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Abstract

Somatic sequencing of cancers has produced new insight into tumorigenesis, tumor heterogeneity,

and disease progression, but the vast majority of genetic events identified are of indeterminate

clinical significance. Here we describe a NextGen sequencing approach to fully analyze 248

genes, including all those of known clinical significance in melanoma. This strategy features

solution capture of DNA followed by multiplexed, high-throughput sequencing, and was evaluated

in 31 melanoma cell lines and 18 tumor tissues from patients with metastatic melanoma.

Mutations in melanoma cell lines correlated with their sensitivity to corresponding small molecule

inhibitors, confirming, for example, lapatinib sensitivity in ERBB4 mutant lines and identifying a

novel activating mutation of BRAF. The latter event would not have been identified by clinical

sequencing and was associated with responsiveness to a BRAF kinase inhibitor. This approach

identified focal copy number changes of PTEN not found by standard methods, such as

comparative genomic hybridization (CGH). Actionable mutations were found in 89% of the tumor
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tissues analyzed, 56% of which would not be identified by standard-of-care approaches. This work

shows that targeted sequencing is an attractive approach for clinical use in melanoma.

INTRODUCTION

Clinical sequencing is already an essential part of melanoma treatment. Mutations in BRAF

and KIT have both high frequency (45% and 4% respectively (Hodis et al. 2012;

Krauthammer et al. 2012)) and clinical implications in melanoma (Flaherty et al. 2010; Kim

et al. 2008). Numerous other oncogenic mutations, including NRAS, and PIK3CA (18% and

3% of melanoma) could join the list of clinically actionable mutations, as ongoing clinical

trials progress (Ascierto et al. 2013). Additional therapies are also in development for driver

mutations that infrequently occur in melanoma (e.g. EZH2, RET, MEK1). Bringing these

therapies to bear on melanoma treatment will require rapid identification of tumor genotype

across a large, but defined subset of genes.

Recent whole exome sequencing studies have demonstrated substantial power and

sensitivity to discover new genes with significantly elevated mutation rates in melanoma.

Two such studies recently identified mutations of RAC1 and ARID2 as potential pathogenic

events in melanoma, among others, (Hodis et al. 2012; Krauthammer et al. 2012). Studies of

melanoma whole exomes, such as The Cancer Genome Atlas project, are powered to

identify genes mutated at even lower frequency. Whole exome analysis, however, suffers

from several drawbacks. Current methods cost ~$1,000 per sample for sequencing alone, as

well as additional costs of the capture methods. As exome sequencing is currently not

amenable to a high level of multi-sample pooling (multiplexing), it also incurs high cost in

both personnel and sequencing machine time. Perhaps most problematic, whole exome and

whole genome studies require computationally intensive bioinformatics analysis and data

storage consuming significant resources and specialist interpretation. This problem has been

described as “The $1,000 genome, [and] the $100,000 analysis” (Mardis 2010). Lastly, even

after a list of high confidence somatic mutations has been generated and annotated from

exomic data, the vast majority of such events will be of unknown significance.

More targeted approaches exist that can potentially alleviate the above issues. These options

include PCR-based resequencing or in-solution hybrid capture techniques with a more

focused target list. These approaches reduce costs and complexity at each stage. In the case

of PCR-based resequencing, reduction of the DNA sequence target to a much smaller scale

(< 1 megabase, Mb) permits more rapid sequencing and library generation, much higher

levels of multiplexing, and more simplified bioinformatics analysis. Hybrid capture

technologies, by comparison, retain a slower library generation process, but similarly allow

increased multiplexing for reduced sequencing requirements and per-sample costs. Hybrid

capture has two principal advantages over PCR-based approaches: it permits analysis of a

larger target (several MB), and, with concurrently sequenced matched normal control, can

be used to identify copy number events (Chinnaiyan & Palanisamy 2010; J. Li et al. 2012;

