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Abstract
Discovery and characterization of functional RNA structures remains challenging due to

deficiencies in de novo secondary structure modeling. Here we describe a dynamic pro-

gramming approach for model-free sequence comparison that incorporates high-through-

put chemical probing data. Based on SHAPE probing data alone, ribosomal RNAs (rRNAs)

from three diverse organisms – the eubacteria E. coli and C. difficile and the archeon H.
volcanii – could be aligned with accuracies comparable to alignments based on actual se-

quence identity. When both base sequence identity and chemical probing reactivities were

considered together, accuracies improved further. Derived sequence alignments and

chemical probing data from protein-free RNAs were then used as pseudo-free energy con-

straints to model consensus secondary structures for the 16S and 23S rRNAs. There are

critical differences between these experimentally-informed models and currently accepted

models, including in the functionally important neck and decoding regions of the 16S rRNA.

We infer that the 16S rRNA has evolved to undergo large-scale changes in base pairing as

part of ribosome function. As high-quality RNA probing data become widely available,

structurally-informed sequence alignment will become broadly useful for de novomotif and

function discovery.

Author Summary

Despite the clear functional importance of structure in RNA molecules, it remains very
difficult to correctly identify and annotate similar RNA structures because their sequences
are often poorly conserved even for RNAs that form very similar higher-order structures.
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A solution is to use a metric that identifies structural motifs but this, too, is difficult be-
cause RNA structure modeling based on sequence alone is generally not very accurate. In
this work, we use SHAPE chemical probing to obtain model-free information about RNA
structure and then exploit this information to align RNAs by sequence. We show for ribo-
somal RNAs that sequence alignments based on SHAPE experimental information alone
are as accurate as those that actually use sequence information. In addition, we identify re-
gions in the 16S ribosomal RNA that form conserved secondary structures that are differ-
ent from currently accepted models. These differences, rather than being errors, reveal
sites of conformational flexibility that may underlie mechanistic functions in ribosome as-
sembly and translation regulation. We anticipate that structure-informed sequence align-
ment and structure modeling will become broadly useful tools in RNA function analysis.

Introduction
RNA is a central participant in gene expression and regulation [1]. However, for a vast major-
ity of RNA transcripts, the positions and roles of higher-order structure are unknown. Se-
quence comparison approaches can be powerful tools in the discovery and annotation of
functional RNA motifs. In related functional RNAs, critical structural elements are conserved
despite changes in primary sequence. As RNA structure appears to be more conserved than
primary sequence [2, 3], functional RNA discovery and transcriptome annotation can be im-
proved by taking into account RNA structure. Currently, structure-guided RNA sequence
comparison approaches perform poorly and are limited by the pervasive difficulty of predict-
ing RNA structures from sequence alone [4–6]. Moreover, optimization and benchmarking
of current structure prediction approaches are confined to known RNA structure motifs,
themselves limited to structures that are amenable to high-resolution structure characteriza-
tion or comparative sequence analysis. RNA structure modeling is thus biased by a small
number of well-characterized elements.

RNA comparison and alignment that considers some model-free metric of underlying
structure is an attractive alternative to comparisons that use ab initio or concurrent structure
prediction. RNA chemical probing is structurally robust and is not limited by the current, rela-
tively poor, understanding of RNA structure. The SHAPE structure probing approach [7, 8] in-
terrogates virtually all nucleotides of any RNA target. The adaptation of RNA chemical
probing approaches to readout by massively parallel sequencing allows for high-throughput
analysis and is rapidly advancing toward transcriptome-scale assays [9, 10].

In this work, we introduce and evaluate a sequence comparison approach that considers
chemical probing data. We find that SHAPE-directed alignment, performed entirely indepen-
dently of base identity information, generates sequence alignments with accuracies comparable
to traditional nucleobase identity-directed methods. Approaches that consider both SHAPE re-
activities and base identity improve accuracy relative to approaches considering base identity
or chemical probing data alone. Chemical probing data were compared using a simple, general
pair-wise scoring function that is broadly applicable to diverse sequence comparison methods
and should significantly facilitate discovery of novel structurally conserved functional RNA
motifs in large RNAs. SHAPE-directed alignments were then used to predict RNA secondary
structures conserved among diverse ribosomal RNAs. Novel base pairing patterns were identi-
fied in 16S rRNA, suggestive of new RNA-based features of ribosome function.

SHAPE-Informed RNA Sequence and Structure Alignment

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004126 May 20, 2015 2 / 19

Competing Interests: The authors have declared
that no competing interests exist.



Results

Selection and characterization of test-case RNAmolecules
Ribosomal RNA was used for development and evaluation of SHAPE-dependent RNA struc-
ture alignment. Ribosomal RNA has been extensively characterized: Currently 83% of RNA nu-
cleotides in high-resolution structures in the RCSB Data Bank belong to ribosomal RNAs.
Thousands of ribosomal RNA sequences have been curated and aligned, with secondary and
tertiary structures predicted based on covariation analysis [11]. Moreover, the diverse second-
ary and tertiary structure elements found in ribosomal RNA form the basis for much of our
structural knowledge of RNA. RNA structure analysis and modeling methods based on analysis
of ribosomal sequences have proven robust when extended to other RNAs [4, 12, 13].

