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Abstract
Background—Placentas are generally round-oval in shape, but “irregular” shapes are common. In
the Collaborative Perinatal Project data, irregular shapes were associated with lower birth weight for
placental weight, suggesting variably shaped placentas have altered function.

Methods—(I) Using a 3-D one-parameter model of placental vascular growth based on Diffusion
Limited Aggregation (an accepted model for generating highly branched fractals), models were run
with a branching density growth parameter either fixed or perturbed at either 5-7% or 50% of model
growth. (II) In a data set with detailed measures of 1207 placental perimeters, radial standard
deviations of placental shapes were calculated from the umbilical cord insertion, and from the
centroid of the shape (a biologically arbitrary point). These two were compared to the difference
between the observed scaling exponent and the Kleiber scaling exponent (0.75), considered optimal
for vascular fractal transport systems. Spearman’s rank correlation considered p<0.05 significant.

Results—(I) Unperturbed, random values of the growth parameter created round-oval fractal
shapes. Perturbation at 5-7% of model growth created multilobate shapes, while perturbation at 50%
of model growth created “star-shaped” fractals. (II) The radial standard deviation of the perimeter
from the umbilical cord (but not from the centroid) was associated with differences from the Kleiber
exponent (p=0.006).

Conclusions—A dynamical DLA model recapitulates multilobate and “star” placental shapes via
changing fractal branching density. We suggest that (1) irregular placental outlines reflect
deformation of the underlying placental fractal vascular network, (2) such irregularities in placental
outline indicate sub-optimal branching structure of the vascular tree, and (3) this accounts for the
lower birth weight observed in non-round/oval placentas in the Collaborative Perinatal Project.
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INTRODUCTION
The placenta is the primary fetal source of oxygen and nutrients. As such, it is a principal
regulator of fetal growth and fetal health. Typical placentas will grow uniformly out from the
umbilical cord insertion, resulting in a round to oval disk with a centrally inserted cord. A
variable maternal uteroplacental environment (the maternal “soil”) affects macroscopic
placental structure as a change in shape. Where the maternal “soil” is not receptive, placentas
will not grow, or not robustly. Irregularities in disk outline, umbilical cord insertion and in disk
thickness are markers of fetal-placental environmental pathology, denoting variable placental
arborization, and as such, deformation of normal placental growth resulting in an abnormal
placental structure. The microscopic growth of the human placenta involves repeated
branching, analogous to the roots of a tree; its mature arborization pattern is complex (e.g.,
[1-8]), so complex that it cannot be measured reliably even by expert, dedicated pediatric
pathologists [9,10]. Just as the pattern of roots reflects the underlying soil’s fertility and predicts
the health of plants that depend on those roots for sustenance, placental arborization reflects
the health of the maternal environment and impacts on fetal health [11].

The typical shape of a human placenta is well-understood [12], however, there are many
possible deviations from it. Shapes “other than round” can be difficult to classify; the
Collaborative Perinatal Project used a variety of terms to attempt to describe such abnormal
placental shapes but had to resort, after “bipartita” and “tripartite” to terms such as “multiplex”
to convey the complexity of placental shapes. Such subjective and imprecise terminology has
not advanced our understanding of the genesis of such shapes, and has limited our ability to
analyze the relationship of abnormal placental growth shapes to the health of the fetus and
child.

However, it is evident, that many atypically shaped placentas are quite regular, and can be
classified into several well-defined geometrical patterns. This regularity suggests that there
may be a common underlying pathological mechanism(s) responsible for much of the
variability of observed shapes of placentas. In this work we propose such a mechanism: we
derive the variability of placentas from a change in the branching structure of their vascular
trees. To demonstrate how this may occur, we introduce a dynamic model for the growth of
the vascular tree of a placenta. This model is based on a biologically realistic random growth
process. We then show how a change of the parameters of the growth at a single instance leads
to the appearance of the observed variability of placentas.

