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Abstract

Ultrasonically activated phase-change contrast agents (PCCAs) based on perfluorocarbon droplets 

have been proposed for a variety of therapeutic and diagnostic clinical applications. When 

generated at the nanoscale, droplets may be small enough to exit the vascular space and then be 

induced to vaporize with high spatial and temporal specificity by externally-applied ultrasound. 

The use of acoustical techniques for optimizing ultrasound parameters for given applications can 

be a significant challenge for nanoscale PCCAs due to the contributions of larger outlier droplets. 

Similarly, optical techniques can be a challenge due to the sub-micron size of nanodroplet agents 

and resolution limits of optical microscopy. In this study, an optical method for determining 

activation thresholds of nanoscale emulsions based on the in vitro distribution of bubbles resulting 

from vaporization of PCCAs after single, short (<10 cycles) ultrasound pulses is evaluated. 

Through ultra-high-speed microscopy it is shown that the bubbles produced early in the pulse 

from vaporized droplets are strongly affected by subsequent cycles of the vaporization pulse, and 

these effects increase with pulse length. Results show that decafluorobutane nanoemulsions with 

peak diameters on the order of 200 nm can be optimally vaporized with short pulses using 

pressures amenable to clinical diagnostic ultrasound machines.
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1. Introduction

Though research in the field of microbubble-based contrast agents for ultrasound has been 

ongoing for more than 40 years (Gramiak and Shah 1968, Stride and Coussios 2010, Martin 

and Dayton 2013), many promising alternative contrast agents have emerged within the last 

decade. Among these, the phase-change contrast agent (PCCA) has been proposed for a 

3Author to whom any correspondence should be addressed, padayton@bme.unc.edu, Address: 304 Taylor Hall, CB 7575, Chapel Hill, 
NC 27599, Phone: (919) 843-9521, Fax: (919) 843-9520. 

HHS Public Access
Author manuscript
Phys Med Biol. Author manuscript; available in PMC 2016 January 06.

Published in final edited form as:
Phys Med Biol. 2013 July 7; 58(13): 4513–4534. doi:10.1088/0031-9155/58/13/4513.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



wide range of applications as a result of its unique functionality (Rapoport 2012, Sheeran 

and Dayton 2012). When generated at microscale and nanoscale sizes, perfluorocarbon-

based PCCAs have shown preclinical promise as highly-dynamic agents for applications 

such as selective vascular occlusion (Kripfgans et al. 2000, Kripfgans et al. 2002, Kripfgans 

et al. 2005, Zhang et al. 2010), cavitation nucleation enhancement and acoustic ablation 

(Miller et al. 2000, Zhang and Porter 2010, Zhang et al. 2011, Phillips et al. 2013), 

generation of in vivo contrast (Kripfgans et al. 2000, Haworth et al. 2008, Reznik et al. 

2011, Sheeran et al. 2011b, Wang et al. 2012b, Wang et al. 2012a, Couture et al. 2012, 

Sheeran et al. 2013), therapeutic delivery (Rapoport et al. 2009b, Fabiilli et al. 2010b, 

Fabiilli et al. 2010a, Rapoport et al. 2011, Couture et al. 2012, Javadi et al. 2012, Lattin et 

al. 2012), and integration with other imaging modalities (Rapoport et al. 2011, Strohm et al. 

2011, Wilson et al. 2012, Strohm et al. 2012). The utility of PCCAs stems primarily from 

their ability to be used in both the liquid and gas states, and the use of a non-invasive 

modality (ultrasound) to trigger this transition both temporally and spatially. Once the 

transition to the gaseous phase begins, a dramatic increase in the agent volume occurs, 

resulting in a bubble as much as an order of magnitude larger than the original droplet 

(Evans et al. 2006, Sheeran et al. 2011b, Reznik et al. 2011, Reznik et al. 2012). This 

externally-triggered transition gives the researcher high control over aspects such as size, 

stability, and level of agent interaction with the incident ultrasound beam.

Numerous studies have proposed and investigated nanoscale PCCAs that, once vaporized, 

form microbubbles ideal for ultrasound imaging contrast and cavitation within the 

ultrasound beam (i.e. having resonance frequencies near the insonation frequency) 

(Rapoport et al. 2009a, Reznik et al. 2011, Sheeran et al. 2011b, Sheeran et al. 2013). Such 

an agent would have utility for applications where imaging, drug delivery, and ablation are 

facilitated by passive diffusion of agents via the enhanced permeability and retention effect 

of solid tumors (Campbell 2006), as well as the potential to be used for general diagnostic/

molecular imaging of other vascular targets. Determining appropriate ultrasonic conditions 

to initiate vaporization is vital for understanding both the physics behind droplet interactions 

with the ultrasound beam and for developing practical in vivo sequences for each 

application. However, measuring the phase-transition conditions for these nanoemulsions is 

complicated by a variety of factors. For a bulk compound, the phase-transition temperature 

and pressure can be predicted simply, but for micro- and nanoemulsions of the same 

compound, scaling effects significantly alter these properties. The internal pressure of the 

droplet is increased beyond ambient pressure as a result of the Laplace pressure – and 

reaches several additional atmospheres of pressure for perfluorocarbon droplets with 

diameters in the 100s of nanometers (Evans et al. 2006, Rapoport et al. 2009b, Sheeran et al. 

