enrichment scores from ASSESS that

are calculated independently for several different data types as the

input tasks to the multi-task model (Figure 1d). Multi-task learning

assumes that the samples among the different tasks are indepen-

dent, and it does not require that the different data come from the

same matched samples or that there are the same number of

samples in each task. In this study, we compare the performance of

multi-task models with single-task and concatenated data models.

The single-task model uses the enrichment scores from ASSESS to

build separate single-task models for each data type (Figure 2). The

concatenated model combines the enrichment scores from all data

types and builds a single model from this concatenated data set

(Figure 3).

Since these methods do not treat matched data, meaning

expression and genotype data are from the same samples,

differently from unmatched data, they may fail utilize important

information if the data is matched. To address this, we explored

models that specially consider multiple data from matched samples

that produce a single prediction for each sample. First, we used a

summed prediction model that sums the predictions from the single-

task models for each data type to obtain a single prediction for

each sample. Second, we created a summed enrichment score model

that sums the ASSESS enrichment scores for each gene set in each

sample and uses these summed enrichment scores within a single-

task model to obtain a single prediction. Third, we used a merged

model that takes enrichment scores from ASSESS for each data

type for a given sample and merges them into a single feature

vector of enrichment scores for that sample. We used these merged

enrichment scores with a single-task model to obtain a single

prediction.

ASSESS was previously developed for use with gene expression

data, but not genotype data. Therefore, we first extended ASSESS

to obtain sample-specific enrichment scores for genotype data. We

next evaluated the performance of our framework by simulating

multiple data sets to explore the following questions: 1) does the

similarity of tasks influence the predictive performance of a multi-

task model; 2) does the number of samples impact the predictive

performance; 3) does the number of tasks influence the predictive

performance; and 4) does an integrated approach improve our

ability to discover pathways that are enriched in several data types.

Finally, we applied our framework to a breast cancer data set to

analyze differences between ER+ and ER- samples.

Obtaining enrichment scores for genotype data
To facilitate the integration of genotype data with gene

expression, we extended the previously developed software

package ASSESS to obtain sample-specific gene set enrichment

scores for genotype data. A key challenge in using any gene-based

method for the analysis of genotype data is mapping the SNP-

based data to the gene level. We designed our framework to select

a single SNP to represent each gene (Figure 1a). For all SNPs

located within a predefined distance surrounding and including a

gene, we performed a Pearson’s chi-square test on each SNP to

determine its correlation with phenotype and selected the SNP

with the highest correlation as the representative SNP for that

gene.

After mapping the genotype data to the gene level, we

calculated the ASSESS correlation statistic for each sample and

gene (Figure 1b) by comparing the genotype for a sample and gene

Figure 1. Overview of the multi-task pipeline. For genotype data,
we associate each gene with a single SNP (a). Next, we calculate
correlation statistics using the gene-based data for each data type (b).
We then calculate enrichment scores using the correlation statistics for
each data type (c). Finally, we build a predictive model for each data
type in an integrative way using the enrichment scores for each data
type and a multi-task SVM (d). In this overview, ASSESS corresponds to
steps b and c.
doi:10.1371/journal.pone.0044635.g001
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to the genotypes of all samples in each class for that gene (see

Methods). We used these correlation statistics within the ASSESS

software to then obtain gene set enrichment scores (Figure 1c).

Using ASSESS for gene expression and genotype data, we obtain

similar sample-specific enrichment scores for both data types that

can be integrated in a multi-task analysis.

Predictive performance of multi-task with varying
similarity of tasks

Multi-task learning may offer an advantage when there is a

balance of similar and different pathway enrichment among

different data types. If there is too much similar enrichment, then

multi-task learning may not outperform a concatenated data

model. If the enrichment is too different, then a multi-task model

may not outperform single-task learning. To test the performance

of our multi-task framework, we created a simulation to compare

the predictive accuracy of a multi-task model to a single-task and

concatenated data model with varying similarity in the tasks.

We simulated gene expression and genotype data with gene sets

belonging to one of the following gene set types:

1. 10 genes that were differentially expressed between the two

phenotype classes and genetically associated with phenotype;

2. 10 genes that were differentially expressed but not genetically

associated;

3. 10 genes that were not differentially expressed, but genetically

associated;

4. 10 genes that were neither differentially expressed nor

genetically associated.