Sathirapongsasuti et al. 2011; Timmermann et al. 2010). The latter is of particular relevance

in melanoma, where deletion of tumor suppressor genes (e.g. CDKN2A, STK11 and PTEN)

plays a critical role in tumor pathogenesis.
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To develop a more cost effective sequencing pipeline we designed a targeted hybrid capture

approach for use in solid tumors including melanoma. This panel was designed to find all

known genetic events of clinical relevance for these cancers. The approach employed is

flexible and customizable to addition of new genes as their roles in cancer are better

characterized and clinical correlates are defined, and can make use of germline sequencing

information when available. Our captured list increased from 75 genes in version 1 to 248

genes in version 6. We first employed this assay on a panel of melanoma cell lines, and

identified novel genetic events that correlated with increased sensitivity to corresponding

small molecule inhibitors. We subsequently performed targeted exon capture sequencing in

18 tumor tissues obtained from patients with metastatic melanoma, including 4 tumor tissues

that were prospectively collected along with matched peripheral blood. Actionable events

detected in the prospective samples were disclosed to treating physicians after validation in a

clinical laboratory improvement amendment (CLIA) assay.

RESULTS

Targeted Capture and Sequencing Genotyping of Melanoma Cell Lines and Tumors

We performed target resequencing of genes with a reported role in melanoma and other

solid tumors by employing a multiplexed, in-solution capture in 31 melanoma cell lines and

18 patients. Variants were identified by comparison to matched normal specimens for the

prospective samples, or with the Unified Genotyper single sample mutation calling pipeline

(DePristo et al. 2011; McKenna et al. 2010) for the retrospectively collected tumor tissue

from patients with advanced melanoma and various melanoma cell lines (see methods).

Calls from retrospective samples without a matched normal were subjected to further

filtering to remove likely germline variants. This informatics approach was employed to

identify possible somatic variants with clinical relevance in melanoma treatment, biology,

and prognosis.

By applying version 1 (V1) of the assay in 31 melanoma cell lines, we identified 237 single

nucleotide variants (SNV) in coding regions of 59 genes (Table 1 and Supplementary Tables

1 and 2) and 15 insertion-deletion (indel) variants in 10 genes. Of the SNV calls, 64 were

synonymous (S) and 173 nonsynonymous (NS), including 9 resulting in a stop codon gain,

for a nonsynonymous-to-synonymous (NS:S) ratio of 2.70. This was higher than that seen in

previously reported whole-exome study of melanoma cell lines (Stark et al. 2012), likely due

to a higher degree of selection on this gene subset. Given our target sequence size of 446 kb

in 31 lines, this is an overall somatic mutation rate of 18 somatic mutations per Mb per line

(inner quartile range 8.97 to 26.9), consistent with the high mutation rate previously

described in melanoma (Hodis et al. 2012; Pleasance et al. 2010; Stark et al. 2012).

To demonstrate the clinical utility of our sequencing approach we subsequently used V2 of

the assay (Supplementary Table 1) to analyze 14 retrospectively collected melanoma tumor

tissues. For these samples, matched germ line DNA was not available, and therefore likely

germline events were filtered using bioinformatic approaches (see methods). By employing

this approach we identified 68 SNV and 4 indel variants in coding regions of 52 genes. Of

the SNVs, 50 were coding and 18 noncoding for a ratio of 2.78 and an average 25 somatic

mutations per Mb per tumor (inner quartile range 12.7 to 42.4).
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Finally, by employing V6 of the assay (Supplementary Table 1), we analyzed 4 tumors

prospectively collected from patients with metastatic melanoma for which a matched normal

tissue was available. SNVs were called by a more robust approach, relying on sequencing of

the matched normal to control for germline variants. We identified 105 coding variants, with

a range from 2 to 64 somatic mutations per patient.

