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Abstract
Maternal periodontitis has emerged as a putative risk factor for preterm births in humans. The
periodontitis-associated dental biofilm is thought to serve as an important source of oral bacteria and
related virulence factors that hematogenously disseminate and affect the fetoplacental unit; however
the underlying biological mechanisms are yet to be fully elucidated. This study hypothesized that an
oral infection with the human periodontal pathogens Campylobacter rectus and Porphyromonas
gingivalis is able to induce fetal growth restriction, placental inflammation and enhance Toll-like
receptors type 4 (TLR4) expression in a murine pregnancy model. Female Balb/C mice (n=40) were
orally infected with C. rectus and/or P. gingivalis over a 16-week period and mated once per week.
Pregnant mice were sacrificed at embryonic day (E) 16.5 and placentas were collected and analyzed
for TLR4 mRNA levels and qualitative protein expression by real time PCR and
immunofluorescence. TLR4 mRNA expression was found to be increased in C. rectus-infected group
(1.98±0.886 fold difference, P<0.01, ANOVA) compared to controls. Microscopic analysis of murine
placentas showed enhanced immunofluorescence of TLR4 in trophoblasts, mainly in the placental
labyrinth layer. Also, combined oral infection with C. rectus and P. gingivalis significantly reduced
the overall fecundity compared to controls (16.7% vs. 75%, infected vs. non-infected mice
respectively, P=0.03, Kaplan-Meier). The results supported an enhanced placental TLR4 expression
after oral infection with periodontal pathogens. The TLR4 pathway has been implicated in the
pathogenesis of preterm births; therefore the abnormal regulation of placental TLR4 may give new
insights into how maternal periodontitis and periodontal pathogens might be linked to placental
inflammation and preterm birth pathogenesis.
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INTRODUCTION
Preterm birth (birth at ≤37 completed gestational weeks) is the major cause of neonatal
mortality/morbidity in the world, accounting for up to 75–85% of the early neonatal deaths as
well as to high rates of short-term (low birth weight) and long-term adverse sequelae (hearing/
learning problems and cerebral palsy) [1;2]. The pathogenesis of preterm birth is thought to be
multi-factorial, possibly initiated by multiple mechanisms including infection, uteroplacental
ischemia, hemorrhage, stress and other immunologically mediated processes [3]; however, the
development of a pro-inflammatory condition is a common effector pathway that centralizes
all multiple risk factors [4]. In particular, uterine infections may account for 25–40% of preterm
births and they are strongly linked with a pro-inflammatory systemic state. For example, uterine
infections are known to upregulate the production of local pro-inflammatory cytokines,
metalloproteinases and prostaglandins that lead to membrane weakening, early membrane
rupture and uterine contraction initiation [5]. Uterine infections usually take advantage of
ascending mechanisms, which are originated from vaginal infections (i.e. Neisseria
gonorrhoeae or Ureaplasma urealyticum) that lead to intrauterine cavity access, decidua
colonization, localized inflammation onset (or chorioamnionitis), intraamniotic infection and
ultimately fetal infection [6].

Nonetheless, other sources of infection including the oral cavity have been proposed to
facilitate the hematogenous transmission of pathogens that affect normal pregnancy
development [7]. In particular, periodontal diseases (gingivitis and periodontitis) are part of
the most common chronic infections affecting up to 50% of humans [8] and has been found to
be an independent putative risk factor for pregnancy-related complications such as preterm
births, low birth weight and preeclampsia, after adjusting for other known obstetric risk factors
[9;10]. Periodontitis is initiated when specific microorganisms accumulate between the teeth
and gums, forming bacterial biofilms commonly known as dental plaque. The body reacts to
dental biofilms by activating the oral mucosal inflammatory response that –in some susceptible
patients- is unsuccessful in controlling the infection. With time, the inflammatory response
remains chronic and ultimately leads to periodontal connective tissue resorption (alveolar bone
loss) and tooth loss [11]. During prolonged periodontal inflammation, periodontal pathogens
and related virulence factors invade periodontal tissues, enter the blood stream by means of
transient bacteremias [12] and disseminate throughout different systemic organs. In fact,
important periodontal pathogens have been detected in human placentas of women with
preeclampsia [13] and in the amniotic fluid of pregnant women with a diagnosis of premature
labor [14] or premature labor with intact membranes [15;16].