Figure 2. Overview of the single-task pipeline. For genotype data,
we associate each gene with a single SNP (a). Next, we calculate
correlation statistics using the gene-based data for each data type (b).
We then calculate enrichment scores using the correlation statistics for
each data type (c). Finally, we independently build a predictive model
for each data type using the enrichment scores for each data type and a
standard SVM (d). In this overview, ASSESS corresponds to steps b and
c.
doi:10.1371/journal.pone.0044635.g002

Figure 3. Overview of the concatenated data pipeline. For
genotype data, we associate each gene with a single SNP (a). Next, we
calculate correlation statistics using the gene-based data for each data
type (b). We then calculate enrichment scores using the correlation
statistics for each data type (c). We next concatenate the enrichment
scores for all data types into a single data set (d). Finally, we build a
single predictive model using the concatenated enrichment scores and
a standard SVM (e). In this overview, ASSESS corresponds to steps b and
c.
doi:10.1371/journal.pone.0044635.g003
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We generated data for 5 experimental scenarios, each with a

varied number of gene sets from each gene set type (Table 1). Data

with gene sets predominantly from gene set type 1 have similar

enrichment across tasks, while data predominantly from gene set

type 2 and 3 have different enrichment across tasks.

For each scenario, we simulated matched expression and

genotype data for 50 training samples, which were equally split

into 2 phenotypes. The data was matched such that the expression

level of a gene for a given sample was generated taking into

account the genotype of the SNP associated with that gene for that

sample (see Methods). We used our multi-task framework to train

predictive models with these samples. Then, we used these models

to obtain predictions for 50 test samples as to which phenotypic

class they belong to. We also used the same data and ASSESS-

based enrichment scores to evaluate single-task SVMs and an

SVM with the expression and genotype enrichment scores

concatenated. In addition, we used the same enrichment scores

to evaluate the summed prediction, summed enrichment score,

and merged models, which utilize matched data. We repeated this

procedure 200 times to obtain 10,000 predictions for each scenario

and calculated the percentage of correct predictions for each

scenario and SVM model type (Tables 2, 3, and 4).

For the expression data, the predictive performance was similar

for all scenarios and model types (Table 2). For the genotype data,

multi-task learning had a significant improvement in predictive

accuracy compared to the concatenated model for all scenarios,

but failed to perform better than the single-task model (Table 3).

Also, accuracy improved for the multi-task and concatenated

models as the scenarios contained more similar enrichment

(Table 3). For the models that utilize matched data, the summed

prediction and summed enrichment score models failed to perform

better than the best unmatched model, but the merged model had

a significant improvement in predictive accuracy compared to the

best unmatched model (Table 4). Although the difference in

predictive accuracy was statistically significant in some cases, the

actual predictive performance was similar in these instances.

Predictive performance of multi-task with varying
number of samples

We next determined the effect that sample size has on our

multi-task framework when compared to a single-task or

concatenated data model. To do this, we first simulated matched

expression and genotype data using gene sets from scenario 3. In

the previous analysis, we used 50 samples to train the model. In

this analysis, we varied the number of training samples from 10 to

200. As above, we used the training samples to build a multi-task,

single-task, and concatenated data model, and we simulated an

equal number of test samples to generate predictions. We also

evaluated the summed prediction, summed enrichment score, and

merged models, which utilize matched data. We repeated to

obtain 10,000 predictions for each number of samples and

calculated the percentage of correct predictions for each number

of samples and each type of model (Tables 5, 6, and 7).

For the expression data, the predictive accuracy was similar

among all model types (Table 5). For the genotype data, multi-task

learning had a significantly higher predictive performance than the

concatenated model for analyses with a sample size of 50 or more

(Table 6). However, multi-task learning did not perform better

than single-task learning for any of the sample sizes (Table 6). For

the models that utilize matched data, the merged model had a

significant improvement in predictive accuracy compared to the

best unmatched model for all sample sizes (Table 7). The summed

Table 1. Scenarios with varying similarity between tasks.

Type 1 Gene Sets Type 2 Gene Sets Type 3 Gene Sets Type 4 Gene Sets

Scenario 1 0 (0/0) 20 (20/0) 20 (0/20) 60 (0/0)

Scenario 2 5 (5/5) 15 (15/0) 15 (0/15) 65 (0/0)

Scenario 3 10 (10/10) 10 (10/0) 10 (0/10) 70 (0/0)

Scenario 4 15 (15/15) 5 (5/0) 5 (0/5) 75 (0/0)

Scenario 5 20 (20/20) 0 (0/0) 0 (0/0) 80 (0/0)

Values in parenthesis represent the number of gene sets with genes that are differentially expressed and the number of gene sets with genes that are genetically
associated, respectively. Scenario 1 contains data with most different enrichment between data types; scenario 5 contains data with most similar enrichment.
doi:10.1371/journal.pone.0044635.t001

Table 2. Performance of expression data with varying levels
of similarity.

Single-Task Multi-Task Concatenated

Scenario 1 59.58%60.52% 58.98%60.50% 58.69%60.49%

Scenario 2 59.58%60.52% 59.01%60.48% 59.06%60.50%

Scenario 3 59.58%60.52% 59.17%60.50% 59.20%60.48%

Scenario 4 59.58%60.52% 59.25%60.50% 59.34%60.49%

Scenario 5 59.58%60.52% 59.55%60.50% 59.26%60.49%

Percentage of correct predictions with standard error for the expression data
using single-task, multi-task, and concatenated models with varying levels of
similarity in the data.
doi:10.1371/journal.pone.0044635.t002

Table 3. Performance of genotype data with varying levels of
similarity.