Internal and External Validation

We previously sequenced NRAS, KIT, BRAF, MET and CDKN2A/B in the panel of 31

melanoma cell lines ((Shields et al. 2007) and not shown). These results were confirmed

using the V1 of our next generation sequencing (NGS) assay. A normal primary fibroblast

cell line processed in parallel with the melanoma cell lines resulted in only one synonymous

variant called as an SNV, validating that our approach has a low rate of false positives. In

the four melanomas with a matched normal, we identified seven mutations, out of which

five were successfully validated using a CLIA-certified assay. Although it is possible that

our failure to confirm these two mutations may reflect sequencing errors of our NGS assay,

more likely, we believe the observed discordance reflects lower sensitivity of the CLIA-

certified assay (e.g. Sanger sequencing), especially in the presence of stromal contamination

(Nollau & Wagener 1997). These results suggest the assay is highly accurate with regard to

the detection of SNVs in cell lines and primary tumors.

In comparison with published melanoma datasets (COSMIC (Forbes et al. 2011) and two

studies (Hodis et al. 2012; Krauthammer et al. 2012)), somatic single nucleotide mutation

frequencies and profiles were similar for both melanoma cell lines and tumors (Fig. 1A,B).

For example, BRAF and NRAS mutations were noted in 52% and 21% respectively of all

samples (cell lines and patient samples). Canonical BRAF V600E and NRAS Q61R

mutations were present at a range of estimated allele frequencies in patient derived samples

(from 16% to 91%). This suggests robust detection of mutations in the presence of

substantial aneuploidy or stromal contamination. In addition, single base pair mutations in

cell lines and unmatched tumor samples exhibited C → T mutation bias (Fig. 1C,D). This

mutation profile has been reported in whole genome (Pleasance et al. 2010) and exome

sequencing (Hodis et al. 2012; Krauthammer et al. 2012) in melanoma, suggesting common

ultraviolet light-induced mutagenesis. These data suggest targeted NextGen sequencing

yields mutation frequencies and spectrum that are similar to large-scale whole genome and

exome sequencing strategies.

Exemplary Events not Found by Standard Analyses

Apart from hot-spot mutations of RAS/RAF/KIT detected by standard molecular pathology

approaches, the assay was able to identify a diverse set of genetic aberrations not found

using standard clinical sequencing. For example a 5 codon in-frame deletion mutation of

BRAF in the Mel537 cell line was discovered (BRAF del486-491) (Fig. 2A). This mutation

exhibited remarkable structural similarity (Fig. 2B) to activating in-frame deletions of the

EGFR kinase found in non-small cell lung cancer (Jackman et al. 2006). Consistent with this

mutation being an activating event, this line co-clustered with NRAS and BRAF mutant

tumors, but not with RAS/RAF wildtype tumors, in an RNA expression analysis

(Supplementary Fig. 1). Additionally this line exhibited increased levels of phospho-ERK
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that decreased with treatment with a BRAF inhibitor, PLX-4032 (Fig. 2C,D), in contrast to

the paradoxical increase in phospho-ERK that occurs in NRAS mutant tumors (Fig. 2C,

VMM39, see also (Carnahan et al. 2010; Halaban et al. 2010; Heidorn et al. 2010)).

Compared to lines harboring the classical V600E BRAF mutation, Mel537 was

comparatively less sensitive to both BRAF (PLX-4032) and MEK inhibitors (trametinib or

GSK1120212 (Stones et al. 2013)) (Fig. 2C-F). This observation may be driven by altered

downstream signaling in the BRAF del486-491 mutant, altered binding of drug substrates, or

by additional mutations in the Mel537 cell line not related to the RAS-RAF-ERK signaling

cascade. These results suggest that the BRAF del486-491 mutation is a non-canonical

mechanism to activate ERK and downstream targets in melanoma, and is associated with

moderate sensitivity to BRAF and MEK inhibitors.

Consistent with a prior report (Prickett et al. 2009; Stark et al. 2012), we noted several

mutations in diverse regions (Fig. 3A) of the ERBB4 gene in melanoma cell lines and

tumors. Melanoma cell lines harboring mutations of this kinase exhibited a trend (p=0.1)

towards enhanced sensitivity to the EGFR-inhibitor, lapatinib, in accordance with prior

findings (Fig. 3B) (Prickett et al. 2009). While these mutations appear common (observed in

10% of melanoma primaries and cell lines assessed in this sample), the dispersion of these

mutations throughout the gene makes their identification difficult by classical (Sanger)

sequencing. Other potential clinically actionable events were observed in both melanoma

cell lines (Supplementary Table 2) and clinical samples (Table 2) and included previously

described as well as novel mutations in PIK3CA and KIT.