MATERIALS AND METHODS
Placental Cohort

The Pregnancy, Infection, and Nutrition Study is a cohort study of pregnant women recruited
at mid pregnancy from an academic health center in central North Carolina. Our study
population and recruitment techniques are described in detail elsewhere [13]. Beginning in
March 2002, all women recruited into the Pregnancy, Infection, and Nutrition Study were
requested to consent to a detailed placental examination. As of October 1, 2004, 1,159 women
(94.6 percent) consented to such examination. Of those women who consented, 1,014 (87.4
percent) had placentas collected and photographed for image analysis. Of the 1,014 consecutive
placentas collected, two cases were excluded because the trimmed placental weight was not
recorded, and six cases were delivered in fragments, such that measurement of chorionic plate
landmarks was not possible. This left 1,008 cases for analysis, 99 percent of the available
placental sample. Placental gross examinations, histology review, and image analyses were
performed at EarlyPath Clinical and Research Diagnostics, a New York State-licensed
histopathology facility under the direct supervision of Dr. Salafia. The institutional review
board from the University of North Carolina at Chapel Hill approved this protocol.
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The fetal surface of the placenta was wiped dry and placed on a clean surface after which the
extraplacental membranes and umbilical cord were trimmed from the placenta. The fetal
surface was photographed with the Lab ID number and 3 cm. of a plastic ruler in the field of
view using a standard high-resolution digital camera (minimum image size 2.3 megapixels).
A trained observer (D.H.) captured series of x,y coordinates that marked the site of the umbilical
cord insertion, the perimeter of the fetal surface, and the “vascular end points”, the sites at
which the chorionic vessels disappeared from the fetal surface. The perimeter coordinates were
captured at intervals of no more than 1 cm, and more coordinates were captured if it appeared
essential to accurately capturing the shape of the fetal surface. The chorionic vessels extend
out from the umbilical cord insertion and, at varying intervals from the edge of the fetal surface,
dive beneath the surface so that they are no longer visible. Those “vascular end points” mark
the terminal differentiation of the chorionic vessels into fetal stems and the finer structures of
the placental functional units (P. Kaufman, MD, personal communication).

Computer software
Numerical simulations of vascular trees were carried out using dla-3d-placenta, a Unix-based,
ANSI C, 3-dimensional, diffusion-limited aggregation simulation package. In its development,
we have used Mark Stock’s dla-nd arbitrary-dimensional diffusion-limited aggregation
simulator, a free software developed under the terms of the GNU General Public License as
published by Free Software Foundation. For DLA cluster visualization we have used
PovRay: a freeware ray tracing program available for a variety of computer platforms.

Random number generators
Random number generators used in this study include:

• drand48, an ANSI C system-supplied double-precision linear congruential uniform
number generator, (generates sequence of integers I1, 12, I3,..., each between 0 and
M by the recurrence relation In+1 = aIn + c(mod M).

• ran1(long *idum), uniform random number generator of Park and Miller with Bays-
Durham shuffle and added safeguards [14].

• ran2(long *idum), long period random number generator of L’Ecuyer with Bays-
Durham shuffle and added safeguards [14].

Seeing Stars (I)—The typical shape of a placenta is round, with the umbilical cord insertion
roughly at the center [12] , as illustrated in Fig. 1 (left column). We also calculated the mean
shape of a placental surface in our dataset. The insertion point of the umbilical cord was placed
at the origin, and the point on the perimeter closest to the rapture of the amniotic sac was
positioned on the negative vertical axis, for consistency. The perimeters were rescaled to a
common size. The points in the perimeter were then averaged inside a sector of 18º, thus
obtaining 20 radial markers for each placenta. Each of the markers was then averaged over the
whole dataset, thereby giving 20 mean placental radii from the umbilical insertion point spaced
at 18º angular intervals. They were further averaged to obtain the mean average placental
radius. The 20 mean radii were within 5% of the average placental radius, with the standard
deviation from the average equal to 1.8%. Thus, the mean shape is round, with a centrally
inserted umbilical cord. We aim to explain some of the variability from the round-oval shape,
concentrating on two regular shapes which appear prevalent:

• Star-shaped placentas (about 5% of all cases). A typical star has between 5 and 7
prominent spikes. Variability of the radius of a star, as measured from the umbilical
cord, is typically within 20 – 30% (Fig.1, middle column).
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• Several pronounced lobes. These placentas also account for about 5% of the total
cases. The number of lobes is typically 2 or 3 (Fig. 1, right column).

We propose to explain this observed variability by a deviation in the growth of the vascular
tree of the placenta. In the next section we introduce a dynamic growth model for a vascular
network. We then demonstrate how the model explains the observed shapes, and present
evidence to support our explanation.

A note on the existing models of vascular trees—Numerous static models of vascular
trees exist in the literature (see e.g. [15] and references therein). They are usually based on
various optimization algorithms for filling the spatial structure of an organ. Such an approach
is, however, completely unsuitable for our purposes. We aim to demonstrate how a deviation
in the process of the dynamical growth of the vascular network affects the macroscopic shape
of a placenta. We thus present a dynamic model of growth of a vascular tree. Local models of
angiogenesis exist in previous literature (see [16], for example), however, they do not take into
account the global vascular tree structure and only describe a growth of a single “strand” of
the tree — which is again unsuitable for us.