Single-Task Multi-Task Concatenated

Scenario 1 69.26%60.47% 66.00%60.48% 62.33%60.53%

Scenario 2 69.26%60.47% 66.14%60.44% 63.23%60.50%

Scenario 3 69.26%60.47% 66.58%60.45% 63.91%60.50%

Scenario 4 69.26%60.47% 66.87%60.46% 64.53%60.48%

Scenario 5 69.26%60.47% 67.76%60.46% 65.18%60.49%

Percentage of correct predictions with standard error for the genotype data
using single-task, multi-task, and concatenated models with varying levels of
similarity in the data.
doi:10.1371/journal.pone.0044635.t003
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prediction and summed enrichment score models also had a

significantly higher predictive performance than the best un-

matched model for the analysis with a sample size of 10 (Table 7).

As expected, the predictive accuracy improved as the number of

samples increased for all model types, but multi-task learning did

not appear to benefit more than the other model types.

Predictive performance of multi-task with varying
number of tasks

We also evaluated the effect of varying the number of tasks. We

generated expression data sets, each corresponding to a task, with

20 training samples evenly divided into 2 phenotypes. We

simulated phenotype associated gene sets with 10 genes that were

differentially expressed between the phenotypes, and background

gene sets with 10 genes that represented a null model of random

expression. We generated a task by simulating the first 30 gene sets

as phenotype associated gene sets and the next 20 gene sets as

background. For the last 50 gene sets, 30 were randomly chosen to

be phenotype associated and the other 20 background. We

generated additional tasks in the same way. As a result, the first 50

gene sets contained similar enrichment among all tasks, and the

last 50 gene sets contained enrichment unique to each task. We

used this data to build multi-task models with the number of tasks

used to build each model varying from 2 to 100. We also used this

data one task at a time to build single-task models for comparison.

After using the 20 training samples for each task to train the

model, we used 20 test samples for each task to obtain predictions.

We repeated to obtain 10,000 predictions for each number of tasks

and determined the percentage of correct predictions for each

number of tasks (Figure 4). We also performed the same analysis

with simulated genotype data (Figure 5). For the genotype data,

phenotype associated gene sets contained genes that were

genetically associated and background gene sets contained genes

that were not genetically associated.

For the expression data, the predictive accuracies of all multi-

task models and of the single-task model showed no significant

difference (Figure 4). For the genotype data, the predictive

performance of the multi-task experiments with 10 tasks or less

was not significantly different than the single-task model (Figure 5).

However, multi-task models with 20 tasks or more had a

significantly lower predictive accuracy than the single-task model

(Figure 5). Although this suggests that analyses with a large

number of tasks may have a significant difference in performance

between multi-task learning and single-task learning, most analyses

of biological data will have a small number of different data types

or tasks. For these data, our multi-task framework may not be

significantly different than single-task in terms of predictive

accuracy.

Finding pathways enriched across multiple data types
In addition to being used for class prediction of unknown

samples, we can analyze the trained models to determine whether

this integrative approach provides an improved ability to discover

gene sets enriched across multiple data types. A predictive weight

for each gene set can be derived from the predictive model that

results from an SVM analysis (see Methods). Gene sets with higher

weights contribute more to prediction, and also may be more

important in distinguishing phenotype. After training a multi-task

SVM model, a common weight can be derived that is interpreted

as a measure of importance for prediction derived from all tasks

(see Methods). Gene sets with larger common weights can be

viewed as sharing common information important for prediction

across all tasks. These gene sets may represent biological pathways

with important factors in multiple data types that are influencing

Table 4. Performance of matched data models with varying levels of similarity.

Summed Prediction Summed Enrichment Score Merged

Scenario 1 67.97%60.52% 67.87%60.46% 71.19%60.47%

Scenario 2 67.97%60.52% 67.99%60.44% 71.19%60.47%

Scenario 3 67.97%60.52% 68.11%60.46% 71.19%60.47%

Scenario 4 67.97%60.52% 68.68%60.48% 71.19%60.47%

Scenario 5 67.97%60.52% 68.53%60.49% 71.19%60.47%

Percentage of correct predictions with standard error using summed prediction, summed enrichment score, and merged models with varying levels of similarity in the
data.
doi:10.1371/journal.pone.0044635.t004

Table 5. Performance of expression data with varying sample
sizes.