Tumor Suppressor Loss

In addition to detecting mutations in oncogenes, we employed our NextGen assay to detect

genetic aberration in tumor suppressor genes that play important roles in melanoma

progression (Dankort et al. 2009; Liu et al. 2012), overall prognosis (Nathanson et al. 2011),

and response to small molecule inhibitors (Trunzer et al. 2013). To estimate tumor

suppressor inactivation in the melanoma cell line panel, data from NextGen sequencing were

analyzed to identify complete deletion of targeted exons. For this analysis, we identified

exons with no sequencing coverage in a subset of melanoma cell lines with otherwise

substantial coverage (>30x) in other lines. These calls were validated by CGH array data

where available.

All NextGen-based deletion calls were consistent with CGH arrays, and vice-versa, with the

exception of highly focal deletions of PTEN noted in two melanoma cell lines that were

called in sequencing but were undetectable by CGH (Fig. 4A). These were regions with

complete loss of coverage of individual exons of PTEN in the WM2664 and SKMEL24

lines (Fig. 4B). These findings were in keeping with the total absence of PTEN protein

observed in these lines by ourselves and others ((Stahl et al. 2003) and not shown).

Melanoma cell lines with larger deletions spanning the PTEN gene were apparent as loss of

sequencing coverage of all exons, while the majority of lines showed intact PTEN genes

with coverage of all exons. When these genetic aberrations were combined with SNV/indel

calls, the observed rates of CDKN2A, PTEN and TP53 mutation were 44%, 29%, and 24%
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respectively (Fig. 4C), consistent with prior analyses of melanoma cell lines (Forbes et al.

2011; Stark et al. 2012) and TCGA (see e.g. cBioPortal (Cerami et al. 2012)).

Combined SNV and copy number analysis of NextGen sequencing yielded a high total rate

of less common tumor suppressor gene (TSG) mutations in our clinical samples as well

(Table 2). Mutations in APC, ATM, BRCA1, BRCA2, PTEN, RB1 or TET1 were seen in 10

out of 14 completed patients (71%) lacking matched normal. We additionally identified

copy number changes in both target and off-target regions by comparing tumor coverage to

that of the matched normal, where available. When restricting the analysis to captured

genes, two tumors had copy number changes reaching significance (adjusted p < 0.10).

These were in CCND2 (5.4 fold copy number vs. normal) and PTEN (0.3 fold copy number

vs. normal), and both are commonly mutated in melanoma (Forbes et al. 2011), TCGA

(cBioPortal (Cerami et al. 2012)). Collectively, our results show the ability of targeted

capture exome NGS to detect various genetic aberrations, both mutation and copy number

changes, in common as well as infrequently mutated genes, which may provide further

insights about their role in prognosis and treatment decisions.

Assessment of Clinical Actionability and Result Reporting

To assess the potential clinical applicability of this targeted sequencing approach, we

identified patients with somatic mutations that might influence clinical care (Table 2). These

mutations were associated with either a potential treatment (small molecule inhibitors) or

with use in prognosis and diagnosis (Table 3). Therapeutic indications were mutations

associated with sensitivity to agents i) approved for use in melanoma, ii) approved for use in

a different tumor type or iii) in human clinical trials for melanoma. Of the 18 patient-derived

tumors, 16 patients (89%) carried mutations that could influence treatment decisions,

including possible enrollment into a clinical trial. These included BRAF activating mutations

(V600E and D594E) as well as mutations in ALK, ERBB4, KIT, and PIK3CA. Even

excluding BRAF mutations found by standard clinical testing, 9 patients exhibited mutations

that could influence therapy. This ‘actionability’ rate is comparable to that recently reported

by another group in a large study of multiple cancer types including melanoma (Frampton et

al. 2013).