Ribosomal RNA samples were obtained from three cultured organisms, eubacteria Escheri-
chia coli and Clostridium difficile and archaeaHaloferax volcanii. Differences among these or-
ganisms are reflected in the distinct culturing and cell lysis conditions required for each (see
Methods). The ribosomal RNAs from these organisms are highly diverse; compared to E. coli,
C. difficile and H. volcanii have percent nucleotide identities of only 72.6% and 59.7%, respec-
tively. The three ribosomal samples were analyzed by SHAPE probing in which local nucleotide
structural flexibility at a given position is determined by the extent of modification by a chemi-
cal probe [7]. Quantitative, nucleotide-resolution SHAPE reactivity values were determined
using our recently described mutational profiling (MaP) approach, in which chemical modifi-
cations are recorded as mutation rates in the cDNA products generated during reverse tran-
scription of chemically-modified RNAs [10]. Chemical modification-induced mutations are
quantified with nucleotide resolution using massively parallel sequencing. SHAPE-MaP data
for E. coli ribosomal RNA were reported previously [10]; SHAPE-MaP data for C. difficile and
H. volcanii were newly obtained in this work.

SHAPE reactivity data for related RNA nucleotides
We first characterized the relationship between SHAPE reactivities for related RNA nucleotides
in accepted sequence alignments. Related nucleotides for the ribosomal RNAs studied here
were defined using annotated sequence comparisons from the Comparative RNAWeb Site and
Project (CRW) [11]. Related nucleotides were taken as nucleotide pairs in CRW alignments.
For the 16S and 23S ribosomal RNAs, 24,467 nucleotide pairs were considered; for each nucleo-
tide pair, we calculated absolute differences in SHAPE reactivities (Fig 1A, in red). The distribu-
tion of SHAPE reactivity differences in related RNA nucleotides followed an exponential decay.
When SHAPE data were randomly resorted, differences in SHAPE reactivities between two re-
lated nucleotides were, on average, smaller than the differences between unrelated nucleotides
(Fig 1B, in blue). The distribution describing related nucleotides is significantly different from
the distribution describing randomly resorted nucleotide pairs (p-value< 10-6, Student's t-test).

SHAPE-based scoring function and alignment
Global SHAPE-dependent sequence comparisons were performed using a pair-wise dynamic
programming algorithm (see Methods) [14]. The algorithm uses recursion to align two se-
quences based on a pair-wise scoring function between individual nucleotides. The algorithm
also incorporates penalties based on gap openings and gap extensions, where gaps are un-
aligned regions of sequence. We implemented a SHAPE comparison scoring function where
small differences in SHAPE reactivities were given high (favorable) scores. Alignments were ul-
timately scored as the sum of individual SHAPE comparison scores and gap penalties over the
entire alignment. Pair-wise SHAPE comparisons were scored by a linear function (Fig 1B), and
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scoring function parameters and gap opening and extension penalties were optimized by an ex-
haustive parameter search. Parameters were selected on the basis of sensitivity of alignments
(fraction of aligned nucleotides shared with the accepted alignment) generated for 16S and 23S
ribosomal RNAs relative to CRW pairwise alignments [11].

Quality of SHAPE-based alignments
SHAPE-based alignments were performed for all 16S and 23S ribosomal RNA pairs (Fig 2).
The accuracies of the SHAPE-only alignments were compared to global sequence alignments
obtained with the Needle algorithm [14, 15]. Sequence alignments based only on SHAPE data
(without using any sequence information) were comparable in quality to Needle-based

Fig 1. SHAPE-based scoring function for structurally-informed RNA sequence alignment. (A)
Histogram of the absolute differences in SHAPE reactivities for paired nucleotides in accepted alignments.
Differences between related pairs are shown in red, and differences between randomized pairs are blue.
Pairs were randomized in eight individual trials; average values are shown with standard deviations given as
error bars. (B) Scoring function used to compare SHAPE values at positions i and j in sequences x and
y, respectively.

doi:10.1371/journal.pcbi.1004126.g001
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sequence alignments (Table 1). For example, for 16S rRNA, SHAPE-based alignments had sen-
sitivities of 83% and 71% for alignments of E. coli to C. difficile and to H. volcanii, respectively;
whereas, conventional sequence identity-based alignments using the Needle algorithm had
sensitivities of 84% and 72%, respectively. For 23S rRNA, SHAPE-based alignments performed
well but not quite at the level of sequence-based alignment (Table 1).

Fig 2. Representative global sequence alignment between E. coli andC. difficile 16S ribosomal RNAs
usingmodel-free SHAPE reactivities as the only constraint. Alignment is shown as a function of E. coli
sequence numbering. (A) Alignment of SHAPE reactivities across a 250-nucleotide window. (B) A
60-nucleotide subsection of this alignment, including primary sequences. Areas of sequence identity are
emphasized in bold.

doi:10.1371/journal.pcbi.1004126.g002

Table 1. Sensitivities of pairwise SHAPE-dependent sequence alignments relative to accepted alignments.