2011b, Sheeran et al. 2011a). This greatly increases the ‘effective’ boiling point (boiling 

point elevation) as well as the ultrasound intensity necessary for vaporization. In addition, 

myriad other factors of droplet design, ambient conditions, and ultrasound parameters have 

been shown to influence activation of phase-change perfluorocarbon droplets (Kripfgans et 

al. 2000, Kripfgans et al. 2002, Giesecke and Hynynen 2003, Lo et al. 2007, Fabiilli et al. 

2009, Schad and Hynynen 2010, Sheeran and Dayton 2012, Shpak et al. 2013). As such, a 

model to predict the phase-transition point of an individual droplet that incorporates these 

influences is yet to be developed.
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Researchers have instead approached determining phase-transition conditions for their 

emulsions experimentally. Historically, measuring activation has taken two forms: direct 

and phenomenological. In order to discern the underlying physics (precise relations between 

droplet design and the phase-transition point), the minimum ultrasound conditions required 

to vaporize a droplet are typically of interest. As such, direct measurements often involve 

high-magnification microscopy and high-speed imaging such that researchers can isolate 

individual droplets optically and observe the phase-transition as it occurs while manipulating 

the activation parameters (Kripfgans et al. 2004, Strohm et al. 2011, Sheeran et al. 2011b, 

Sheeran et al. 2012). By gathering a large number of observations, general trends and 

conclusions can be drawn regarding the relationship of activation parameters with the 

variety of design factors. However, if the desire is to ultimately use the agents in vivo, 

measurements must incorporate spatial aspects of vaporization such as degree of activation 

in a region where many droplets are present (as the goal is rarely to activate only a single 

droplet). Therefore, those more interested in measuring how well the emulsions can deliver a 

desired effect typically approach measures of activation through phenomenological means, 

such as echo/image/fluorescence intensity (Kripfgans et al. 2000, Lo et al. 2007, Fabiilli et 

al. 2009, Couture et al. 2011, Couture et al. 2012), reduction in blood flow (Kripfgans et al. 

2005, Zhang et al. 2010), degree of stable or inertial cavitation (Giesecke and Hynynen 

2003, Fabiilli et al. 2009, Schad and Hynynen 2010), size of lesion or bubble cloud formed 

(Zhang et al. 2011, Lo et al. 2006, Phillips et al. 2013), tumor volume reduction and cell 

death (Miller and Song 2002, Rapoport et al. 2009b, Martin et al. 2012), and degree of 

thermal or drug/gene delivery (Miller and Song 2002, Zhang and Porter 2010). By altering 

the activation parameters and observing the change in a desired effect, practical activation 

conditions can be determined.

Each of these approaches can be extremely limiting with regard to determining phase-

transition thresholds for nanoemulsions, in particular. Direct optical observations do not 

allow measure of the initial size of individual particles below ~800 nm with reasonable 

accuracy due to brightfield resolution limits (though they are visible at sizes > 500 nm), so 

trends for larger microscale particles must be used to predict parameters at the nanoscale 

(Sheeran et al. 2011b). The accuracy of these trends through the entire nanoscale must be 

called into question. In addition, the interaction between the acoustic beam and the 

experimental setup (often a microcellulose tube) can lead to a heterogeneous pressure 

distribution within the tube and introduce a high level of spatial variation in results 

(Kripfgans et al. 2004, Qin et al. 2008). Lastly, methods of producing PCCAs often result in 

polydisperse emulsions, as is commonly the case for nanoscale agents (Kawabata et al. 

2005, Rapoport et al. 2009b, Zhang and Porter 2010, Reznik et al 2011, 2013 Sheeran et al. 

2011a, Sheeran et al. 2012, Sheeran et al. 2013). Because bubble nucleation is a stochastic 

process (Brennen 1995), and because an inverse relationship between particle size and 

vaporization pressure exists, larger droplets will phase-shift with greater efficiency at a 

given ultrasound pressure. Even a small presence of large outliers can highly skew 

phenomenological measures such as echogenicity/echo amplitude as the contribution by 

larger particles overshadows the more subtle contribution of the nanoscale particles. Though 

the researcher can measure the degree to which the effect occurs at given ultrasound 

parameters, there is no simple link between these observed effects and a ‘representative size’ 
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being activated unless the emulsions have very narrow distributions (which is difficult to 

achieve with nanoemulsions). Some have chosen to relate the activation parameters with 

distribution mean, median, or mode sizes, while others have found a high correlation with 

the larger content in the distribution (such as the 99th percentile size) (Fabiilli et al. 2009, 

Schad and Hynynen 2010, Zhang and Porter 2010, Reznik et al. 2011, Javadi et al. 2012, 

Lattin et al. 2012, Martin et al. 2012).