Fetal exposure to periodontal pathogens from maternal oral biofilms has also been
demonstrated in umbilical cord blood samples from preterm births by detecting maternal
immunoglobulin G (IgG) as well as fetal immunoglobulin M (IgM) to one or more specific
oral pathogens. In particular, mothers with a low IgG response to P. gingivalis combined with
a high fetal IgM response to C. rectus showed the highest rate of preterm deliveries (66.7%)
among 812 deliveries from a cohort study of pregnant mothers (adjusted OR 10.3; P<0.0001)
[17], suggesting that P. gingivalis and C. rectus could act as fetal infectious agents eliciting
complications during pregnancy. C. rectus is an Gram negative anaerobe and motile bacterium
unique to the oral cavity that is phylogenetically related to H. pylori and is associated with
ulceration of the periodontal attachment apparatus [18]. Interestingly, other Campylobacter
species are known to be a significant causal agent of sheep and cattle abortion due to a marked
tropism for placental tissues [19]. In animal models, C jejuni and C. fetus infections result in
impaired development and fetal growth restriction (FGR) [20]. We have previously reported
that a subcutaneous infection with C. rectus in pregnant mice disseminates to placental tissues
and induces FGR [21;22], placental inflammation and structural alterations. [23]. Likewise,
animal experiments using Porphyromonas gingivalis in a subcutaneous infection model have
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shown increased maternal inflammatory serum markers (Interleukin-6 and tumor necrosis
factor alpha TNF-α), and increased fetal biochemical markers of placental inflammation
(prostaglandin E2) in murine amniotic fluid [24;25].

Placental infection and subsequent inflammation have been associated with preterm labor, so
the biological pathways related to early inflammatory responses are likely to mediate
pathogenesis. Toll-like receptors (TLRs) are pattern recognition receptors that play a key role
in the innate inflammatory response [26] and have been proposed to play important roles in
pregnancy maintenance, placental immune protection and delivery initiation [27]. To date, a
total of 10 human and 12 murine TLRs have been described. In general, TLRs can be
categorized into two main groups based on their ligands: the first group consists of TLR1, 2,
4, and 6 which recognize bacterial molecules such as lipopolysaccharide (LPS), lipoteichoic
acid and peptidoglycan. The second group consists of TLR3, 7, 8, and 9 that recognize
pathogen-associated nucleic acids patterns [28]. Here in we focused on TLR4 which is
selectively activated by Gram negative LPS, in conjunction with CD14 [29]. Since P.
gingivalis and C. rectus are Gram negative periodontal pathogens, the main objective of this
study was to determine whether an oral infection with C. rectus and C. rectus/P. gingivalis
combined infection could affect fetal growth, fecundity and induce placental inflammation
along with enhanced expression of TLR4 in a timed-pregnancy murine model.

METHODS
Timed-pregnancy murine model

Balb/C mice were obtained at 6–8 weeks of age and maintained on a 12-h light/dark cycle
(0700 to 1900 light) and a constant temperature of 25°C, receiving distilled water and food ad
libitum. To facilitate bacterial colonization, all female groups were changed to a soft chow
enriched with a dextrose solution (30%) as plaque-promoting diet during infection period. For
mating purposes, females were age-matched when 20 weeks old, and males were randomly
assigned to experimental groups and remained the same until the end. Female pregnancies were
confirmed by the presence of a vaginal plug plus significant weight changes (>1.5 grams gain
in a week). Mice were infected daily over a 16-week period and mated once/week. When
pregnant, female mice were sacrificed at embryonic day (E) 16.5 and placental tissues were
collected and analyzed. All procedures were in accordance with animal guidelines and were
approved by the University of North Carolina at Chapel Hill Institutional Animal Care and Use
Committee.

Bacterial strains and inoculum preparation
C. rectus 314 and P. gingivalis A7436 aliquots were maintained in Wilkins Chalgren anaerobic
broth medium (WC broth; DSMZ, Braunschweig, Germany) containing 10% skim milk at −80°
C. C. rectus aliquots were reconstituted on PRAS ETSA plates (Enriched Tryptic Soy Agar
from Anaerobe Systems, Morgan Hill CA) and P. gingivalis aliquots on Anaerobic Reducible
Blood Agar (from Remel, Lenexa KA). For experiments, bacteria were anaerobically grown
under 5% CO2, 10% H2–85% N2 atmosphere at 37°C for 4–6 days. Bacterial suspensions were
prepared from primary cultures at their log phase of growth, and concentrations were
determined by spectrophotometry (Cecil Instruments, Cambridge, UK) with a measured optical
density at 600 nm (C. rectus) and 660 nm (P. gingivalis) corresponding to 1×109 bacteria/ml
respectively. Finally, all oral preparations were adjusted accordingly to keep the same
concentration during oral infection experiments.