Sequence 1 Sequence 2 Sensitivity relative to CRW alignments (%)

Nucleobase identity SHAPE-only Combined SHAPE and
nucleobase identity

Pairwise MSA

E. coli 16S C. difficile 16S 84 83 94 94

H. volcanii 16S 72 71 89 92

E. coli 23S C. difficile 23S 83 73 94 95

H. volcanii 23S 58 41 76 79

SHAPE-only sequence alignments did not use sequence information. Accepted alignments are from the CRW [11]. Nucleobase identity-based alignment

used the Needle algorithm [14] on the EMBOSS server [15] with default parameters. For predictions incorporating both SHAPE reactivities and

nucleobase identity, sensitivities are given for both pairwise comparisons and for multiple sequence alignments (MSA) generated by T-Coffee [16].

doi:10.1371/journal.pcbi.1004126.t001
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Incorporating a base-identity match score into SHAPE-based
alignments
An additional scoring term considering base identity was then included in the alignment algo-
rithm, allowing sequence comparison based on both base identity and SHAPE structure reac-
tivity values. In a pairwise comparison, if two nucleotides had the same base identity, the pair
was scored as a match, and a match bonus was included in the scoring function. Otherwise, a
mismatch penalty was included. These scores were added to the values generated by the
SHAPE comparison function. The score terms associated with both matches and mismatches
were optimized by a parameter search. Gap opening and gap extension penalties were also re-
optimized given this new scoring system. Alignments considering both sequence identity and
SHAPE data showed significant improvements relative to alignments considering SHAPE
structure data or base identity alone (Table 1). For 16S rRNA, alignments of E. coli to C. difficile
and to H. volcanii had sensitivities of 94% and 92%, respectively, when both base identity and
SHAPE data are considered. The E. coli 23S rRNA alignments to C. difficile and to H. volcanii
had sensitivities of 89% and 84%, respectively.

We note that we performed benchmarking and parameter optimization using the same
RNAs. This is because there are very few large RNAmolecules with accepted sequence align-
ments, especially for culturable organisms. In independent work, we have applied SHAPE-
based alignment, using the parameters defined using our three-species ribosomal RNA training
data, to align single-stranded HIV-related viral RNA genomes. The viral RNAs constitute a
fully independent test set. Based on nucleobase identity and SHAPE reactivities, HIV-1 strain
NL4-3 (9,173 nts) and SIVcpz strain MB897 (9,167 nts; 77% sequence identity) aligned with a
sensitivity of 97% relative to extensively manually curated and hand-annotated alignments (see
following companion article in this issue).

Pairwise SHAPE-based alignments were also used to generate multiple sequence alignments
[16]. Alignment quality did not change significantly with the multiple sequence alignment
(Table 1). Alignment quality may increase in future applications with larger numbers of diverse
sequences. Lack of significant change also likely reflects that the quality of the pairwise align-
ments was already high, leaving relatively little room for improvement.

Secondary structure modeling with SHAPE-directed alignments
Both sequence comparisons and SHAPE data have been successfully used to direct RNA sec-
ondary structure modeling [17]. Given that SHAPE-based alignments effectively combine both
of these classes of information, we examined the usefulness of using SHAPE-based alignments
to model secondary structures. Sequence comparison-based secondary structure predictions
are highly dependent on alignment quality [18, 19]. Therefore, success in secondary structure
prediction would offer further support for model-free SHAPE-based alignment.

The SHAPE-defined sequence alignments were incorporated as arguments for secondary
structure modeling using the RNAalifold algorithm in the Vienna RNA package [20–22].
RNAalifold uses a pseudo-free energy potential to bias predictions based on covariation infor-
mation. In this scheme, base pairs supported by covariation are given a free-energy bonus. For
this work, RNAalifold was updated to accept SHAPE reactivities as an additional pseudo-free
energy term [4, 23]. Free energy calculations with RNAalifold were therefore the sum of three
terms corresponding to thermodynamic parameters, sequence covariation, and SHAPE reac-
tivity. A consensus structure from the sequence alignment was obtained from a partition func-
tion calculation as base pairs with pairing probabilities greater than 95%. Overall, ~77% of base
pairs were identified in this first step (reported as sensitivity values in Table 2, column 4). Con-
sensus base pairs identified in the first step were in turn used to constrain modeling of
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individual structures for each RNA in a given alignment, allowing additional base pairs to be
identified. Finally, structure prediction was performed by free-energy minimization that in-
cluded a pseudo-free energy term based on SHAPE reactivities.

Structure models were generated for 16S and 23S ribosomal RNAs (Fig 3; S1 and S2 Figs).
The modeled structures were compared to those based on covariation models in the CRW. A
local refolding allowance of 5 nucleotides was used in sensitivity and positive predictive value
calculations (Methods) to allow for modest local rearrangements of base pairs, which we find
are broadly supported by experimental SHAPE reactivities (Fig 3; S1 and S2 Figs). All SHAPE
reactivity-based structures had sensitivities greater than 90% relative to the accepted structures,
indicating that models were of high accuracy (Table 2, column 5). Given the strong dependence
of covariation-based prediction approaches on alignment quality, this successful modeling fur-
ther validated the strong utility of SHAPE-structure alignment of RNA sequences. Importantly,
a significant subset of base pairs in the reference covariation models were incompatible with
observed SHAPE reactivities. Of base pairs in reference covariation models not supported by
SHAPE data, a significant number involve one or more nucleotides with SHAPE reactivities
greater than or equal to 0.5 (E. coli 16S, 70%; C. difficile 16S, 64%; H. volcanii 16S, 39%; E. coli
23S, 46%). This suggests that these nucleotides are weakly base paired or form alternate struc-
tures under the experimental conditions used in this work.