Thus, there is a need for methods that better assess the activation of PCCA nanoemulsions 

for studies of underlying physics and for defining practical in vivo parameters. We 

hypothesize that one method to achieve baseline measures of nanoemulsion activation for 

many formulations is to capture the distribution of bubbles generated by each ultrasound 

pulse and track how these distributions change with varying ultrasound pressure. This 

method of ‘distribution-tracking’ begins from the simple observation that individual droplets 

in a nanoemulsion cannot be measured optically, but the bubbles they produce once 

vaporized are typically on the order of 500 nm or larger – sufficient in size to resolve and 

measure on many optical systems (Sheeran et al. 2011b). By relating the microbubble size to 

the original droplet size by using modified ideal gas law relations, the changes in bubble 

distribution can be used to assess the efficiency of activating the originally nanoscale 

content of the emulsion. This also avoids the interfering effects of large outliers present in 

polydisperse populations: even though large content will be activated with high efficiency at 

a given pressure and result in very large bubbles, they will compose a very small portion of 

the distribution once the nanoscale content is being vaporized efficiently.

In order to use the bubble distribution resulting from an individual pulse as a measure of 

activation, it is essential to ensure that the droplet-to-bubble transition proceeds with 

minimal secondary effects – allowing the diameter of a bubble to be related to the 

originating droplet’s size by ideal gas law relations. These secondary effects include the 

intake of ambient dissolved gases and interaction with subsequent ultrasound cycles in the 

vaporization pulse. Our previous study involving vaporization of decafluorobutane (DFB) 

microdroplets showed that even within a few seconds post-vaporization, the bubbles could 

be as much as twice the predicted size (Sheeran et al. 2011b) due to influx of dissolved 

gases. When the experiments were duplicated with degassed water, droplets expanded to 

very near the predicted size, and showed only minor growth over the course of several 

minutes. Therefore, we hypothesize that in order to assess activation by the bubbles 

produced, the experimental setup must be degassed, and the distributions must be captured 

shortly after vaporization. It is also possible that the distribution of bubbles resulting from a 

vaporization event will be influenced by the ultrasound pulse itself – although very little has 

been reported to this effect in PCCA literature to date. Even when formulated with highly 

volatile components, nanodroplet vaporization can require pressures significantly higher 

than what is commonly used for microbubble imaging (Rapoport et al. 2009b, Zhang and 

Porter 2010, Sheeran et al. 2011b, Sheeran et al. 2012). With high pressures and long pulse 

lengths comes an increased possibility for secondary effects such as microbubble 

destruction, fusion, and radiation-force interactions (Dayton et al. 1997, Postema et al. 

2004). Therefore, we additionally hypothesize that in order to minimally effect the resulting 

bubble population, pulses as short as possible must be used to initiate vaporization. Though 
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long insonation periods at low amplitudes may ultimately cause droplet conversion by 

interaction with nearby bubbles produced earlier in the period (Lo et al. 2007) and/or by 

thermal means (Huang et al. 2010), activation by a pressure-only means is desired here.

In this study, we first investigate the influence of the vaporization pulse on the bubbles 

produced from DFB nanoemulsions through ultra-high-speed microscopy in order to 

determine the likelihood of secondary effects occurring within long vaporization pulses. We 

next demonstrate that in vitro activation of nanoemulsions by short pulses at several 

clinically relevant frequencies can be measured by tracking changes in the distribution of 

produced bubbles – providing practical in vivo activation parameters that optimally vaporize 

the nanoscale content at given frequencies and pulse lengths. Here, we consider droplet 

vaporization to be optimal when the majority of the bubbles produced originate from 

droplets forming the mode of the polydisperse size distribution. We further demonstrate that 

activation of low boiling point nanoscale PCCAs can be accomplished using pulse lengths 

and pressures within the output capabilities of common clinical ultrasound machines.

2. Methods

2.1.Decafluorobutane Nanodroplet Preparation

Polydisperse lipid-coated nanodroplets were prepared using a previously-described 

‘microbubble condensation’ method that allows simple production of high-yield 

nanoemulsions from highly volatile compounds (Sheeran et al. 2011a, Sheeran et al. 2012). 

Briefly, polydisperse DFB microbubbles were formulated by a 9:1 M dissolution of 1,2-

distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-methoxy(polyethylene-glycol)-2000 (DSPE-PEG2000) for a total 

lipid concentration of 1 mg/mL (lipids purchased from Avanti Polar Lipids, Alabaster, AL) 

in an excipient solution of phosphate-buffered saline (PBS), propylene glycol, and glycerol 

(16:3:1). 1.5 mL of the lipid cocktail was added to a 3 mL glass vial, and the remaining 

headspace gas-exchanged with DFB (Fluoromed, Round Rock, TX). Standard mechanical 

agitation techniques (Vialmix, Bristol-Myers-Squibb, New York, NY) were used to generate 

a high-yield, polydisperse distribution of microbubbles within the vial. The resulting 

microbubble emulsions were allowed to cool to room temperature before being immersed in 

an isopropanol bath maintained between −7°C and −10°C and swirled gently for 

approximately 1 min. Though condensation was typically observed by this point (noted by a 

change in consistency and translucency), vials were then connected to an adjustable air-

pressure source and the headspace pressure in the vial was increased (while the low 

temperature was maintained) to ensure the majority of particles reverted to the liquid state. 