Oral infection
The oral infection model of experimental periodontitis has been described elsewhere [30]. This
model involves a pretreatment phase with antibiotics to suppress the oral flora to permit the
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colonization of exogenously applied human oral bacterial strains and the use of
carboxymethylcellulose (CMC) as a carrier to facilitate bacterial colonization. Briefly, before
experiment baseline 40 female Balb/C mice were pretreated for 4 days with Kanamycin/
Ampicillin (50mg/kg-25mg/kg) followed by a 3-day antibiotic wash out period, and then
randomly assigned to experimental groups (Table 1 and Figure 1). Mice were topically infected
in the oral cavity with 1×1010 live bacterial units/100uL in a phosphate-buffered saline (PBS)
and 2% CMC preparation on a daily basis. Controls included a blank group (same diet without
oral infection) and a negative control group (CMC application without bacteria).

Placental histology and Immunofluorescence
Placentas were fixed in 4% paraformaldehyde, bisected sagittally, processed and embedded in
paraffin. Sections (~5 μm) were stained using hematoxylin/eosin (H&E) for structural analysis;
other sections were processed for immunofluorescence. Briefly, tissue antigens were rescued
with Safeclear® (Fisher Protocol, Fair Lawn NJ) for 20 minutes and washed under serial ethanol
concentrations. After washing in 0.2% Triton/PBS, sections were incubated in 10% non-
immune goat serum and bovine serum albumin in PBS for 1 hour. Rabbit anti-TLR4
monoclonal antibody (Zymed, Invitrogen, Carlsbad CA) and mouse anti-mouse Cytokeratin 7
monoclonal antibody (RCK105 from Abcam, Cambridge, UK) were incubated overnight on a
1:50 concentration. Cytokeratin 7 was chosen as a trophoblast marker following the
recommendations of the workshop report on cell culture models of trophoblasts [31]. After
vigorous washing, secondary biotinylated antibodies were applied for 1 hour (Alexa Fluor 568
goat anti-rabbit IgG and Alexa Fluor 488 goat anti–mouse IgG from Molecular Probes,
Invitrogen, Carlsbad CA) for 1h. Sections were washed in 0.2% Triton/PBS, mounted and
coverslipped with Vectashield (Vector labs, Burlingame CA). All stained sections were
analyzed and photographed under confocal microscopy (LSM5, Carl Zeiss, Thornwood NY).

Quantitative RT-PCR for TLR4
Total RNA was isolated from all placental tissues (n=135) with the use of the RNeasy Mini
Kit (Qiagen). cDNA from 2 μg of total RNA was synthesized using the Omniscript Kit (Qiagen)
and random decamer primers. Real-time PCR was performed with 1 μL cDNA, TaqMan
Universal PCR mix, and 20X primer (Mm00445273_m1 from Applied Biosystems, Foster
City, CA), in a 7000 Sequence Detection System (ABI Prism, Applied Biosystems). Reactions
were performed in duplicates and in two independent times. The Glyceraldehyde-3-Phosphate
Dehydrogenase (GAPDH) gene was used as an endogenous control (housekeeping gene).
Results were evaluated using the delta-delta Ct method, where delta Ct was calculated as (TLR4
Ct) (GAPDH Ct), and the relative quantity of TLR4 mRNA expression was calculated by the
delta–delta Ct as 2−[(infected sample delta Ct)−(control sample delta Ct)].