Patients with metastatic melanoma who consented to have their tumor sequenced for

actionable somatic mutations underwent NextGen sequencing using our assay as part of an

ongoing clinical trial (NCT01457196). Somatic mutations deemed clinically actionable by

the above criteria could be reported to a physician after validation using a CLIA-certified

assay. In the four melanomas analyzed, we found between 0 and 6 actionable mutations per

tumor (Table 3). One tumor had the BRAF V600E mutation alone. Two other tumors had

several mutations, including one in MAP3K1, recently reported to have tumor suppressor

activity in melanoma (Stark et al. 2012), as well as ERBB4 and PIK31R. Mutations in five

genes (ABL, BRAF, MET, PDGFRA, and PDGFRB, Table 2 underlined) from 3 patients

were confirmed by a CLIA-certified method and reported in the clinical record. These

results indicates that this low-cost, capture-based sequencing can be performed in clinical

real-time to provide actionable information beyond currently performed clinical sequencing.
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DISCUSSION

In this report, we describe the development and performance of a customized, capture-based

NextGen assay to identify somatic genetic aberrations, both mutations and copy number

changes, in genes associated with cancer development, progression, prognosis, and response

to treatment. Identification of such genetic aberrations may influence clinical care of patients

with melanoma and other cancers. This approach can be easily modified to include

additional genes whose role in cancer is being better established. Using this approach, we

demonstrated in a limited number of tumor tissues obtained from patients with advanced

melanoma that such patients harbor a high frequency of actionable genetic aberrations

beyond BRAF, NRAS and KIT. We observed actionable events both for oncogenes outside of

regions commonly subjected to sequencing in the current clinical setting (e.g. “non-

canonical” mutations of BRAF) and of druggable oncogenes not traditionally considered to

drive melanoma formation (e.g. PIK3CA and ERBB4). For three cases, events identified

using this approach were validated using CLIA-approved methods and reported to patients

and caregivers within the context of a clinical trial.

While whole exome/genome analyses have their merit for scientific discovery, we believe

that the use of highly targeted sequencing panels is presently the most cost-effective

approach for use in clinical decision-making. In addition to cost-efficacy, highly targeted

sequencing can produce greater depth of sequencing coverage over the target, allowing the

identification of mutations with relatively low minor allele frequency (<10%) within a

sample. This is essential for samples with stromal contamination, which is likely to be a

common feature of clinical samples, or in the presence of genetic heterogeneity within the

tumor. Such an approach will be valuable in upcoming clinical trials that attempt to: identify

in real-time patient subsets that may exhibit primary resistance to small molecule inhibitors

(Trunzer et al. 2013), understand the genetic patterns of resistance to small molecule

inhibitors (Nazarian et al. 2010; Shi et al. 2012), and provide guidance for rational treatment

combinations applicable only to select patient subgroups. This approach leverages the

information from large discovery-driven projects (Hodis et al. 2012; Krauthammer et al.

2012) and TCGA while allowing significantly reduced costs through multiplexing.

Additional multiplexing is likely to be possible as sequencing technologies continue to

advance. Of note, we have now extended the assay to formalin-fixed paraffin embedded

(FFPE) samples, allowing for greater utility in common clinical care. DNA quality from

FFPE in general is adequate for capture based NextGen sequencing, yielding results

comparable to those obtained using frozen material (not shown and (Frampton et al. 2013)).

Using this approach, we identified an unusual mutation (del486-491) in BRAF in a cell line

that would not be identified by standard-of-care approaches. Although we are not aware of a

prior identification of this BRAF mutation in melanoma, the del486-491 mutation has been

previously reported in an ovarian cell line (Hanrahan et al. 2012). The ability of this

mutation to lead to activation of ERK and its moderate sensitivity to BRAF and MEK

inhibitors suggests this mutation merits clinical assessment. We believe this mutation may

be more common than appreciated, having escaped prior identification because it is not in a

commonly analyzed exon (12 as opposed to 15 and 11) and is a 15 bp deletion, requiring

approaches dedicated toward identifying these events. Targeted sequencing successfully
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identified BRAF and NRAS mutations observed in melanoma, but also discovered more rare

events in these genes. This approach also readily identified canonical, activating mutations

of other druggable oncogenes, many of which are the target of ongoing clinical trials (e.g.