Secondary structure predictions based on SHAPE-directed alignment were compared with
sequence-only predictions and with predictions directed by sequence-only alignment or
SHAPE reactivities (Table 2). Secondary structure predictions for ribosomal RNA based on se-
quence alone have sensitivity values of roughly 65% (predictions by RNAfold of the Vienna
RNA package). At this accuracy, a bare majority of base pairs are predicted correctly, and it re-
mains difficult to develop meaningful biological hypotheses regarding RNA structure. When
we used sequence-only alignments to constrain secondary structure prediction using RNAali-
fold [21], E. coli and C. difficile 16S rRNA predictions improved (Table 2), butH. volcanii 16S
and E. coli 23S rRNA predictions actually had lower sensitivities. The mixed results of structure

Table 2. Sensitivities (sens) and positive predictive values (ppv) for secondary structure models as a function of included information.

RNA (1) Individual
models based
on sequence

alone

(2) Consensus
models
including

sequence-only
alignments

(3) Individual
models based
on SHAPE
reactivities

alone

(4) SHAPE-
directed
alignment
consensus

models, pairs
with >95%
pairing

probability

(5) Individual
models

constrained by
consensus
pairs from
SHAPE-
directed
alignment

(6) Individual
models

constrained by
consensus

pairs,
structures with
incompatible
SHAPE data

omitted

sens ppv sens ppv sens ppv sens ppv sens ppv sens ppv

E. coli 16S 60.0 52.8 66.5 68.8 90.0 84.0 76.8 91.7 93.8 89.0 96.8 89.0

C. difficile 16S 58.7 51.8 70.9 70.1 89.7 83.8 79.6 90.4 92.7 86.6 95.6 86.6

H. volcanii 16S 78.1 68.3 59.3 69.1 89.3 81.5 74.9 91.2 90.2 85.3 92.2 85.3

E. coli 23S 68.7 59.8 60.0 64.1 85.6 78.3 79.0 89.1 90.7 83.1

All values are given as percentages. Consensus structures were generated by RNAalifold [21] using SHAPE-directed sequence alignments (column pair

4). These structures were then used to constrain individual structure predictions (column pairs 5 and 6). Models were compared against three control

predictions: individual predictions based on sequence alone (column 1), consensus predictions based on sequence-only alignment (column 2), and

individual predictions made using only SHAPE reactivities and no sequence alignment information (column 3). Covariation structures are not available for

C. difficile or H. volcanii 23S rRNAs.

doi:10.1371/journal.pcbi.1004126.t002
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modeling based on sequence-only alignments reflect the sensitivity of a prediction to the accu-
racy of the initial alignment. Secondary structure predictions directed by SHAPE reactivities
improve sensitivity relative to predictions based only on thermodynamic parameters [4, 23],
and models that consider sequence alignment and SHAPE reactivities had higher sensitivity
and positive predictive values than models considering SHAPE data alone (Table 2).

Fig 3. Secondary structure model for E. coli 16S rRNA. This model was constrained by 16S rRNA
consensus base pairs derived from SHAPE-based sequence alignment. Predicted pairs that exactly match
the accepted covariation model [11] are shown with short black lines, and predicted pairs that match after
modest local refolding are purple. Predicted pairs not in the covariation model are illustrated with blue lines.
Covariation pairs not in the SHAPE-aligned structure are shown using red lines. E. coli SHAPE reactivities
are shown by coloring of individual nucleotides (see scale). Areas with large-scale SHAPE-supported
alternative folds are emphasized with cyan boxes. These areas (cyan) are illustrated on a structure model of
the 16S ribosome [38] (bottom right) and cluster in the neck and decoding site. The inset is shown with an
orientation that allows both h36 and the decoding site (h28 and h44) to be seen clearly.

doi:10.1371/journal.pcbi.1004126.g003
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Discussion

Applications of SHAPE-based comparisons
Functional RNA elements commonly exhibit conservation at the levels of both sequence and
structure, and wide variations in primary sequence can be compatible with nearly identical
higher-order structures [2, 3]. Thus, incorporating a model-free metric for RNA structure,
such as SHAPE reactivity, holds significant promise in functional RNA motif discovery. In the
case of the ribosomal RNAs, sequence alignments based on SHAPE reactivities were roughly as
accurate as approaches that used only sequence information (Table 1). When both SHAPE re-
activities and base identity were considered together, alignment quality increased. Alignments
taking into account both SHAPE reactivities and base identity achieved sensitivities exceeding
90% for alignments of E. coli ribosomal RNA to C. difficile sequences.

SHAPE reactivities provide information that is orthogonal to the sequence of nucleobase
identities [24]. SHAPE-based alignments were performed with a dynamic programming algo-
rithm using a pair-wise scoring system, analogous to the substitution matrices commonly used
in standard alignment approaches. Given this, the scoring system should be broadly applicable
to other sequence alignment approaches, including methods that use heuristic scoring systems,
such as BLAST [25], or probabilistic approaches, such as trained Markov-based alignment
methods [26]. Given the success using datasets generated efficiently by massively parallel se-
quencing using the MaP approach [10], SHAPE-based alignments will likely prove broadly use-
ful in future high-throughput structure-based RNAmotif discovery and structure modeling.