Single-Task Multi-Task Concatenated

10 Samples 56.47%60.46% 55.85%60.47% 55.72%60.48%

20 Samples 58.15%60.53% 58.33%60.51% 58.26%60.51%

50 Samples 59.10%60.54% 59.02%60.50% 59.16%60.50%

100 Samples 61.00%60.49% 61.26%60.47% 61.20%60.53%

200 Samples 63.67%60.54% 63.10%60.56% 62.74%60.54%

Percentage of correct predictions with standard error for the expression data
using single-task, multi-task, and concatenated models with varying sample
sizes.
doi:10.1371/journal.pone.0044635.t005

Table 6. Performance of genotype data with varying sample
sizes.

Single-Task Multi-Task Concatenated

10 Samples 55.10%60.49% 56.06%60.47% 56.02%60.48%

20 Samples 62.52%60.49% 62.93%60.47% 62.05%60.48%

50 Samples 70.84%60.47% 69.02%60.45% 65.11%60.51%

100 Samples 76.50%60.45% 74.10%60.48% 70.28%60.54%

200 Samples 82.50%60.53% 80.19%60.50% 74.91%60.56%

Percentage of correct predictions with standard error for the genotype data
using single-task, multi-task, and concatenated models with varying sample
sizes.
doi:10.1371/journal.pone.0044635.t006
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phenotype. We designed the following simulation to determine the

ability of our framework to discover this type of gene set.

We simulated matched expression and genotype data for 400

samples that were evenly divided into 2 phenotypes. This data

contained the same gene set types as the first simulation study. We

created this data set with 1 of gene set type 1 (the target gene set), 5

of gene set type 2, 5 of gene set type 3, and 89 of gene set type 4.

We wanted to test the ability of our framework to extract the one

target gene set, which contains genes that are both differentially

expressed and genetically associated. We used our framework to

train multi-task, single-task, and concatenated data predictive

models. For multi-task, we determined the rank of the common

weight in the predictive model for the target gene set. For single-

task, we calculated the rank of the weight in the predictive model

for the target gene set in the expression model and the genotype

model separately. For the concatenated data model, we calculated

the rank of the target gene set in a single predictive model built by

concatenating the enrichment scores of the expression and

genotype data. We also took the sum of the weights for both

single-task models and determined the rank of the combined

weight for the target gene set. In addition, we trained the summed

enrichment score and merged predictive models. For the summed

enrichment score model, we calculated the rank of the target gene

set in a single predictive model built by taking the sum of the

enrichment scores from the expression and genotype data. For the

merged model, we built a single predictive model by taking the

enrichment scores from the expression and genotype data and

merging them into a single feature vector for each sample. We

then took the sum of the expression and genotype weights for each

gene set and determined the rank of the combined weight for the

target gene set. We repeated this analysis 1000 times and

calculated the average rank for each model type (Table 8).

The average rank for the target gene set was significantly lower

in all models that considered both tasks (single-task summed,

multi-task, concatenated, summed enrichment score, and merged)

compared to either of the separate single-task models (Table 8).

This suggests that an integrated approach may be beneficial for

Table 7. Performance of matched data models with varying sample sizes.

Summed Prediction Summed Enrichment Score Merged

10 Samples 59.19%60.48% 58.57%60.49% 59.20%60.48%

20 Samples 63.45%60.50% 63.86%60.49% 64.03%60.52%

50 Samples 68.60%60.46% 69.03%60.50% 72.57%60.45%

100 Samples 74.34%60.46% 74.77%60.49% 79.42%60.46%

200 Samples 80.44%60.57% 81.35%60.50% 86.05%60.44%

Percentage of correct predictions with standard error using summed prediction, summed enrichment score, and merged models with varying sample sizes.
doi:10.1371/journal.pone.0044635.t007

Figure 4. Performance of expression data with varying number of tasks. The solid line represents the change in predictive accuracy as the
number of tasks changes, with the error bars being standard error. The middle dashed line represents the predictive accuracy of a single-task model
with one task, with the outer dashed lines being standard error.
doi:10.1371/journal.pone.0044635.g004
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discovering biological pathways that have an important effect

within several genomic data types.

Analysis of breast cancer data set
To provide support for the usefulness of our framework in

identifying phenotypically relevant pathways, we applied it to

matched expression and genotype data for breast invasive

carcinomas (BRCA) generated through The Cancer Genome

Atlas (TCGA) project. This data set contained 61 samples that

were classified as estrogen receptor (ER) negative and 203 samples

that were ER positive. Our collection of gene sets was compiled

from the curated canonical pathways in the Molecular Signatures

Database (MSigDB) [16]. We filtered these gene sets to only

include those with 15 to 100 mapped genes, resulting in 538 gene

sets.

First, we wanted to determine the ability of the data to predict

ER status. We performed leave-one-out (LOO) cross-validation to

calculate predictive accuracy for multi-task, single-task, concate-

nated, summed prediction, summed enrichment score, and

merged models (Tables 9, 10, and 11). For the expression data,

the predictive performance was very high for all model types, both

with respect to overall accuracy and positive and negative

predictive values (Table 9). For the genotype data, the overall

predictive performance was moderate, but the negative predictive

value (NPV) was low (Table 10). For the models that utilize

matched data, the predictive accuracy was moderately better than

using the genotype data alone, but not better than using the

expression data alone (Table 11). The negative predictive value

was greatly improved for the models that utilize matched data

when compared to using the genotype data alone (Table 11).