PIK3CA).

The ability to uncover many simultaneous mutations within a melanoma affords new

opportunities for multiple targeted therapies. However, the principles of such treatments

remain unclear. Which mutations, if any, should take priority for targeting, or should

multiple oncogenic mutations always be targeted with multiple therapies? Though it seems

likely that multiple therapies will more effectively target resistance pathways, as with dual

BRAF/MEK inhibition in melanoma, multiple pathway targeting has also lead to increased

toxicity (e.g. as seen with combinations of MEK and PI3K inhibitors). Most difficult is the

rarity of any one particular assemblage of mutations, given the number of possible mutations

involved. In the near term, the personalization of cancer therapy remains experimental.

Finally, capture offers a platform for determination of genetic aberrations in tumor

suppressors genes, allowing simultaneous assay of SNVs, indels, and copy loss in genes

such as ERBB4, STK11, RB1, CDKN2A, and PTEN. Inactivation of these genes is common

in melanoma, and likely will strongly affect tumor biology. For example, RB1/CDKN2a

status correlates with sensitivity to CDK4/6 inhibitors (Wiedemeyer et al. 2010), whereas

loss of ERBB4 is associated with lapatinib sensitivity (Figure 4 and ((Prickett et al. 2009)),

which is currently being tested in a clinical trial (NCT01264081). Our results identifying

microdeletions within the PTEN gene are of particular interest, since such events were not

detected by CGH and could play important roles in targeted therapy. Recent improvements

in bioinformatic techniques enabling comparison of patient germline to neoplastic tissue for

CNV detection will aid future analysis of targeted tumor suppressor sequencing in a clinical

setting. The ability to affordably and reliably assay TSG status could aid prognosis,

subtyping and therapy in melanoma.

METHODS

Clinical Material

Snap-frozen primary tumor tissues were obtained as part of institutional review board (IRB)-

approved protocols at the Lineberger Comprehensive Cancer Center and the University of

North Carolina. Samples from four prospective patients were collected under an ongoing

clinical trial LCCC1108 (NCT01457196), whereas samples from 14 retrospective patients

were collected under IRB#09-0989. For the four prospective patients, a matched normal

tissue (whole blood), was also acquired. DNA was isolated with the Puregene DNA

Purification Kit (Gentra Systems) or DNAeasy (QIAGEN).

Sequencing Library Preparation and Capture

Custom adapters were designed to match Illumina PE adapters with an additional 4

nucleotide ‘barcode’ sequence located internal to the first and second read sequencing

(Supplementary Fig. 2). Barcode sequences were designed to require errors in at least 2
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locations to be misidentified, allowing for error correction with the use of paired reads

tolerant to up to 3 errors.

Sample workflow is detailed in Supplementary Figure 3A. Libraries were constructed per

the SureSelect protocol (Agilent) with custom adapters replacing the Illumina PE adapters.

Samples were quantified by bioanalyzer prior to capture, and pooled in equimolar quantity

with 10 libraries to a pool in the case of cell lines and 8 libraries to a pool in the case of

melanoma tumor samples to a final quantity of 500ng. Four samples for which a matched

normal was available were prepared with the SureSelect XT library preparation kit (Agilent)

by manufacturer protocols. Capture and post capture amplification for all samples proceeded

by SureSelect protocol. Samples were sequenced on the GAII or HiSeq machine in a variety

of formats (see Supplementary Table 3).

Bioinformatics Analysis of Unmatched Samples

Bioinformatics workflow is detailed in Supplementary Figure 3B. Custom Java applications

were used to assign multiplex libraries to their source sample, after which samples were

mapped using the Burrows-Wheeler Aligner (Keniry & Parsons 2008) to the hg18 reference

genome. The Genome Analysis Toolkit GATK (version 1.0.5506)(H. Li & Durbin 2009)

was used for quality score recalibration, indel realignment, and SNV and indel calling. SNV

and indels were then annotated for appearance in prior 1,000 genomes (DePristo et al. 2011;

McKenna et al. 2010) and dbSNP version 130 (Consortium 2012) to filter likely germline

mutations and identify affected transcripts using the ANNOVAR tool (Sherry et al. 2001).