Conserved, alternate base-pairing conformations in 16S rRNA
Secondary structure models, generated from SHAPE-based alignment, include the vast majori-
ty of base pairs in the accepted covariation-based models of the 16S and 23S ribosomal RNAs
(Fig 3 and Tables 1 and 2). However, there was notable localized disagreement between the
alignment-based predictions from this work and covariation models in two regions in the 3'
major domain of 16S rRNA: in helix 36 (h36; Figs 3 and 4) and in the decoding site (h28 and
h44; Figs 3 and 5). These alternate structures are predicted to exist in each of the E. coli, C. diffi-
cile, and H. volcanii 16S rRNAs. Moreover, in each case, the alignment-directed model shows
much better agreement with the experimental SHAPE reactivities than does the covariation
model. For example, positions corresponding to base pairs in h36 in the covariation structure
had high SHAPE reactivities (Fig 4B, in red), indicating structural flexibility. Similarly, many
nucleotides in the h28 and h44 helices in the covariation model were highly reactive to the
SHAPE reagent and were not present in the alignment-based consensus model (Fig 5B). For
the h28 and h44 helices, the SHAPE-based alignment and the underlying individual nucleotide
reactivities strongly support a novel alternate base-paired secondary structure (Fig 5). Taken
together, the SHAPE reactivity data indicate that these alternate structures describe the confor-
mation predominantly assumed by the protein-free rRNA sampled during chemical probing.
Exclusion of these regions from the E. coli 16S rRNA sensitivity calculations increased the sen-
sitivity of the secondary structure prediction from 93.8% to 96.8% (Table 2, column 6).

Ribosomal RNAs were assayed in the absence of protein to generate the SHAPE data used
in this study. Total cellular RNA was obtained from each organism under conditions that
avoided denaturing or heating steps and were thus supportive of maintenance of native-like
RNA structure. We therefore infer that the alternate 16S secondary structure discovered in this
work describes a low-energy state that is readily sampled by protein-free ribosomal RNA. Crys-
tallographic studies of the ribosomal subunits are in agreement with the structure inferred by
covariation analysis. However, given that the alternate conformation predominates for the free
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Fig 4. Consensus alternate structures for helix 36 of E. coli 16S rRNA. (A) SHAPE reactivities for aligned
regions with consensus areas (RNAalifold) highlighted in gray. (B) Structures for the covariation and SHAPE-
structure constrained models. Base pairs predicted in the first-step (RNAalifold) consensus are black, and
base pairs predicted in the follow-up constrained (RNAfold) prediction are shown in gray.

doi:10.1371/journal.pcbi.1004126.g004
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Fig 5. Consensus alternate structures in the decoding site. Helices 28 and 44 of the E. coli 16S rRNA are shown. (A) SHAPE reactivities for aligned
regions. Consensus base pairs are highlighted in gray. (B) Structures for the covariation and SHAPE-structure constrained models. Base pairs in the
RNAalifold consensus are shown in black, and base pairs predicted in the follow-up constrained RNAfold prediction are gray.

doi:10.1371/journal.pcbi.1004126.g005
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RNA based on SHAPE analysis, this alternate state may be adopted by ribosomal RNA prior to
small subunit assembly and may reflect a conformation that occurs during small subunit as-
sembly or during specific phases of the translation cycle. This view is supported by nucleotide-
resolution chemical modification and interference assays that suggest that nucleotides in h36
and in the decoding site (h28 and h44) undergo a conformational change during conversion of
the 30S subunit from an inactive to active conformation [27] and are involved in rate determin-
ing steps during 30S subunit assembly [28, 29]. In addition, helices in the decoding region (h28
and h44) are conspicuously lacking base-pair level covariation [30]. The striking absence of co-
variation support is consistent with the idea that these helices are subject to additional structur-
al constraints beyond formation of a single set of conventional helices and instead form
additional conserved alternate secondary structures. Critically, no covariation or other evi-
dence contradicts the alternate base pairs proposed here.

Strikingly, all regions that structure-directed alignment suggests form alternate structures in
the 16S rRNA are located close to each other in three-dimensional space, in the neck of the in-
tact small ribosomal subunit (Fig 3, inset). Given that these alternate structures occur in and
near the codon-anticodon decoding site, we propose that these structures form a switch involv-
ing low energy base-pairing rearrangements important for regulation of translation.

Perspective
The strategies developed here allow for highly accurate, structure-informed alignments of large
(Table 2) and likely small (Fig 2) RNAs and are accurate even for RNAs that show high levels
of sequence divergence. These alignments may in turn be used to predict consensus secondary
structures with high accuracy. Given that structural information is derived from the SHAPE-
MaP high-throughput strategy for nucleotide-level quantitation of chemical probing data [10],
this approach for structure-informed alignment and secondary structure modeling will be
broadly useful for large-scale analysis of entire transcriptomes and large families of functional
RNA molecules. Using SHAPE-structure informed alignments, we discovered structural rear-
rangements in the base pairing patterns of 16S that are conserved in three diverse organisms.
These structural rearrangements are likely to have mechanistic functions in ribosome assembly
or regulation of translation. This analysis of ribosomal RNA indicates that SHAPE-based align-
ment methods will prove especially powerful in discovering functional motifs in RNA elements
with low sequence covariation.

Methods

E. coli ribosomal RNA SHAPE-MaP data
Total E. coli RNA (DH5α strain) was prepared as described [4]; SHAPE-MaP data for the ribo-
somal RNAs were reported previously [10].

Preparation of C. difficile ribosomal RNA
C. difficile (strain 630) was grown in BHIS medium [31] at 37°C under anaerobic conditions
(90% N2, 5% CO2, and 5% H2) [32] to an OD600 of 1.0. Cells were collected by centrifugation
(10 min, 4°C, 4000×g). The pellet was washed with 1× TE [10 mM Tris (pH 8.0), 1 mM
EDTA]. The supernatant was discarded, and the pellet was allowed to air-dry for 5 minutes. To
lyse the cells, 1 mL TRIsure (Bioline) was added to the pellet. The resultant mixture was incu-
bated at room temperature for 5 minutes. The mixture was then transferred to a vial containing
250 μL 0.1-mm glass beads. Cells were lysed using a bead beater over two 90 second pulses,
with cells held on ice between pulses. The resultant mixture was extracted with 200 μL
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chloroform, and the aqueous layer was extracted three times with phenol (pH 8.0):chloroform:
isoamyl alcohol (25:24:1), followed by three extractions with chloroform. The RNA-containing
solution was exchanged for folding buffer (50 mMHepes (pH 8.0), 200 mM potassium acetate
(pH 8.0), and 5 mMMgCl2) using a pre-equilibrated gel filtration column (G-25 column, GE).