These results suggest that important gene sets in the predictive

models may be biologically relevant to ER status.

We next examined gene sets with the highest weights in the

predictive models for their biological relevance to ER status. To

allow for a direct comparison of the predictive weights among

gene sets, we first normalized the enrichment scores from ASSESS

(see Methods). We calculated the ranks of all gene sets for multi-

task, single-task, concatenated, summed enrichment score, and

merged models. A complete list of all ranks and weights for all

gene sets and model types is presented in Tables S1 and S2. It is

interesting to note that the ranks vary considerably among all

models types. This includes significant differences between the

multi-task model that considers all data simultaneously and the

expression single-task and genotype single-task models which

consider only data from one data type. This suggests that using an

Figure 5. Performance of genotype data with varying number of tasks. The solid line represents the change in predictive accuracy as the
number of tasks changes, with the error bars being standard error. The middle dashed line represents the predictive accuracy of a single-task model
with one task, with the outer dashed lines being standard error.
doi:10.1371/journal.pone.0044635.g005

Table 8. Average rank of target gene set.

Average Rank

Single-Task Expression Weight 11.0160.47

Single-Task Genotype Weight 4.1760.10

Single-Task Weights Summed 3.0760.16

Multi-Task Common Weight 3.0860.16

Concatenated Weight 2.8960.14

Summed Enrichment Score Weight 3.5460.11

Merged Weights Summed 2.8760.10

Average rank with standard error in single-task, multi-task, concatenated,
summed enrichment score, and merged models for a gene set containing
genes that are both differentially expressed and genetically associated with
phenotype.
doi:10.1371/journal.pone.0044635.t008
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integrative approach provides results distinct from analyses of

either data type alone.

A list of the top 15 gene sets with the highest common weight in

the multi-task model is presented in Table 12, along with the

corresponding rank of the gene sets in the expression single-task

and genotype single-task models. The common weight from the

multi-task model can be interpreted as the importance in

distinguishing phenotype drawn from both tasks simultaneously,

whereas the ranks in the single-task models provide a way to

estimate the contribution that each data type had in the overall

integrated rank of the gene set. An analysis of the top 15 gene sets

from the multi-task model showed they were related to estrogen,

steroids, cell signaling, or the cell cycle, discussed in more detail

below. This provides support for the usefulness of our framework

in identifying pathways associated with complex traits.

Estrogen plays an important role in breast cancer [28]. We

found that three of the top 15 gene sets were directly related to

estrogen signaling and metabolism: ‘‘HER2 Pathway’’ (rank 1),

‘‘Phase II Conjugation’’ (rank 2), and ‘‘Nuclear Receptor

Transcription’’ (rank 13). Human epidermal growth factor

receptor 2 (HER2), encoded by the gene ERBB2, influences the

expression and activity of the estrogen receptor [29]. The ‘‘HER2

Pathway’’ gene set contains the estrogen receptor 1 (ESR1) gene.

The ‘‘Nuclear Receptor Transcription’’ gene set also contains the

ESR1 gene, and nuclear receptor coactivators are thought to

participate with the estrogen receptor pathway [30]. Several phase

II conjugating enzymes are involved with the metabolism of

estrogen [31]. Tamoxifen is an antiestrogenic drug that is widely

used in the treatment of ER positive breast cancer [32]. One study

showed that genetic variation in several phase II conjugating

enzymes influenced the efficacy of Tamoxifen therapy in breast

cancer [33]. Since this study linked genotype differences to

Tamoxifen efficacy, it is interesting to note that the Phase II

Conjugation gene set has the sixth highest genotype single-task

weight (Table 12) and is the highest ranked gene set in the multi-

task genotype model (w2, Table S1). It is also the eleventh highest

gene set in the single-task expression model (Table 12) and has the

fourth highest rank in the multi-task expression model (w1, Table

S1). This suggests that genotype differences may be directly

influencing expression changes. The strong association in both the

expression and genotype data resulted in the second highest rank

in the multi-task common weights (Table 12), which is higher than

the weight in either of the single-task models alone. All three of the

estrogen-related gene sets contained genes that were generally

overexpressed in the ER positive samples.

Estrogen is a steroid hormone, and we found that four of the top

15 gene sets were involved with the synthesis or metabolism of

steroids: ‘‘Steroid Hormone Biosynthesis’’ (rank 3), ‘‘Steroid

Biosynthesis’’ (rank 8), ‘‘Cholesterol Biosynthesis’’ (rank 9), and

‘‘Steroid Metabolism’’ (rank 15). In addition to estrogen, other

steroid hormones, such as progesterone, play an important role in

breast cancer [28]. Also, many steroids, including estrogen, are

synthesized from cholesterol, and one study showed that

cholesterol levels are linked with breast cancer prognosis [34].