Statistical analysis
A sample size of 8 mice per group was calculated [power (1-β) of >0.90% with alpha-error
threshold of (α)=0.05)] based on our previous results on fetal growth restriction after C.
rectus systemic infection [22]. Categorical variables (number of pregnancies and number of
fetuses/resorptions per group) were summarized using frequencies and percentages, and
continuous variables (fetal weight/length and mRNA levels) were described using means and
standard errors. Distributions of fetuses/resorptions were compared using the Chi-square test.
Mean fetal weight and length values as well as mRNA levels were compared using Analysis
of Variance (ANOVA). To determine whether oral infection correlated with FGR and resorption
induction, a general linear regression model (GLM procedure) was used to control for
clustering within litters per group. Also, resorptions were considered as zero (value=0) to
account for their impact on the average litter weight and length. Kaplan-Meier estimation
analysis was used to evaluate cumulative pregnancy events at 16 weeks. Cox proportional
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hazards ratios were used to determine the risk of no pregnancies over time after infection. If
no significant differences were observed between the control groups (blank and negative), then
controls were regrouped as non-infected group for analysis. The threshold for statistical
significance was set at a P-value less than 0.05. All analyses were performed using SAS v.9.2.
(SAS Institute, Cary, NC).

RESULTS
Oral infection with C. rectus and P. gingivalis induced growth restricted fetuses and more
fetal resorptions

The murine pregnancy events and fetal outcomes after oral infection with periodontal
pathogens are depicted in Table 2. The number of mice which became pregnant during the 16
week infection/mating protocol were significantly different among all groups (P<0.05, Chi-
square test) as well as in the distribution of fetuses and resorptions (P<0.01). On average,
fetuses from infected mice were smaller and lighter, although fetal lengths were not statistically
different among all groups (P=0.08, ANOVA). When control groups were compared, no
significant differences were observed for number of fetuses/resorptions [27(96.4%) vs. 41
(80.4%), P=0.27, Chi-square], and for fetal weight values [0.47±0.012 vs. 0.39±0.035, P=0.87,
ANOVA, blank and negative groups respectively]. However, when fetal weight values from
infected mice were compared to those from non-infected mice (regrouped controls), a
statistically significant decrease was observed for the C. rectus and P. gingivalis infected group
(P<0.05, ANOVA, Figure 2). Overall, the general linear regression model which adjusted for
clustering within litters was non-significantly associated with FGR induction (P=0.28, GLM
procedure).

Murine fecundity was affected after oral infection
Murine fecundity was significantly different among experimental groups (Table 2 and Figure
3). 68.8% of non-infected mice got pregnant; however fecundity decreased to 58.3% in the C.
rectus infected group and only 16.7% of mice receiving C. rectus and P. gingivalis combined
infection got pregnant. When cumulative pregnancies events were estimated under Kaplan
Meier analysis, it was found that the C. rectus and P. gingivalis group had the lowest fecundity
rate (Hazard Ratio 0.19[0.041–0.856], P=0.03) compared to C. rectus group (HR 0.87[0.310–
2.154], P=0.68) and to non-infected mice.

Oral infection induced placental inflammation and TLR4 expression
Figure 4 presents representative histological findings on murine placentas. In the control
placental tissues, there were scattered inflammatory cells present in the maternal decidua of
some samples (not shown). In contrast, areas of focal necrosis and increased inflammatory cell
infiltrate were apparent in placentas from infected mice (Figure 4A). Under confocal
microscopy, the qualitatively analysis of murine placentas from infected mice showed
enhanced TLR4 immunofluorescence, particularly more evident in labyrinth trophoblasts
(Figures 4B–F).

Oral infection increased placental TLR4 mRNA expression
In agreement with the histological observations, mRNA expression of TLR4 receptors was
found to be significantly increased in the C. rectus group (1.98±0.886 fold difference, P<0.01
ANOVA) as shown in Figure 5. Even though the TLR4 expression was also higher in the C.
rectus and P. gingivalis group, no significant differences were observed when compared to
non-infected mice (1.29±0.871, P=0.06).
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DISCUSSION
This study sought to determine the effect of C. rectus and C. rectus/P. gingivalis oral infection
on fetal growth restriction, fecundity and the placental TLR4 expression in a murine model of
pregnancy. Previous experimental murine models of infection have examined the role of
bacteria and/or isolated virulence factors (i.e. LPS) on preterm birth pathogenesis, reporting
that C3HeB/FeJ mice develop up to 71% preterm births after heat-killed E. coli intrauterine
injection [32]. However not many animal models of infection have addressed the pathogenic
role of live oral bacterial infection on preterm births. Experiments with live periodontal bacteria
have used subcutaneously-implanted stainless steel coiled chambers as an infection model to
study a chronic distant infection in mice and rabbits, as it induces placental inflammation and
growth restriction phenotypes (C. rectus and P. gingivalis) [33]. The periodontal pathogen
Fusobacterium nucleatum has also been used for intravenous injections in mice, showing
subsequent placental inflammation and increased fetal resorptions and stillbirths [34]. Systemic
bacterial dissemination of periodontal pathogens has been evidenced in blood, liver, uteri and
individual placentas of growth-restricted fetuses [21–25,33]. This report provides evidence
that the mixed oral infection model with C. rectus and P. gingivalis induces FGR and
resorptions together with histological evidence of placental inflammation with areas of focal
necrosis, enhanced TLR expression and impaired fecundity.