Preparation of H. volcanii ribosomal RNA
Growth medium was prepared by bringing 600 ml 30% salt solution [4 M sodium chloride, 150
mMmagnesium chloride hexahydrate, 150 mMmagnesium sulfate heptahydrate, 100 mM po-
tassium chloride, 5 mM Tris (pH 7.5)], 5 g bacteriological peptone (LP37; Oxoid), and 1 g yeast
extract (LP21; Oxoid) to 1 L with deionized water.H. volcanii cells (strain DS70) were grown
to an OD600 of 0.8 and collected by centrifugation (5 min, 4°C, 14000×g). Cells were lysed by
incubation in low salt solution [220 μL 50 mMHepes (pH 8.0) and 5 mMMgCl2; incubation at
22°C for 5 min, followed by incubation on ice for 5 min]. Following lysis, this solution was ex-
tracted three times with phenol (pH 8.0):chloroform:isoamyl alcohol (25:24:1), followed by
three extractions with chloroform. The RNA-containing solution was exchanged for folding
buffer [50 mMHepes (pH 8.0), 200 mM potassium acetate (pH 8.0), and 5 mMMgCl2] using a
pre-equilibrated gel filtration column (G-25 column, GE).

SHAPE-MaP characterization of ribosomal RNA
Determination of SHAPE reactivity by SHAPE-MaP employs three experiment conditions:
chemical modification of native RNA, chemical modification of denatured RNA, and a no-modi-
fication control. All chemical modifications were performed using 1-methyl-7-nitroisatoic anhy-
dride (1M7) [33]. Chemical modification of native RNA and the no-modification control were
performed in parallel. To 1× folding buffer [50 mMHEPES (pH 8.0), 200 mM potassium acetate
(pH 8.0), and 5 mMMgCl2] was added to a concentrated RNA solution (280 ngH. volcanii total
RNA or 70 ng C. difficile total RNA; amounts determined using absorption spectroscopy) to a
final volume of 90 μL. The RNA solution was incubated at 37°C for 30 minutes. Following incu-
bation, 10 μL DMSO (no-modification control) or 10 μL 100 mM 1M7 in DMSO (native
1M7-modified sample) was added to the RNA solution. The RNA solution was then incubated at
37°C for 3 minutes. For the denatured control, 25 μL 4× denaturing control buffer [200 mM
HEPES (pH 8.0), 16 mM EDTA] and 50 μL deionized formamide were added to a concentrated
RNA solution (280 ngH. volcanii or 70 ng C. difficile total RNA), and deionized water was added
to a final volume of 90 μL. This solution was held at 95°C for 1 minute, and then 10 μL 100 mM
1M7 in DMSO was added; the combined solution was incubated at 95°C for 1 minute.

Library preparation for sequencing
After modification, all three samples were purified by affinity chromatography (RNeasy Min-
Elute; Qiagen) with elution into 22 μL buffer. To prepare sequencing libraries, the purified
RNA samples were first fragmented; 20 μL of RNA solution was combined with 30 μL fragmen-
tation buffer [250 mM Tris (pH 8.3), 375 mM KCl, 15 mMMgCl2], incubated at 94°C for 4
minutes, and then transferred immediately to ice. Fragmented RNA was purified using a G-25
column (GE) with elution into 1× TE [10 mM Tris (pH 8.0), 1 mM EDTA]. Following frag-
mentation, reverse transcription was performed using a 20-μL aliquot of fragmented RNA and
2 μL random DNA nonamers (200 ng/μL). The solution was incubated at 65°C for 5 minutes
and then placed on ice. To this solution, 7 μL reaction buffer [286 mM Tris (pH 8.0), 429 mM
KCl, 57 mMDTT, 2.9 mM dNTP mix (dATP, dCTP, dGTP, and dTTP, 2.9 mM each)], 4 μL
60 mMMnCl2, and 5 μL water were added. The solution was pre-incubated at 25°C for 2 min-
utes prior to adding 2 μL Superscript II (Invitrogen). The reaction was incubated at 25°C for 10
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minutes, 42°C for 180 minutes, and 70°C for 15 minutes. Following reverse transcription, the
RNA was purified using a G-25 column (GE) with elution into 1× TE.

The cDNA was converted to a double-stranded DNA library with Illumina platform-specif-
ic sequence tags. First, 40 μL of the purified reverse transcription product was used in an 80-μL
second-strand synthesis reaction (NEBNext Second Strand Synthesis Module, New England
Biolabs). The product of the second-strand synthesis reaction was purified (PureLink PCR
Micro Kit; Life Technologies) and eluted into 12 μL elution buffer. A 10-μL aliquot of the puri-
fied DNA solution was then used in a 50-μL end repair reaction (NEBNext End Repair Module,
New England Biolabs). Following end repair, the DNA was purified (1.6× Ampure XP Bead
clean-up; Agencourt, Beckman Coutler) and eluted into a final volume of 30 μL 1× TE.