The estrogen receptor participates in cellular signaling initiated

by the binding of estrogen and facilitating the activation of

downstream processes. In addition to the estrogen-related

pathways, three of the top 15 gene sets were similarly involved

with other types of cell signaling: ‘‘FRS2-Mediated Cascade’’ (rank

4), ‘‘Neurotransmitter Release Cycle’’ (rank 6), and ‘‘ECM-

Receptor Interaction’’ (rank 12). The FRS2-mediated cascade

links Fibroblast Growth Factor Receptor (FGFR) to the eventual

activation of several important signaling pathways. One study

showed that blocking FGFR inhibited breast cancer proliferation

and led to downregulation of the MAPK and PI3K pathways [35].

Also, ECM receptors may participate in the control of many stages

of breast cancer [36], and neurotransmitters may influence the

metastasis of breast tumors [37]. All three of these cell signaling

gene sets contained genes that were generally overexpressed in the

ER positive samples.

Tumors accumulate genetic damage that results in a perturbed

cell cycle which increases the number of tumor cells by stimulating

cell birth or inhibiting cell death or cell-cycle arrest [12]. Many of

the previously discussed gene sets are involved with the cell cycle

or metabolism, and we found that the five remaining gene sets in

the top 15 were also involved with the cell cycle and metabolism:

‘‘One Carbon Pool by Folate’’ (rank 5), ‘‘Nitrogen Metabolism’’

(rank 7), ‘‘Apoptotic Signaling in Response to DNA Damage’’

(rank 10), ‘‘Riboflavin Metabolism’’ (rank 11), and ‘‘Mitotic

Prometaphase’’ (rank 14). Disrupting mitotic prometaphase may

influence cell-cycle arrest, and disrupting apopototic signaling in

response to DNA damage may inhibit the cell death of tumor cells.

Table 9. Correct predictions for breast cancer expression data.

Single-Task Multi-Task Concatenated

Overall Accuracy 92.42% (244/264) 92.05% (243/264) 92.05% (243/264)

Positive Predictive Value 94.63% (194/205) 95.05% (192/202) 95.05% (192/202)

Negative Predictive Value 84.75% (50/59) 82.26% (51/62) 82.26% (51/62)

Percentage of correct predictions for the breast cancer expression data using single-task, multi-task, and concatenated models.
doi:10.1371/journal.pone.0044635.t009

Table 10. Correct predictions for breast cancer genotype data.

Single-Task Multi-Task Concatenated

Overall Accuracy 77.65% (205/264) 78.41% (207/264) 78.79% (208/264)

Positive Predictive Value 81.03% (188/232) 81.74% (188/230) 82.10% (188/229)

Negative Predictive Value 53.13% (17/32) 55.88% (19/34) 57.14% (20/35)

Percentage of correct predictions for the breast cancer genotype data using single-task, multi-task, and concatenated models.
doi:10.1371/journal.pone.0044635.t010
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Also, folate, nitrogen, and riboflavin, also known as vitamin B2,

are important for cell growth. One study linked increased

consumption of folate and B vitamins with reduced risk of breast

cancer [38].

Discussion

Although the simulation study showed that our integrative

framework provided an improved ability to discover pathways that

are enriched over multiple data types, multi-task learning

performed about the same as similar integrated learning methods.

Also, the predictive accuracy of multi-task learning was practically

the same as similar learning methods. All of these results suggest

that while an integrated pathway approach may be useful for

discovering relevant pathways, it may not be necessary to use

multi-task learning for most studies. Further research should

explore alternative prediction methods.

This study focused on the integration of gene expression and

genotype data. However, our framework may also be suitable for

other genomic data types, such as copy number variation and

DNA methylation. Also, the sample-specific enrichment scores

from multiple data types can be used for many sample-level

pathway-based analyses, such as clustering to find subtypes of

samples with similar pathway enrichment profiles.

Results from this study indicate that a pathway-based integra-

tive analysis is a promising approach to identify pathways that are

influenced by both gene expression changes and genotype

variation. All of the top 15 pathways from the multi-task model

built using breast cancer data have been previously associated with

breast cancer. This suggests that an integrative approach may be

useful for discovering pathways related to complex diseases,

especially diseases that are not as well understood, and for

determining the contribution that each data type has for each

pathway. The ‘‘Phase II Conjugation’’ gene set is an example that

had a strong association in both the expression and genotype data,

and this gene set had the second highest multi-task common

weight, which was higher than in either of the single-task models

alone. This supports the use of an integrative approach in

discovering gene sets that may have a direct link between genotype

and expression.