Mutations with any prior detection rate in 1,000 genomes samples as annotated by

ANNOVAR were ignored in further analysis, with exception of the NRAS Q61R mutation,

which appears in dbSNP 130, as it is a known oncogenic event. Analysis of duplicate reads

counts, base quality calls, and read mapping percentages were performed at appropriate

steps as quality control. One line sequenced, 1205LU, was proved to be murine in origin,

and was excluded from downstream analysis. Two cell lines believed to be distinct were

genetically identical (SKMEL78 and SKMEL88), and were treated as a single line in

analysis.

Bioinformatics Analysis of Matched Samples

Bioinformatics analysis of tumor samples for which DNA extracted from a same-patient

normal tissue was available followed a similar IRB-approved protocol, but somatic variants

were called using Varscan (Koboldt et al. 2009) and annotated using the ANNOVAR

utility(Wang et al. 2010). Coding somatic variants with “Moderate” or “High” predicted

effects were reported. For copy number analysis, each gene targeted to capture is tested for

significantly different coverage compared to a normal reference using the DESeq algorithm

(Anders & Huber 2010).

Gene Expression Microarray

Previously published gene expression microarray data sets (Carson et al. 2012) were filtered

for the top 10% most variable genes (standard deviation of log2 ratio of expression vs.

reference) and median centered by gene. Probe sets were clustered by unsupervised

hierarchical clustering using uncentered correlation as the similarity metric via the Gene

Jeck et al. Page 9

Pigment Cell Melanoma Res. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Cluster 3.0 (Carson et al. 2012) tool and visualized with Java TreeView (de Hoon et al.

2004).

Array Based Identification of Copy Number Variation

For array-based determination of copy number in cell lines we used the Agilent 180K

SurePrint G3 Custom CGH+SNP arrays (catalog # G4884a). Calls were determined by

circular binary segmentation with the DNAcopy package through Bioconductor. Calls were

filtered for those with a log2 ratio < −0.5 and p value < 0.01. These were further analyzed

for deletions in APC, CDKN2A, MSH6, TP53, RB1, and PTEN tumor suppressors.

Sequencing Based Identification of Copy Number Variation in Cell Lines

Coordinated analysis of these same genes by sequencing utilized the clonality of cultured

cell lines to identify additional deletion events. Deletion regions of the genome were those

showing zero coverage by high-throughput sequencing reads. As coverage is expected to be

low except in regions of capture, we restricted our analysis to exons of APC, CDKN2A,

MSH6, TP53, RB1, and PTEN with average coverage > 30x in control cell lines. Genes with

zero coverage in a sample with no otherwise notable mutations were marked as deleted by

sequencing determined exon loss.

Chemosensitivity Assays

Cells were plated onto 96-well assay plates (Costar #3903) at different cell densities,

depending on each cell line’s growth rate, in 100 μl of media per well. Cells were then

treated with dilutions of drugs or vehicle (DMSO) in triplicate18 hours after plating. Drugs

used included Lapatinib (GlaxoSmithKline), PLX 4032 (Roche), and trametinib

(GSK1120212, GalaxoSmithKline). Cell viability was assessed at 72 hours after plating

using the CellTiter-Glo Luminenscent Cell Viability Assay (Promega) and a Synergy2

microplate reader (BioTek). Raw data was imported into GraphPad Prism 5.0 and IC50

calculated using non-linear regression analysis of the log inhibitor concentration versus

luminescence.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SIGNIFICANCE

Gene sequencing is an essential part of treatment for metastatic melanoma, but current

clinical strategies are limited to a few exons of only two genes. Here, we develop a

scalable NextGen sequencing assay to identify point mutations and copy number events

affecting all actionable genes associated with advanced melanoma. Using this approach,

we identify actionable events in 90% of patients, which we disclose to caregivers after

validation using a CLIA–approved assay. Importantly, we find that over half of tumors

harbor actionable mutations that would not be detected by standard-of-care clinical

sequencing, including a novel activating BRAF mutation.
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Figure 1. Aggregate Analysis of Mutation Calls
(A) Co-occurrence of mutations in melanoma cell lines including SNVs, CNV calls from