To incorporate Illumina platform-specific sequence tags, a dA-tailing reaction was used to
incorporate a single-nucleotide overhang at the 30 ends of the double-stranded DNA. A 15-μL
aliquot of purified DNA from the end repair step was used in a 20-μL dA-tailing reaction
(NEBNext dA-Tailing Module, New England Biolabs). Illumina sequences were incorporated
using a ligation step with Illumina iAdapters (prepared in house). Immediately following com-
pletion of the dA-tailing reaction, 7.5 μL of 5× reaction buffer (NEBNext Quick Ligation Mod-
ule, New England Biolabs), 2.5 μL 125 nM DNA adapter, 3.75 μL Quick T4 DNA Ligase (New
England Biolabs), and 3.75 μL water were added to the dA-tailing reaction mix. The ligation re-
action was then incubated at 20°C for 15 minutes. The ligation reaction was purified twice
(1.0× Ampure XP Bead clean-up; Agencourt, Beckman Coutler) with final elution into 20 μL
10 mM Tris (pH 8.0).

Illumina libraries were prepared using emulsion PCR [10, 34]. The aqueous phase was com-
posed of 5 μL of double-stranded DNA, 10 μL 10 μM Illumina-specific forward strand primer,
10 μL 10 μM Illumina-specific reverse strand primer, 40 μL Q5 5× reaction buffer (New En-
gland Biolabs), 100 μL 20 g/L bovine serum albumin, 4 μL dNTP mix (10 mM each, dATP,
dCTP, dGTP, dTTP), 2 μL Q5 high-fidelity polymerase (New England Biolabs), and 29 μL
water. The DNA was amplified in a 35-cycle PCR reaction (denaturation: 94°C for 30 sec; an-
nealing: 67°C for 30 sec; extension: 72°C for 30 sec). To purify the PCR product, the reaction
was first applied to a PureLink PCR cleanup column (Life Technologies). The column eluent
was then purified using a 1.0× Ampure XP Bead clean-up (Agencourt, Beckman Coutler). This
bead cleanup was performed twice with elution into 12 μL 10 mM Tris (pH 8.0).

The concentrations of sequencing samples were determined by Qubit High Sensitivity DNA
fluorescence assays (Life Technologies) and High Sensitivity DNA Bioanalyzer assays (Agi-
lent). Each sample was diluted to 2 nM and pooled. The pooled library was sequenced using an
Illumina MiSeq (300 cycles—PE kit). Sequences were aligned and mutation events counted
using the SHAPE-MaP analysis pipeline [10]. SHAPE reactivities were computed based on mu-
tation rates in the native 1M7-modified sample, minus the denatured 1M7-modified sample,
and normalized by the background control.

SHAPE-based RNA sequence alignment
SHAPE-based alignment was based on the Gotoh algorithm with affine gap penalties [35].
SHAPE-based alignment of two sequences x and y began with declaration of matrices D, P, and
Q. Each matrix had dimensionsm by n, wherem and n were the lengths of sequences x and y
plus 1, respectively. Considering alignment of (x0. . .xi) and (y0. . .yj), Di,j corresponds to the
score associated with alignment, Pi,j corresponds to the score associated with alignment that
ends with a gap in x, and Qi,j corresponds to the score of alignment that ends with a gap in y.
To initialize each matrix, D0,0 was set to 0, Di,0 was set to GOP + i × GEP, and D0,j was set to
GOP + j × GEP, where GOP and GEP are the gap opening penalty and gap extension penalty,
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respectively; P0,j and Qi,0 were set to arbitrarily large negative numbers. Every other cell in the
matrix was populated by the following recursion, where s(xi, yj) describes a pair-wise compari-
son score, and xi and yj are the SHAPE values of each sequence at i-th and j-th positions:

Pi;j ¼ max
Pi�1;j þ GEP

Di�1;j þ GOP þ GEP

(

Qi;j ¼ max
Qi;j�1 þ GEP

Di;j�1 þ GOP þ GEP

(

Di;j ¼ max

s xi; yj
� �

þ Di�1;j�1

Pi;j

Qi;j

8>><
>>:

The scoring function (see Fig 1B) is described by the following equation, with parametersm
and b:

s xi; yj
� �

¼ max
mjxi � yjj þ b

�mþ b

(

If base identity was taken into account during alignment, it was added as an additional scoring
term b in the recursion, where x'i and y'j were the base identities at positions i and j in se-
quences x and y, respectively:

Pi;j ¼ max
Pi�1;j þ GEP

Di�1;j þ GOP þ GEP

(

Qi;j ¼ max
Qi;j�1 þ GEP

Di;j�1 þ GOP þ GEP

(

Di;j ¼ max

s xi; yj
� �

þ b x0i; y
0
j

� �
þ Di�1;j�1

Pi;j

Qi;j

8>><
>>:

The scoring function b is described by the following equation with parametersMATCH and
MISMATCH.

b x0i; y
0
j

� �
¼

MATCH; x0i ¼ y0j

MISMATCH; x0i 6¼ y0j

(

Following population of the matrices by recursion, a trace-back operation was used to find

the optimal alignment. The trace-back operation began at position i,j, representing the 30-most
position of the alignment. The next position in the alignment was found using the following
comparison: if Di,j was equal to sum of Di-1,j-1 and the score of the pairwise comparison be-
tween xi-1 and yj-1, the next position was aligned nucleotides xi-1 and yi-1; if Di,j was equal to Pi,j,
the next position was a gap in sequence y; if Di,j was equal to Qi,j, the next position was a gap in
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sequence x. The trace-back operation was finished when a position was encountered where
i = 0 or j = 0.