Materials and Methods

Our integrative framework contains two keys steps: 1) pathway

enrichment analysis using ASSESS and 2) building a predictive

model using an SVM. This framework is designed for integrating

different genomic data types into a predictive model for samples

that have been designated into one of two phenotypic classes.

Pathway Enrichment
ASSESS. To perform the gene set analysis step of our

framework, we used a software package called ASSESS [22].

Table 11. Correct predictions using matched data models for breast cancer data.

Summed Prediction Summed Enrichment Score Merged

Overall Accuracy 85.98% (227/264) 88.26% (233/264) 83.71% (221/264)

Positive Predictive Value 86.40% (197/228) 89.81% (194/216) 85.40% (193/226)

Negative Predictive Value 83.33% (30/36) 81.25% (39/48) 73.68% (28/38)

Percentage of correct predictions for the breast cancer data using summed prediction, summed enrichment score, and merged models.
doi:10.1371/journal.pone.0044635.t011

Table 12. Top gene sets in breast cancer analysis.

Multi-Task Common Weight
Rank

Expression Single-Task
Weight Rank

Genotype Single-Task Weight
Rank

HER2 Pathway 1 1 368

Phase II Conjugation 2 11 6

Steroid Hormone Biosynthesis 3 7 29

FRS2-Mediated Cascade 4 10 26

One Carbon Pool by Folate 5 2 152

Neurotransmitter Release Cycle 6 53 3

Nitrogen Metabolism 7 3 225

Steroid Biosynthesis 8 23 13

Cholesterol Biosynthesis 9 21 34

Apoptotic Signaling in Response to DNA Damage 10 19 131

Riboflavin Metabolism 11 35 12

ECM-Receptor Interaction 12 164 1

Nuclear Receptor Transcription 13 50 18

Mitotic Prometaphase 14 121 4

Steroid Metabolism 15 8 154

Gene sets with the largest multi-task common weights in the breast cancer analysis, along with the ranks of the expression and genotype single-task weights.
doi:10.1371/journal.pone.0044635.t012
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ASSESS takes gene-based genomic data along with phenotype

information and provides a measure of the variation of gene set

enrichment over all samples for a given gene set. First, ASSESS

computes a correlation statistic for each sample and gene as

ci
j ~ log

P( xi
j [C1 D xi

j ,fx1
j ,:::, xn

j g
P( xi

j [C2 D xi
j ,fx1

j ,:::, xn
j g

 !

where xi
j is data for the i-th sample and j-th gene, and C1 and C2

are the two phenotypic classes. Next, ASSESS independently uses

the correlation statistics for each sample to compute enrichment

scores for each gene set using a weighted Kolmogorov-Smirnov

statistic. The original implementation of ASSESS includes two

metrics for calculating correlation statistics for expression data.

Normalizing the Enrichment Scores. To normalize the

original enrichment scores, we permuted the class labels and

recalculated new background enrichment scores 1000 times. If the

original enrichment score for a sample and gene set was positive,

this score was divided by the average of the positive background

enrichment scores for that sample and gene set. If the original

enrichment score was negative, this score was divided by the

absolute value of the average of the negative background

enrichment scores.

Extension of ASSESS for Genotype Data. To calculate

gene set enrichment scores for genotype data, we extended

ASSESS. The first step is associating SNP-based genotype data

with genes. To do this, we first identify all SNPs that are within a

pre-defined distance surrounding and including a given gene.

Then, we use Person’s chi-square test to determine the extent to

which each SNP correlates with phenotype. Finally, we select the

SNP that has the maximum correlation with phenotype as the

‘‘representative’’ SNP for that gene. After obtaining gene level

data, each correlation statistic is calculated as

ci
j ~log

pg1
j

pg2
j

 !

where pg1
j is the percentage of samples with the genotype of the i-

th sample for the j-th gene in class 1, and pg2
j is the percentage of

samples with this genotype in class 2. If either class contains zero

samples with a given genotype, a pseudo-count of 1 is added.

These correlation statistics are then used to obtain enrichment

scores in the same way as ASSESS.

Predictive Model
SVM Framework. To perform the predictive modeling step

of our framework, we used a software package called SVM-Light

[39]. All single-task and concatenated analyses use a standard

linear kernel. The SVM trains a predictive model by calculating

nonnegative Lagrange multipliers for each sample, ai. These

sample weights are used to derive predictive weights for each gene

set as

w~C
Xn

i~1

ai yi xi

where C is a regularization parameter, yi is the class assignment of

the i-th sample and xi is data for the i-th sample.

Multi-Task SVM. To utilize a multi-task framework, we used

regularized multi-task learning [25], which is an implementation

of an SVM that incorporates multi-task learning. We used SVM-

Light with the following custom linear kernel:

Kst (x,z)~
1

m
z dst

� �
x:z

where m is a positive parameter that controls the relatedness of the

models, and dst = 1 if s and t belong to the same task, dst = 0

otherwise. The SVM trains a predictive model by calculating

nonnegative Lagrange multipliers for each sample and task, ai
t.