The reduced freezing point of the emulsion as a result of the combination of propylene 

glycol, glycerol, and PBS prevented sample freezing during this process. Vials were then 

removed and stored at 4°C for up to 2 hours prior to use. Droplets were sized with dynamic 

light scattering (Malvern Nano ZS, Malvern Instruments Ltd., Malvern, Worcestershire, 

U.K.) by placing approximately 1.5 mL of a 10% dilution of the droplet emulsion in a 

plastic sizing cuvette. Nanodroplet emulsions yielded consistent size distributions with 

peaks on the order of 200 nm in diameter when weighted to either intensity or number, with 

a mean diameter on the order of 200–300 nm (figure 1).
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2.2.Experimental Setup

The experimental setup used here was similar to that described in earlier studies (figure 2) 

(Sheeran et al. 2011b, Sheeran et al. 2011a, Sheeran et al. 2012). An acrylic-lined, 

continuously degassed water bath was maintained at 37°C and mounted onto an inverted 

microscope (Olympus IX71, Center Valley, PA). Images of bubble generation were captured 

using a 100x (NA = 1.0) water immersion objective interfaced with either an ultra-high-

speed framing camera with a 24-frame buffer (SIMD24, Specialised Imaging, Simi Valley, 

CA) capable of imaging up to 200 million frames per second (for investigating activity 

within a single pulse), or a high-speed framing camera (FastCam SA1.1, Photron USA, Inc., 

San Diego, CA) set to 60 frames per second with a long buffer (for capturing bubbles 

generated after the pulse). For use with the ultra-high speed camera, a high intensity xenon 

strobe was interfaced with the microscope system to provide sufficient illumination. 

Otherwise, a standard 100-Watt halogen illuminator was used. Images and videos resulting 

from the experiments were analyzed using ImageJ software (NIH, Bethesda, MD). All 

optical measurements were calibrated by reticle. The practical optical resolution of the 

system limited measurement of particles to those greater than approximately 800 nm in 

diameter to maintain reasonable accuracy. For optical-acoustic alignment, the focus of the 

piston transducer used was positioned to be confocal with the microscope by use of a 

calibrated needle hydrophone (HNA-0400, Onda Corp., Sunnyvale, CA). Acoustic pulses 

were initiated by a manual trigger connected to the input of the high-speed camera in order 

to simultaneously capture video. Droplet solutions were pumped through a nearly optically 

and acoustically transparent 200 µm inner diameter microcellulose tube (Spectrum 

Laboratories, Inc., Greensboro, NC) using a custom-built manual volume injector that 

allowed the user to control the rate of flow, providing precise spatial manipulation of the 

volume being investigated. The portion of the tube resting in the confocal acoustic/optical 

plane was controlled by manipulating a 3-axis micro-positioner (MMO-203, Narishige 

Group, East Meadow, NY). While in the liquid state, droplets tended to settle toward the 

bottom of the tube, but once vaporized floated to the top due to buoyancy. By manipulating 

both the volume injector and the micropositioner, the entire volume of fluid being 

investigated before and after vaporization can be brought into focus and captured.

2.3.Acoustics

Three different ultrasound piston transducers were used in these studies to investigate the 

influence of frequency on droplet vaporization. In all cases, the piston transducers were 

driven by an arbitrary waveform generator signal (AFG 3101, Tektronix, Inc., Beaverton, 

OR) amplified 60 dB using an RF amplifier (A500, ENI, Rochester, NY). For ultra-high-

speed imaging investigating activity within a single pulse, a 1 MHz center frequency 

spherically-focused transducer with a 2.2 cm diameter and focal length of 3.75 cm 

(IL0106HP, Valpey Fisher Corp., Hopkinton, MA) was driven with a 20-cycle sinusoid of 

adjustable amplitude at 1 MHz (total insonification time of 20 µs; approximately the 

maximum imaging time allowed by the flash bulb). The camera frame spacing was set to 

record at either 20 million frames per second with 30 ns exposure times to capture many 

frames within one cycle, or set to record at 1 million frames per second with 30 ns exposure 

to capture events occurring across several cycles. To capture bubble distributions in the 
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second set of experiments, the previously described 1 MHz transducer was used as well as 

transducers with 5 MHz (2.2 cm diameter, 5 cm focus; IL0506HP, Valpey Fisher Corp., 

Hopkinton, MA) and 7.5 MHz (2.2 cm diameter, 5 cm focus; V321, Panametrics, Inc., 

Waltham, MA) center frequencies. These transducers were driven using 2-cycle pulse 

excitation waveforms with variable amplitude at 1 MHz, 5.5 MHz, and 8 MHz, respectively. 

Because brief, high-intensity pulses typically in the non-linear regime were used, all 

transducers were calibrated at focus using a needle hydrophone (HNA-0400, Onda Corp., 

Sunnyvale, CA) with a magnitude-only hydrophone deconvolution method (Hurrell 2004).