The SHAPE scoring parametersm and b, base-identity scoring parametersMATCH and
MISMATCH, and gap penalty parameters GOP and GEP were optimized by exhaustive search
over the 16S and 23S rRNA aligned sequence pairs. The best parameter set was then selected
based on the average sensitivity across all alignments. In experiments considering only SHAPE
values,m = -2, b = 2, GOP = -5, and GEP = -0.25. Scoring function parameters were preserved
across SHAPE-only and combined SHAPE and base identity alignments, but GOP and GEP pa-
rameters were reoptimized for alignments considering both SHAPE reactivity and base identi-
ty. When both SHAPE and base identity were considered,m = -2, b = 2, GOP = -6, GEP = -1,
MATCH = 2, andMISMATCH = -2.

Evaluation of RNA sequence alignments
From multiple sequence alignments on the CRW, pairwise alignments between E. coli and C.
difficile and E. coli andH. volcanii were obtained for both 16S and 23S rRNAs. RNA sequence
alignments generated in this work were then evaluated by comparison to these alignments.
Sensitivities were calculated as the percentage of matched nucleotides in the CRW alignments
found in a given alignment.

Multiple sequence alignments
Multiple sequence alignments were generated using T-Coffee [16]. First, pairwise alignments
were generated for all possible pairs between sequences under consideration. These pair-wise
alignments were then used as arguments for T-Coffee using default parameters. T-Coffee cre-
ates a multiple sequence alignment based on the consensus of individual alignments. Only
alignments generated by the methods described in this work were used to make multiple
sequence alignments.

Secondary structure modeling by SHAPE-based RNA alignments
To establish a base-line for comparison, sequence-only secondary structure predictions were
performed with RNAfold from the Vienna RNA package with a maximum base paring distance
of 600 nucleotides [20]. Secondary structure models were also generated using sequence-only
alignments or SHAPE reactivities. Pairwise Needle alignments were used to generate a multiple
sequence alignment using T-Coffee [16]. This multiple sequence alignment was in turn used by
RNAalifold [21] to create a consensus secondary structure. Default RNAalifold parameters
were used with the exceptions that the ribosum matrix [36] and a maximum base pairing dis-
tance of 600 nucleotides were imposed. Individual SHAPE-directed predictions were made
using RNAfold, with SHAPE data incorporated as a pseudo-free energy term [4, 23].

Multiple sequence alignments were used as input for RNAalifold from the Vienna RNA
package [21]. SHAPE data were incorporated as an additional pseudo-free energy term to con-
strain secondary structure prediction [4, 23] using a new implementation of the RNAalifold al-
gorithm. Secondary structure prediction and partition function calculations were performed
using the ribosum matrix [36] with a maximum base pairing distance of 600 nucleotides. Fol-
lowing RNAalifold modeling, all base pairs in the consensus sequence with pairing probabili-
ties greater than 95% were used as constraints in individual follow-up models using RNAfold,
also of the Vienna RNA package [20]. SHAPE data were also used to constrain secondary
structure modeling in this step, using a maximum base pairing distance of 600 nucleotides. The
SHAPE-aware implementations of RNAfold and RNAalifold are part of the upcoming release
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of the Vienna RNA Package 2.2. A release candidate of this software is available at http://www.
tbi.univie.ac.at/RNA.

Evaluation of secondary structure models
Secondary structure models were evaluated by calculating sensitivity (sens) as the percentage
of base pairs from the CRW covariation model found in predicted structures and by calculating
positive predictive values (ppv) as the percentage of predicted pairs found in the covariation
model. It should be emphasized that these reference structures are themselves experimental
models, and base pairs in these models may show slight local rearrangements in terms of base-
pairing partners [4, 37]. To account for this, when comparing base pairs between the covaria-
tion and predicted models, a modest local refolding allowance of 5 nucleotides was permitted.
To be considered matched, a base pair in the covariation model at positions x and y and any
base pair in the predicted model at positions x0 and y0 were required to meet the following crite-
rion:

½x ¼ x0and jy � y0j � 5� or ½y ¼ y0and jx � x0j � 5�
Pseudoknots and non-canonical base pairs (with the exception of G-U pairs) were not consid-
ered in sens and ppv calculations.

Supporting Information
S1 Fig. Secondary structure model for the E. coli 23S rRNA, nucleotides 1–1646. This
model was constrained by 23S rRNA consensus base pairs based on a SHAPE-based sequence
alignment. Predicted pairs that exactly match the accepted covariation model [11] are shown
in black, and predicted pairs that match after allowing modest local refolding are purple. Pre-
dicted pairs not in the covariation model are blue. Covariation pairs not in the SHAPE-aligned
structure are shown using red lines. Individual E. coli nucleotides are colored by their SHAPE
reactivities (see scale).
(TIF)

S2 Fig. Secondary structure model for E. coli 23S rRNA, nucleotides 1647–2904. Full legend
is given in S1 Fig.
(TIF)

S1 Dataset. Complete SHAPE and alignment datasets for the 16S and 23S rRNAs from E.
coli, C. difficile andH. volcanii.
(ZIP)

S1 Software. Code for the alignment and secondary structure modeling algorithms devel-
oped in this work.
(ZIP)
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