SNP array, and both. (B) Co-occurrence of mutations in metastatic cutaneous melanoma

showing KIT mutations in BRAF and NRAS wild type lines. (C) Putative somatic mutation

rates in melanoma cell lines and (D) putative somatic mutations in tumors.
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Figure 2. Non-Frameshift BRAF Mutation Sensitive to PLX4032
(A) Mel537 cell line aggregate read depth and mapped reads show homozygous non-

frameshift deletion mutation in exon 12 of BRAF. (B) Structural alignment of inhibitor

bound BRAF structure (CYAN) to inhibitor bound EGFR (GREEN) showing structural

homology of the BRAF exon 12 deletion (RED) and know activating EGFR exon 19

deletions (PINK). (C) ERK and activated ERK (pERK) blots in serum-starved lines with and

without PLX4032 treatment. (D) PLX4032 sensitivity of SKMEL27 (BRAF V600E),

Mel537, and VMM39 (NRAS Q61R). (E) ERK and activated ERK (pERK) blots in serum-

starved lines with and without MEK inhibition by GSK112. (F) GSK112 sensitivity of

SKMEL27, Mel537 and VMM39.
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Figure 3. ERBB4 Mutation Predicts Lapatinib Sensitivity
(A) Previously reported mutations in ERBB4 (PINK) and in three cell lines (BLACK) span

multiple domains of the gene. (B) Lapatinib sensitivity in three ERBB4 mutant lines was

increased compared to ERBB3 wild type lines (p = 0.1).
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Figure 4. Sequencing Detects Focal Deletions at High Resolution
(A) CNV calls using SNP microarrays. (B) Sequencing coverage of PTEN exons in

WM2664, PMWK, SKMEL24 and UACC257 with very low coverage in a PTEN deletion

line (PMWK) as well as isolated exons in other lines (red arrowheads). (C) Aggregated

mutation rates in selected tumor suppressor genes in cell lines using CGH array and

sequencing.
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Table 1
Selected Mutations in Melanoma Cell Lines and Patients

Selected genes from melanoma cell lines and patient tumors with potential activating mutations.

Sample Gene Mutation Previously Observed?

Cell Line SKMEL100 KIT Y362F No

SBC12 PIK3CA K678E No

RPMI8322 KRAS G12V Yes

SKMEL78/88 HRAS G12V Yes

Patient Tumor RAM99-0621B KIT L255Q No

RAM00-0594B PIK3CA R88Q Yes

RAM99-0621B PIK3CA E545K Yes
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Table 3
Genes and Associated Clinical Action

Genes discovered in patient tumors with clinical actionability, along with the associated action and therapy.

Gene Category Action

ABL Approved Therapy Imatinib, Desatinib, Nilotinib, Ponatinib

ALK Approved Therapy Crizotinib

BRAF Approved Therapy Vemurafenib

ERBB4 Clinical Trials Lapatinib

KDR Approved Therapy and Clinical Trials Nonspecific kinase inhibition: Sunitinib, Sorafenib, Pazopenib

KIT Approved Therapy Desatinib

MET Approved Therapy Crizotinib, Carbozantinib

NOTCH4 Clinical Trials Gamma Secretase Inhibitors

NRAS Future Clinical Trial MEK/ERK inhibitors

PDGFRA Clinical Trials PDGFR inhibitors (e.g. Crenolanib)

PDGFRB Clinical Trials PDGFR inhibitors (e.g. Crenolanib)

PIK3CA Clinical Trials PI3K Inhibitors

PTEN Future Clinical Trial PI3K Inhibitors
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