Modeling growth at the tips, or a cloud of blind flies—Growth of blood vessels is
recognized to depend on the concentration gradients of appropriate growth factors. Cells
situated at the tip of vascular sprouts sense and navigate the environment, while cells in the
sprout stalks proliferate and form a vascular lumen [17], [18], [19]. How do we model the new
growth of a vascular tree at the tips of the branches? For simplicity, let us discretize both time
and the units of growth. For a three-dimensional tree we should then ask where its tips are, to
determine where the growth is likely to occur in the next unit of time. While this does not
appear to be a simple task even for a tree with a few branches, there is a general (and easily
automated) method for doing this.

For illustration, consider a tree. At some distance from the tree, release a cloud of blind flies.
Flying randomly, without any sense of direction, our flies will only stop when they come in
contact with the tree. At this point, a fly would close its wings, and sit at the spot where the
contact occurred. It is a remarkable mathematical fact that:

It is one of the tips of the tree, where a fly is most likely to land (see Fig. 2).

We can thus identify the tips as the places with the most flies, and the relative number of flies
which have landed at a given extremity will correspond to the likelihood that the next unit of
growth will happen there.

To formulate this in more precise terms, let us select as a unit of growth (which we will call a
particle), a three-dimensional ball of a small diameter d. At each moment of time our tree grows
by one particle. At the initial time t=1, we start with a tree C1 consisting of a single particle.
Thus, at time n, our tree is a cluster Cn consisting of n particles. To grow it by one unit, consider
a large sphere S around Cn (much larger than the size of the cluster itself). Randomly select a
point w in S, as the initial position of a blind fly. The fly will perform a random walk (or a
random flight in this case) originating from w. That is, it will randomly perform a sequence of
moves up/down, left/right, forward/backward. Recording its spatial positions, we will see a
sequence of points

where wt is produced from wt-1 by adding an increment st. The increment always has the same
size, comparable to d (to fix the ideas, we can take it equal to d). The direction of the increment
has to be aligned with one of the three coordinate axes (up/down, left/right, forward/backward)
and randomly chosen from the six possibilities.
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If at some point of time t the point wt is at a distance of less than 2d from the cluster Cn, then
we attach a new particle to this position, and thus obtain a bigger cluster Cn+1. If before this
happens, the particle wt drifts outside of the large sphere 2S, then we discard it, and select a
new initial point w.

Such random growth, first introduced by Witten and Sander in 1981 ([20], [21]), is known to
physicists under the somewhat unwieldy name Diffusion Limited Aggregation, or DLA for
short.

Visualizing a DLA tree as a vascular network—A tree Cn constructed in this way
consists of n three-dimensional balls, all with the same small diameter d. To visualize it
consistently with the structure of a vascular network, we need to make some of the branches
thicker, and the other thinner. We first identify its branch structure in the following way. We
say that a particle x is an immediate descendant of a particle y, if x is attached to y, and y is
older than x. Further, xn is a descendant of x=x0 if there is a chain of DLA particles

such that xi is an immediate descendant of xi-1 for 0 < i ≤ n-1. Now we can assign a visualization
size v to each DLA particle, consistently with the principle, that bigger vessels grow first.
Specifically, let the weight m of a particle x be the total number of its descendants. Thus, older
particles, which are located closer to the root (the very first particle C1) of the DLA tree, will
have a larger weight. We then assign

with a suitably chosen parameter a to visualize the model vascular tree. Changing the diameter
of each DLA particle to its visualization size we obtain a model vascular tree with the thickness
of branches varying consistently with the structure.

Growing denser trees—Our model has a single parameter 0<κ≤1which will be completely
crucial to our study. It is the probability that a DLA particle will stick to the cluster when it
collides with it. Think again of a blind fly which has encountered one of the tips of the tree. If
κ≠1, then with non-zero probability 1-κ the fly will continue its travels. Most likely, it will end
up sitting at some nearby point of the tree, but not necessarily at the tip. The effect of this is to
add some diffusion to DLA growth. The smaller the value of κ is, the more “hairy” the resulting
tree will become.

From modeling considerations, it is also useful to note that the physical size d (as opposed to
the visualization size) of a DLA particle can be changed during the growth of the cluster. This
is a quick and dirty way of changing the branching structure. A smaller particle will also tend
to diffuse along the tips of the DLA cluster formed by larger particles, hence a reduction of
d will create more branching.

Growing a human placenta with DLA—To model the growth of a placental vascular tree,
we surround our growth with a spherical constraint, modeling the walls of the uterus. The
constraint absorbs any DLA particle which hits it from the interior, thus ensuring that no growth
penetrates the constraint. The initial cluster marks the insertion of the umbilical cord. It is
placed near the “south pole” of the constraint.