2.4.Droplet Vaporization and Imaging of Bubble Distributions

During bubble distribution measurements, samples were diluted to between 10–30% in order 

to reduce the number of bubbles produced from each pulse (such that the majority of the 

bubbles weren’t obscured from measurement by other bubbles). The droplet emulsions were 

injected via the custom volume injector and the forward flow stopped prior to initiation of 

the ultrasound pulse. The tube position relative to the acoustic/optical focus was adjusted so 

that the optical focus rested at an elevational plane approximately 70 µm from the 

microcellulose tube bottom (1/3 of the tube diameter). Once the ultrasound pulse was 

triggered manually, the tube was repositioned such that the focal plane was near the tube 

top, and several seconds were allowed to pass for bubbles to float to the focal plane. The 

micromanipulator was then used to translate through the tube elevationally and laterally to 

capture all bubbles present resulting from the single pulse. Staring from a lateral position 

downstream of the particle injection direction, the region of the tube in the optical focus was 

translated in a square-wave pattern along the lateral and elevational dimensions across the 

lateral length of the bubble cloud produced. This type of translation allowed resolution of 

bubbles beyond the microscope objective’s depth of view. Between pulses, forward flow of 

the sample volume was restored in order to bring an unvaporized volume into the optical 

focus. Ultrasound parameters were selected by observing the lowest input parameters that 

repeatably generated a sufficient number of bubbles for measurement purposes (typically on 

the order of 30 bubbles per pulse), and 7 to 8 test pressures between this and the maximum 

output of each transducer were chosen. For each sample, the emulsion was either diluted to 

30% in PBS (in order to produce larger number of bubbles at lower pressures where less 

activation is occurring) or 10% (in order to prevent obscuration of bubbles at higher 

pressures where high activation is occurring), and the bubbles emerging from each pulse 

recorded. Any bubble that was not stationary at the top of the tube was excluded, as well as 

any bubble with edges that could not be reasonably discerned. Bubbles from at least two 

pulses were captured at each test pressure (often 4–5 pulses for lower pressures) to ensure a 

sufficient number of bubble samples at each pressure were obtained. This process was 

repeated for 3 samples at each frequency (1 MHz, 5.5 MHz, 8 MHz).

2.5.Distribution Tracking Theory and Processing

A modified ideal gas law equation that includes the effects of Laplace pressure can be 

derived to predict the relationship between the expanded bubble and the originating droplet 

(Evans et al. 2006, Sheeran et al. 2011b):
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(1)

where rl is the radius of the liquid droplet, rg is the radius of the gas microbubble, M is the 

molar mass, P is the ambient pressure, R is the ideal gas constant, T is the temperature, ρl is 

the liquid density, and σ is the surface tension. Here it is assumed that the number of moles 

is constant from the liquid state to the gas state. Using values reported earlier for DFB 

(Sheeran et al. 2011b) of M = 0.238 kg/mol, ρl ≈ 1500 kg/m3, σ = 30 mN/m, and P = Patm, 

the expansion of lipid-encapsulated DFB droplets originally 200 nm to 250 nm in diameter 

should result in microbubbles approximately 800 nm to 1.1 µm in diameter after 

vaporization. As the smallest size practically measureable in brightfield imaging is often on 

the order of 800 nm, tracking the bubble distribution that emerges after a vaporization event 

can provide substantial insight into the efficiency of vaporizing droplet distributions with 

peaks on the order of 200 nm in diameter or larger. In order for the resulting distributions to 

be accurate, however, any secondary effects such as bubble growth by intake of dissolved 

gasses, dissolution by gas exchange, and fusion or destruction by the ultrasound pulse must 

be minimized.

The concept of distribution tracking can be illustrated simply by assuming the DFB droplet 

distribution is Gaussian in nature, with a peak of 200 nm in diameter. By the ideal gas law 

relationship, if the emulsion is completely vaporized, the resulting mode bubble size would 

be 800 nm in diameter, which is large enough to capture by standard optical measures. 

Theoretically one could predict the resulting mean bubble size as well, though optical 

resolution limits would prevent experimentally recovering this (bubbles much smaller than 

500 – 600 nm in diameter would not be visible or measurable). At a given ultrasound peak 

rarefactional pressure, the likelihood of vaporizing a droplet of a specific size is stochastic in 

nature, with the probability increasing as the droplet size increases (Sheeran and Dayton 

2012). Thus, at low pressures, the upper tail of the distribution will constitute most of the 

droplet vaporization activity, with very little activation of smaller droplets. The resulting 

bubble distribution, in this case, will have a much larger mean and mode size than would be 

present for a highly optimized activation pulse. As the rarefactional pressure magnitude 

increases, the smaller emulsion droplets will vaporize with greater efficiency, and mode/

mean sizes will continue to decrease. Once the peak in the droplet distribution begins to 

vaporize more efficiently, a transition will occur and the mode bubble size should remain 

stationary – as droplets smaller than this will produce fewer numbers of bubbles – though 

the mean will continue to decrease as the rarefactional pressure magnitude increases. As 

such, the interaction of the mean and mode bubble sizes as the pulse pressure increases 

should theoretically provide an indication of the peak droplet size activation.

In practice, there are experimental obstacles that prevent the ideal case from full realization. 

First, while the generation of droplets typically provides a uniform distribution, the ‘tails’ of 

the distribution are likely to be much more variable than a Gaussian distribution, and likely 

to be highly variable between samples, as this portion represents extreme outliers in the 

distribution. Therefore, statistics of the bubble distributions are expected to be highly 
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variable within samples and between samples until a significant portion of the main 

distribution (common to all samples) is being vaporized. Once the vaporization pulse is 

efficiently activating the main portion of the droplet distribution, these statistics should 

stabilize. Second, the optical resolution limits prevent continued tracking of the mode at 

sizes much smaller than 800 nm in diameter. With this limitation, once droplets that form 

bubbles on the order of 500 nm – 1 µm are being vaporized in significant numbers, the 

bubble distributions should still provide evidence of optimized activation (higher pressures 

will create a higher percentage of small bubbles; mean size will continue to decrease).