The oral infection model did not significantly correlate with FGR induction, conversely to our
previous observations using the chamber model of infection [22]. This finding might be
explained in part by the murine immune system ability to fight the oral infection, decreasing
bacterial systemic dissemination/exposure protecting the developing fetuses. Particularly,
Baker et al. reported that Balb/C mice are able to produce high titers of P. gingivalis-specific
IgG using the same model of oral infection [35] and we have previously reported that fetal and
placental growth may be unaffected in heat killed-P. gingivalis pre-immunized rabbits [36].
In addition, the presence of C. rectus or P. gingivalis DNA was not detected in placentas coming
from the oral infection model (data not shown). Nonetheless, overall infected groups had
relatively less number of live fetuses, more resorptions and more growth restriction on average
(Table 2 and Figure 2). Moreover, fecundity was significantly affected in infected groups
(Figure 3). Only 16.7% of mice infected with C. rectus and P. gingivalis were able to get
pregnant and had smaller litter sizes, situation that was not totally unanticipated as our previous
observations on P. gingivalis infected animals suggested an impairment of fecundity ([37],
unpublished observations). Therefore, we hypothesize that the difference in fetal restriction
outcomes may be related to the mucosal immune system clearance at the portal of entry and
the consequent low bacterial exposure at the placental level.

Even so, we found a placental inflammatory phenotype along with an enhanced TLR4
expression in murine placentas which is suggestive of an active inflammatory response to
bacterial exposure. Histologically, placentas from the infected groups showed apparent chronic
inflammation (Figure 4A), and the double-staining immunofluorescence analysis showed that
TLR4 expression was notably confined to trophoblasts in the labyrinth layer (Figures 4B–F).
Furthermore, placental TLR4 mRNA levels showed to be significantly increased almost two-
fold in the C. rectus-infected group and mildly increased (30%) in the double infection group
approaching statistical significance (Figure 5, P=0.06). This finding might be explained by the
limited number of placentas (n=12) available for analysis since only 17% (2 out of 12) mice
got pregnant in the combined infection group.

TLRs are highly involved in responding to inflammatory processes in the presence or absence
of infection in several tissues. In particular, TLRs are thought to be critical players of the innate
immune response during pregnancy, which have significant implications for the success or
failure in both early and late gestation [38]. Toll-like receptors expression has been described

Arce et al. Page 6

Placenta. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in the human placenta, mostly at the dominant cell type: the trophoblast [39–41]. Trophoblasts
are the first cells to differentiate from the outer layer of the blastocyst and are believed to
participate during endometrial implantation and placental development [42]. Trophoblasts
have also been proposed to coordinate the immune response during both processes by
regulating regulate immune cells migration (macrophages and NK cells) to the endometrial
implantation site through TLRs activation and chemokines production [43–45]. Furthermore,
abnormalities in decidual TLRs expression or function have been linked to abnormal
placentation, inflammation, and adverse pregnancy outcomes [46]. Interestingly, our data
suggest that murine placentas develop pro-inflammatory features after oral infection with
periodontal pathogens, where placental trophoblasts notably express more TLR4 as compared
to placentas from non-infected mice (Figures 4C–H), and these observations were also
consistent with the placental mRNA levels (Figure 5). In fact, TLR4 receptors have been shown
to mediate the murine placental inflammatory response and fetal death to F. nucleatum, and
mice deficient for TLR-4 show protection against bacterial and LPS-induced preterm birth
[47]. Moreover, the selective antagonism of TLR-4 inhibits inflammation and preterm uterine
contractility in a nonhuman LPS infection model in Rhesus monkeys [48].