To ensure that the initial growth is directed towards the constraint (the umbilical cord does not
grow away from the wall of the uterus), it is helpful to select the initial cluster C1 consisting
not of one, but of several DLA particles. The number of particles in C1 is still insignificant,
compared with the overall size of the DLA growth (in our experiments, it is between 0.01-1%
of the total). We have experimented both with a deterministically defined C1, and with a short
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initial cluster given by an opportune DLA growth, with identical results. The total number of
DLA particles in a grown model vascular tree is between 150-200 thousand.

Once the parameters, such as the position and the shape of the initial cluster have been chosen,
the model was tested by varying the random number generator (RNG) used to grow DLA. We
have tested the model in two ways: by changing the “seed” of a given RNG (this changes the
random number sequence but not the algorithm which produces it); and by changing the RNG
itself. The results were very robust (Fig. 3).

Seeing Stars (II)—To produce models of placentas of irregular shapes we have varied the
branching parameter κ of the growth at various stages of the development of the model placenta.
A single instance of the change in the value of κ over the course of growth of the model is
required to produce the observed variability (see Fig. 4):

• Decreasing the branching parameter κ (by a multiple 0.01) at an early stage of the
growth (after 5-7% of DLA particles have attached) leads to a picture with several
(typically two or three) large lobes. Qualitatively, the large vessels grow apart early,
and with an increased degree of branching, the tree does not produce enough “medium
size” branches to uniformly fill a circular shape (Fig.4, middle column).

• Well-defined stars with 5-7 pronounced arms correspond to a change of branching at
a late stage of growth (typically after 50% of DLA particles have attached). We have
achieved this result by decreasing κ, and alternatively, by decreasing the physical size
of the DLA particle (Fig. 4, right column). Changing the physical size of a DLA
particle turns out to be a more convenient parameter here (the size was typically
decreased by 20%).

As further comparison of model shapes, we calculate the mean distance of a small vessel to
the point of insertion of the umbilical cord in a sector of 5°, which is then rotated in increments
of 2.5°. In each of the 5° sectors, we then mark the point on the bisector, whose distance to the
vertex is equal to the mean distance for this particular sector. Connecting these points by line
segments, we obtain a diagram, tracing the shape of the model placenta. The diagrams in the
bottom row of Figure 4 correspond to the model placentas above them, in the third row of the
same figure.

A further evidence for the mechanism of star formation we are describing is found in the
variability of thickness of star-shaped placentas. A change in the density of the vascular tree
is going to correspond to changing thickness of the placenta. Thus in a “star”, the arms will be
thicker than the areas between them. In a vertical slice, this would produce a wavy pattern,
schematically shown in Fig. 5 (top).

In Fig. 5 we demonstrate vertical slices of placentas taken at 1cm intervals. First is a typical
placenta, with slices exhibiting uniform thickness. Next are pictures of slices of stars, with a
wavy pattern clearly visible.

Further evidence that variable shapes reflect the architecture of the vascular
fractal: deviations from the ¾ rule—The ¾ rule (or Kleiber’s Law) is a famous allometric
scaling law, which postulates that the basic metabolic rate B and the body mass M are related
as

If the vascular system consisted of thin tubes of small size, uniformly filling the volume of the
body, one would expect the two variables to be proportional. The appearance of a power ¾ is
explained by the fractal structure of the vascular tree (see e.g. [22]). The fact that the same
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power law is observed in many different organisms, suggests a universality of vascular
architecture. Some explanations of this universality (such as the model in [22]) have appeared
in the literature.

We have verified this scaling law for human fetuses, using the placental weight as a proxy for
the basic metabolic rate ([23]). This results in an allosteric scaling equation

(*)

in which represents the unknown power. The calculated value of was 0.78 ± 0.02 in an
excellent agreement with the rule.

Our DLA model is premised on the shape of the placenta reflecting an underlying vascular
fractal. It is thus reasonable to expect, that a deviation from the typical round shape of a placenta
with a central insertion of the umbilical cord will be correlated with abnormal placental vascular
architecture. The latter should result in a deviation from the normal value of β ≈ ¾.

To test this prediction, we have employed several measures of deviation from a round placental
shape. Firstly, we have calculated the standard deviation of the radius, measured from the point
of insertion of the umbilical cord. For a round placenta with a central insertion, this value is
0. However, this measure will not differentiate between a regular ellipse and a star. We have
used another simple measure, the roughness, calculated as the perimeter of the shape divided
by the perimeter of the smallest convex hull that contained the shape. It is equal to 1 for any
convex shape, such as a circle. Descriptive statistics determined the percentage with values for
both parameters within 10% of the values for a round circle (0, 1 respectively), and for the
subsequent deciles of deviation.