These sample weights are used to derive task-specific effects for

each gene set and task as

vt ~C
Xn

i~1

ai
t
yi

t xi
t

where C is a regularization parameter, yi
t is the class assignment of

the i-th sample in task t, and xi
t is data for the i-th sample in task t.

These weights are used to calculate common weights for each gene

set as

w0 ~
1

m

XT

t~1

vt

where T is the number of tasks. The common weights are summed

with the task-specific effects for each gene set and task to compute

the final predictive weights.

Simulated Data
We simulated data similar to a previous study that integrated

gene expression and genotype data for pathway analysis [40]. For

analyses using matched data, the genotype used to generate the

expression value for a sample was used as the genotype data for

that sample.

Genotype. Each genotype data set contained genes that were

either genetically associated or had a random genotype. We

mapped genes that were genetically associated to a single causal

SNP, and we mapped genes that had a random genotype to a

single random SNP. We simulated the causal SNPs based on

parameters estimated from genotype information for glioblastoma

generated through The Cancer Genome Atlas (TCGA) project

[11]. We based these SNPs on the P53PATHWAY, as defined in

version 2.5 of the Molecular Signatures Database (MSigDB) [16].

First, we mapped a single SNP in the glioblastoma data to each of

the genes in the P53PATHWAY. To do this, we found the SNPs

within the region 1,000 bases upstream of the transcription start

site to the end of the transcribed region of each gene. Then, we

selected the SNP with minor allele frequency greater than 0.05

that had the highest chi-square association with glioblastoma. We

set the allele frequencies of the causal SNPs in the simulated data

to that of these selected SNPs in the glioblastoma data. We

generated the heterozygote odds ratio for each SNP from

U[1.1,1.3] and used an additive disease model with a disease

prevalence of 0.02. Using these parameter settings, we generated

genotype data using PLINK [41]. We determined the probability

that each sample belongs to class 1 based on the following model:

logitfPr ( Yi ~ C1 )g~
XN

j~1

gi
j bj z ei

where N is the number of causal SNPs, gi
j is the coding of the

genotype of the i-th sample for the j-th SNP, bj is the log of the
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heterozygote odds ratio for the j-th SNP, and ei is an error term for

the i-th sample drawn from a standard normal distribution. We

randomly assigned each sample to either class 1 or class 2, with the

probability of being assigned to class 1 equal to the probability

calculated in the model above. We also generated random

genotype data using PLINK. For the random genotype data, we

drew allele frequencies from Beta(0.1,0.1) and assigned a

heterozygote odds ratio of 1.
Gene Expression. Each gene expression data set contained

genes that were either differentially expressed or had random

expression. We simulated the expression data based on the TCGA

glioblastoma study. We based genes that were differentially

expressed on the P53PATHWAY. We calculated the mean vector

m and the covariance matrix S of the genes in the P53PATH-

WAY. We used this to generate baseline expression levels by

drawing from a multivariate normal distribution, X0,N(m,S). We

added a disease effect to these genes by linking each gene to a

causal SNP and calculated the final expression level as

xi
j ~ X

ij
0 (1z gi

j bi
j )

where X
ij
0 is the baseline expression of the i-th sample for the j-th

gene, gi
j is the coding of the genotype of the i-th sample for the j-th

SNP, and bi
j is the effect size of the genotype on gene expression

that is drawn from U[1.0,1.5]. We also generated random

expression data. We calculated the mean of all genes in the

glioblastoma data and took the average of these means as m0 and

determined the standard deviation of all genes and the average as

s0. We used these parameters to generate random expression

levels by drawing from a normal distribution, X,N(m0, s0
2).

Breast Cancer Data
We obtained breast invasive carcinoma (BRCA) data generated

through The Cancer Genome Atlas (TCGA) project from their

data portal (http://cancergenome.nih.gov). We selected samples

that provided matched gene expression and genotype data. We

filtered samples to only include patients who were white, female,

40 to 70 years of age at initial diagnosis, and had a known estrogen

receptor (ER) status of positive or negative. We also eliminated the

sample with barcode ‘‘TCGA-A2-A0CY’’ because of unreliable

genotype data. This resulted in a data set of matched gene

expression and genotype data for 61 ER negative samples and 203

ER positive samples.

Supporting Information

Table S1 Rank of predictive weights in breast cancer
analysis. Rank of the predictive weights for the breast cancer

data using multi-task, single-task, concatenated, summed enrich-

ment score, and merged models.

(XLSX)

Table S2 Predictive weights in breast cancer analysis.
The predictive weights for the breast cancer data using multi-task,

single-task, concatenated, summed enrichment score, and merged

models.

(XLSX)
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