The scope of this report was limited to determine TLR4 expression in response to oral Gram
negative bacteria as proof of principle; however it is possible that other type of TLRs participate
during the placental immune responses. For example, C. rectus offers a wide array of virulence
factors including surface layer (S-layer) proteins [49], cytolethal distending toxin (CDT)
[50], GroEL-like proteins [51] and lipopolysaccharide (LPS)[52]. In addition, P. gingivalis
also possess a plethora of virulence factors including capsule, fimbriae, proteases (Gingipains)
and LPS [53]. Therefore, either C. rectus or P. gingivalis might be able to induce placental
inflammation via different virulence factors that could potentially be sensed by different TLRs
including TLR-2 (peptidoglycans or fimbriae), TLR4 (LPS) or TLR-5 (flagellin).

In conclusion, previous models used to mimic chronic infections in mice result in dissemination
of live oral bacteria to the placental tissues and impair fetal growth. However, this mixed oral
infection model combines two commensal and critical pathogens that in combination are
strongly associated with periodontal disease in humans [54]. Therefore, it is plausible to
speculate that chronic systemic exposure to oral bacteria and related virulence factors may
affect early pregnancy via pro-inflammatory mechanisms and such hypotheses warrant further
investigations [55]. Further research is also needed to characterize the placental TLR response
to oral pathogens in humans to elucidate and validate pathogenic mechanisms.
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Figure 1. Experiment timeline
Female (3-month old) Balb/C mice were pretreated for 4 days with Kanamycin/Ampicillin
(50mg/kg-25mg/kg) and then randomly assigned to experimental groups. Mice were infected
daily over a 16-week period and mated once/week. When pregnant, mice were sacrificed at
embryonic day (E)16.5 and placental tissues were collected and analyzed for TLR4 expression
by immunofluorescence (confocal microscopy) followed by RT-PCR. Cr=C. rectus; Pg=P.
gingivalis; CMC=carboxymethylcellulose.
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Figure 2. Oral infection induces low weight fetuses
Averaged fetal weight values from infected mice were smaller when compared to those from
non-infected mice. Columns and bars represent means and standard errors. Cr=C. rectus;
Pg=P. gingivalis; *P<0.05, ANOVA.
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Figure 3. Oral infection affects murine fecundity
Kaplan Meier Analysis - C. rectus and P. gingivalis infected mice had the lowest fecundity
rate (16.7%, HR 0.19[0.041–0.856], P=0.03, Kaplan-Meier) compared to C. rectus (58.3%,
Hazard Ratio 0.87[0.310–2.154], P=0.68) and to non-infected mice.
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Figure 4. Oral infection induced inflammation and TLR4 expression in murine placentas
Histological and immunofluorescence analysis of murine placentas. 4A: Representative image
depicting extensive junctional zone (JZ) along with an increased inflammatory cell infiltrate
(arrowheads) in placentas from infected mice. Decidua (D); Bar=50μm. 4B–4C:
immunofluorescence of a placenta from the C. rectus and C. rectus/P. gingivalis infected
groups respectively. Images represent 3 merged channels (Rhodamine, FITC and DIC)
depicting trophoblasts expressing TLR4 from both groups. 4D–E: images depict the expression
of Cytokeratin 7 (FITC-green) and TLR4 (Rhodamine-red) in labyrinth trophoblasts from a
different C. rectus-infected section; 4F: image illustrates co-localization of Cytokeratin 7 and
TLR4 suggesting enhanced expression of TLR4 by labyrinth trophoblasts. 4G-I: images
correspond to fluorescence negative controls (no primary antibodies used) for Cytokeratin 7
and TLR4 respectively. Rhod=Rhodamine (red); FITC= Fluorescein isothiocyanat (green);
White bars=20μm.
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Figure 5. Oral infection with periodontal pathogens increased TLR4 mRNA expression in murine
placentas
After normalization, TLR4 mRNA levels were significantly increased in C. rectus group
placentas (1.98±0.886 fold difference, P<0.01). Although TLR4 mRNA levels were also higher
in the combined infection group, no significant differences were observed when compared to
non-infected mice (1.29±0.871, P=0.06). Cr=C. rectus; Pg=P. gingivalis; *P<0.01, ANOVA).
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