In Table 1 the results of Spearman’s rank correlations are presented for our dataset. The variable
OutSdRCrd is the deviation of the radius from the point of insertion, OutRough is the roughness.
Both of them are significantly correlated with the variable ◻◻ which is the difference between
the computed value of β from the scaling equation (*), and the “ideal” value 0.75. The inverse
(-) association of the radial deviation and ◻◻ means that as the deviation increases the
difference between β observed and 0.75 is greater.

Our interpretation is confirmed by the lack of correlation of the variable OutSdR (the standard
deviation of the radius calculated from the centroid of the placental shape) with the deviation
from 0.75. This is as we predict, since the centroid of the placental shape is an arbitrary
geometrical center that does not directly relate to the underlying vascular architecture that
ramifies out from the umbilical cord insertion site.

CONCLUSION
We have presented a mechanism which accounts for two of the most common patterns of
abnormal placental shapes (multilobate placentas and star-shaped placentas), specifically,
changes in the arborization of the vascular tree. To confirm it, we have developed a dynamic
model of growth for the vascular tree based on a DLA random growth process. We have
demonstrated that the observed variability of shapes is explained by a change of the arborization
parameter of the model at a single time instance. Thus, the time in gestation of determination
of these two patterns may be distinct.

In addition, we have empirical evidence that the shape of the placenta does reflect the
underlying vascular fractal; deviations from symmetric fractal expansion out from the
umbilical cord insertion are associated with reduced placental functional efficiency, i.e., a
smaller birth weight for the given placental weight. We speculate that these deviations reflect
placental compensations responding to stressors or variability in the maternal environment.
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The use of a fractal model of this type is reasonable to model the placenta. Its structure is little
more than a thin tissue sheath covering a complex arborizing vascular network. Our empiric
data are consistent with its function being intimately dependent on its structure, suggesting that
our model will be germane to any studies of birth weight as a measure of the adequacy of the
intrauterine environment. Restriction of placental vascular outgrowth is a potent model of fetal
growth restrictions [24]. Placental growth within the uterine lining has been likened to tumor
growth for decades [25]. Fractals have likewise proved fruitful to analysis of retinal vasculature
architecture [26] as well as the vascular structure of the heart and brain [27]. As every
mathematical model of a biological process, ours is based on several assumptions which may
oversimplify the reality, and should be applied with some caution. It does provide an insight,
however, into the connection between the plancental spatial shape and the underlying
vasculature, which invites further investigation.

Birth weight has been used as a proxy for the adequacy of the intrauterine environment in most
studies of the fetal origins of adult health risks ([28-45]). Our findings correlate it with the
placental shape and structure, and thus may be helpful in studies of the relationship of
intrauterine stressors to the fetal modifications that are believed to underlie these lifelong health
risks.
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Figure 1.
Placental shapes. Left column: normal round to oval shapes, middle column: “stars”, right
column: multilobate shapes.
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Figure 2.
A tree with eight symmetric branches, and the positions where the first 100 “blind flies” land
on it, generated by a numerical simulation (marked with dots).
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Figure 3.
some examples of model vascular trees. On the left is an XY-plane projection, on the right is
a YZ-projection. In the YZ-plane the spherical constraint is apparent.
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Figure 4.
Model placentas of variable shapes. Left column: model normal placentas. Middle column:
model three-lobate placentas. Right column: model star-shaped placentas. Bottom row:
comparison of shapes. The average distance of a blood vessel to the point of insertion of the
umbilical cord in a model placenta (marked in sectors of 5°, rotated in increments of 2.5°).
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Figure 5.
variable thickness of slices. Top row: the position of a vertical slice of a star is indicated
schematically on the left, on the right is a drawing of the slice. Second row: the slices of a
round placenta have uniform thickness. Third and fourth rows: slices of star-shaped placentas.
The wavy shape of a slice is apparent.
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Table 1
correlation of the deviation from a round shape with a deviation from the ¾ rule. Lower value of significance level
means stronger evidence (e.g. 0.009 means 9 in a 1000 chance that the correlation happens by a coincidence).

Δβ
OutSdR Pearson Correlation .020

Significance .485
Number of measurements 1199

OutSdRCrd Pearson Correlation -.076
Significance .009
Number of measurements 1187

OutRough Pearson Correlation .091
Significance .002
Number of measurements 1199
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