In these experiments, the area of all bubbles produced for an individual pulse that remained 

stationary in position near the top of the tube was measured by hand, converted to diameter, 

and collected in Excel. Within each emulsion sample, bubble measurements taken for a 

given ultrasound pressure across all pulses recorded were grouped so that the overall bubble 

distribution for each pressure could be assessed. All statistical outliers were removed from 

the measurements before statistics were calculated. The distribution mean and median were 

calculated from the resulting distribution. Samples were then rounded to the nearest 1 µm 

increment for calculation of the mode size such that bubbles on the order of 500 nm to 1.5 

µm represented the smallest histogram bin. These measurements were repeated on all 

samples and the results averaged between samples to generate trends.

3. Results

3.1. Influence of Vaporization Pulse

Using 20-cycle pulses at 1 MHz, ultrasound parameters were increased gradually until they 

were observed to be sufficient to consistently vaporize DFB droplets into bubbles on the 

order of 1 – 5 µm in diameter. For these investigations into interactions within a single 

pulse, a peak rarefactional pressure of 1.45 MPa was found to be sufficient. In each case, the 

droplet emulsion was diluted to 50% in PBS. When set to record at 20 million frames per 

second, the vaporization activity within each single cycle could be visualized in high detail 

(figure 3). Near the trough of the first rarefactional half-cycle, non-visible nanodroplets 

began to vaporize (3b), resulting in a high number of bubbles visible within the focus that 

appeared to reach their maximal size within 150–200 ns of their vaporization (3d). As the 

transition to the compressional half-cycle began, all of the bubbles began to visibly 

compress and have disappeared from view completely by the peak of the compression (3g). 

In the sequential rarefactional trough, many of the previously visualized bubbles re-

emerged, indicating they were not destroyed by the compression phase (3i), although many 

bubbles that were present in the first rarefactional cycle did not re-emerge, suggesting that 

each positive pressure phase has the potential to destroy some portion of the bubbles 

produced in the prior rarefactional phase. At these imaging and ultrasound parameters, this 

type of interaction between the resulting bubbles and the compression/rarefaction half-

cycles was highly repeatable.

When recording at 1 million frames per second, vaporization activity across several cycles 

could be investigated. When the focus was kept approximately 70 µm from the tube bottom, 

some frames caught instances of the expansion/compression activity shown in figure 3, 

though the frame-rate was not high enough to capture in high detail. By re-focusing toward 
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the bottom of the tube where the large outlier droplets rested due to weight, vaporization of 

the very large droplets could be observed over several sequential cycles (figure 4). In the 

first compressional half-cycle, unvaporized droplets with diameters on the order of 1 – 5 µm 

could easily be resolved (4a), and began to vaporize in the first rarefactional half-cycle (not 

pictured). The much larger microscale droplets took longer to completely vaporize than the 

sub-micron droplets in figure 3, requiring on the order of 2 µs or more to fully expand, 

depending on size (see supplementary data). As they result from much larger droplets, these 

outliers of the distribution formed bubbles on the order of 5 µm in diameter or larger (much 

larger than those in figure 3). With the repeated sequence of compression/rarefaction, 

several phenomena previously noted for microbubbles (Postema et al. 2004) could be 

observed and were highly repeatable. During the rarefactional phase, fully expanded bubbles 

in close proximity could fuse and form larger bubbles (4b–d, white arrows), possibly as a 

result of over-expansion stretching the lipid membrane and allowing the gas interface of 

bubbles to come into contact. Over the course of several cycles, the bubbles were seen to 

cavitate violently, potentially causing jetting behavior, and move toward each other with 

each cycle due to secondary radiation force (c–i). Bubbles of this size were not destroyed by 

the ultrasound pulse as in figure 3, and as a result tended to fuse into a smaller number of 

larger bubbles over the course of the pulse. Images taken in this plane also highlight the 

complex, stochastic nature of droplet vaporization. Of the visible droplets (4a), the ones that 

ultimately vaporized in subsequent frames could not be predicted by size alone. In fact, one 

extreme outlier on the order of 5 µm in diameter could be visualized (4a, black arrow) that 

did not vaporize over several repeated rarefactional cycles, while much smaller droplets did 

vaporize. Whether this type of behavior is influenced by the complex acoustic field inside 

the tube (Kripfgans et al. 2004, Qin et al. 2008), or as a result of a mechanical coupling of 

the droplet to the tube as it rests at the bottom will require further investigation.

3.2.Bubble Distribution Tracking

In order to minimize the effects shown in the previous section, droplet emulsions diluted to 

between 10% and 30% (see Materials and Methods) were vaporized using short pulses at 1 

MHz, 5.5 MHz, and 8 MHz (figure 5). Though the transducers were driven with a 2-cycle 

waveform, the bandwidth of the piston transducers resulted in additional ringing behavior 

that exposed droplets to additional compression and rarefactional cycles – most evident in 

the case of the 5.5 MHz transducer (5b).

As the ultrasound output increased, the overall number of bubbles produced also increased, 

and the number of bubbles on the order of 1 µm increased in proportion – indicating greater 

efficiency of vaporizing the non-visible nanodroplets (figure 6). At the lowest pressures 

tested, bubbles tended to be on the order of 5 µm or larger in diameter (6a), while at the 

highest pressures used the majority of bubbles present were near 1 µm in diameter (6b). It is 

worth noting that the lowest ultrasound output used was not a lower limit of vaporization, 

but that it produced enough bubbles to simplify distribution measurements. It is highly likely 

that some droplet vaporization is occurring at pressures below these, though it is not likely 

to be primarily from the nanoscale content.
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The diameter of all bubbles in focus post-vaporization for each sample at the test pressures 

used were analyzed from images such as figure 6. In order to ensure the fidelity of the 

conclusions, a high number of bubbles were counted for each sample – approximately 3,200 

bubbles per sample (or 9,700 total sizings for each frequency). The total number of bubbles 

sized over all experiments was nearly 30,000.

As is common with phase-change contrast agents involving low boiling point 

perfluorocarbons, some degree of spontaneous bubble generation is present. In these 

experiments, bubbles present without exposure to ultrasound were observed very sparsely, 

and were typically not present in the optical focus at the time of insonation. Videos of these 

bubbles in three control DFB droplet samples (not exposed to ultrasound) were sized, and 

showed that without ultrasound, bubbles present in solution (N = 610) had mean diameters 

of 8.6 ± 3.3 µm, with a mode of approximately 3 µm (figure 7).

Bubbles resulting from vaporization pulses were analyzed (as described in Materials and 

Methods) with regard to mean, median, and mode bubble diameter at each pressure in order 

to ascertain trends occurring with increasing acoustic parameters, and averaged across all 

samples at each frequency (figure 8). In general, mean bubble size at the lowest ultrasound 

pressure used in each case tended to be 7 – 8 µm in size, and decreased significantly 

(p<0.01) to a mean between 4 – 5 µm at the highest ultrasound pressure used (8a) due to the 

increase in the number of small bubbles at higher pressures. Median size showed virtually 

identical trends as mean size, and is not shown here. Like the mean size, the mode of the 

bubble distribution was on the order of 7 – 9 µm in diameter at lower ultrasound output (8b). 

As expected, high variation in the mode size at low pressures was observed between 

samples. As ultrasound output increased with each frequency, the mode generally decreased 

with high variation until settling at 1 µm, the smallest bin used. Past this transition, the mode 

remained stable at all higher output pressures, and the difference in the measurements at the 

highest output for each frequency were highly significant compared to the lowest output 

pressures (p << 0.01).

These results also show that, even when driving parameters were relatively similar, 

frequency of the incident ultrasound pulse appeared to play a role in the pressures required 

for vaporization. At the lowest ultrasound frequency used, significant bubble formation was 

noted at rarefactional pressures as low as 1 MPa, while at 8 MHz, the same distribution of 

bubbles was not present until rarefactional pressure reached approximately 3 MPa. 

Similarly, the mode size for 1 MHz ultrasound appeared to reach its final value at 

rarefactional pressures near 2 – 2.25 MPa, while this transition did not occur for 8 MHz 

ultrasound until rarefactional pressures near 3.75 MPa. In each case, the 5.5 MHz ultrasound 

characteristics were in between those obtained with 1 MHz and 8 MHz ultrasound.

4. Discussion

4.1.Vaporization Pulse

Some prior studies have explored the dynamics of dodecafluoropentane microdroplet 

vaporization on a short timescale and noted instances of complex vaporization behavior. In 

particular, Wong et al. (2011) showed that bubble evolution may proceed in stages after 
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initial nucleation, while Haworth and Kripfgans (2008) demonstrated that longer pulse 

lengths increased the probability of an individual microdroplet vaporizing and reported 

instances of coalescence of bubbles in close proximity. Reznik et al. (2013) recently 

demonstrated sub-micron agents may recondense back to the liquid state after vaporization, 

but that coalescence of bubbles increased the chance of bubble survival. Finally, Shpak et al. 

(2013) revealed that pulse length and frequency can significantly affect the rate at which 

bubble evolution occurs in the initial stages, and that, depending on the extent of inward gas 

diffusion, DDFP vapor bubbles may re-condense within the pulse compression phase. 

Similarly, the results reported here demonstrate preliminary evidence that bubbles produced 

early in the pulse can be significantly affected by the ultrasound pulse itself through 

destruction or coalescence, and that these types of interactions increase with pulse length. 

For many therapeutic applications, such as cavitation enhancement, this type of acoustic 

activity may be acceptable and/or desired. Haworth and Kripfgans (2008) suggest 

coalescence may be useful for applications such as vessel occlusion, but not for others such 

as phase aberration correction. For applications that seek to generate a large number of 

bubbles for contrast while minimizing bubble-induced bioeffects, a better understanding of 

these types of effects is needed. It may be that small bubbles are more likely to be destroyed 

by compression, while the large bubbles resist destruction by compression and are more 

likely to fuse and form larger bubbles. The precise interplay between droplet activation and 

the rarefaction/compression cycles may not be simply that more cycles will produce more 

bubbles, but that there is a balance between maximizing bubbles produced from the 

rarefactional phase, and minimizing secondary effects caused by the compression phase. 

Effects such as these are also sources of skew when measuring droplet activation through 

echogenicity or echo amplitude produced.

4.2.Optimizing Activation via Distribution Tracking

Aside from the sources of error presented above (selective bubble destruction/fusion), other 

effects do influence the accuracy of distribution tracking. Because larger bubbles are much 

more buoyant than very small bubbles, it is expected that some of the small bubbles were 

obscured by large bubbles in the optical focus. Additionally, the very small bubbles were 

more subject to the inertial forces of the surrounding fluid, and were often seen to be 

translating laterally just beyond the focal plane. Because the criterion for measurement was 

that the bubbles were stationary at the top of the tube, both of these effects resulted in a 

possible skew towards larger bubbles in the measurements. Any gas-exchange that may have 

occurred between vaporization and data collection would also have resulted in a skew 

towards a larger distribution, although this was limited by degassing the experimental setup. 

As such, the trends reported may be overestimates of the actual pressures needed to result in 

the distribution produced.

The changes in the bubble distributions as a function of ultrasound pressure can be 

illustrated clearly by combining all of the sizings obtained over all samples for an individual 

frequency (figure 9). Once ultrasound pressure is high enough to cause bubble generation, 

the main lobe of the distribution at first shifts to values much higher than the spontaneous 

control bubbles (figure 7), and only a small portion of the distribution is represented by the 

smallest bin size. As pressure increases, the peak of the main lobe begins to decrease, and 
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the number of very small bubbles increases until it becomes the peak of the distribution – 

now much lower than the control values. As pressure continues to increase, this peak 

increases in proportion to the rest of the distribution, indicating greater efficiency of 

vaporization.

Many multi-variable metrics can be chosen in order to capture the dynamic changes in 

bubble distribution occurring as a function of rarefactional pressure, such as Wasserstein 

metrics (Givens and Shortt 1984) or other more basic measures of histogram skew 

(Groeneveld and Meeden 1984). In this study, we demonstrate this through use of Pearson’s 

first skewness coefficient (Pearson’s mode) in order to combine several aspects of figure 8 

into one measure:

(2)

Theoretically, when pressures are low, both the mean and the mode should be relatively 

large and of similar value (although high variability is expected), and so skew should be 

near zero. As activation of smaller droplets becomes more efficient, the mode will shift 

rapidly, while the mean shifts gradually, causing a sharp increase in the skew measure. Once 

the mode settles, the mean will continue to decrease slowly, resulting in a gradual decrease 

of the skew. Using this measure on the previously presented distribution data, and averaging 

across the samples at each frequency, a clear picture of the transition can be obtained (figure 

10). As expected, the variability at low pressures for each frequency is relatively high, and 

compounded by the combination of variation in mean and mode, but the skew peaks at a 

transitional pressure and remains constant or decreases slightly past this.

The skew analysis further demonstrates the relationship between frequency and droplet 

vaporization – that under these experimental parameters, the pressure required to activate 

nanodroplets increased with ultrasound frequency. The transitional pressure past which a 

similar distribution skew was achieved occurred near 2 MPa for 1 MHz, near 3 MPa for 5.5 

MHz, and near 3.75 MPa for 8 MHz. Figure 5 demonstrates the pressure waveforms when 

driven at pressures near the transition points in figure 10. One would initially expect that the 

5.5 MHz transition pressure would occur nearer to the pressure required at 8 MHz than 1 

MHz. However, the low bandwidth of the 5.5 MHz transducer resulted in many more 

additional ultrasound cycles (figure 5b) that may have reduced the pressures needed to 

obtain similar distributions.

These results contradict an early and longstanding view in the PCCA literature that the 

pressures needed to achieve droplet vaporization can be reduced by increasing the 

ultrasound frequency (Kripfgans et al. 2000, Kripfgans et al. 2002, Schad and Hynynen 

2010, Williams et al. 2013), although recent studies (including this one) have found the 

contrary to be true (Martin et al. 2012). As Reznik et al. (2011) have pointed out, an inverse 

relationship between frequency and vaporization pressure is not predicted by homogeneous 

nucleation theory, and so more understanding on the link between the two is needed. The 

current FDA guidelines for maximum pressure output on a diagnostic machine in soft tissue 

is a mechanical index (defined as the derated peak negative pressure in MPa divided by the 
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square root of the ultrasound frequency in MHz) of 1.9. For this study, this corresponds to 

peak negative pressures of 1.9 MPa, 4.5 MPa, and 5.4 MPa for 1 MHz, 5.5 MHz, and 8 

MHz, respectively. It’s worth noting, however, that even though the threshold pressures 

reported here do not appear to decrease with increasing frequency, the mechanical index 

needed does decrease with ultrasound frequency – which is important for in vivo 

implementation in many cases.

Part of the contradiction in the literature may be as a result of the type of measurement (most 

reporting this trend use phenomenological measures based on echo amplitude), but also may 

be due to variation in choice of ultrasound parameters at different frequencies, such as 

whether to match total pulse length or number of cycles. Matching the total pulse length 

results in a similar exposure time, but means that droplets at higher frequencies will 

experience significantly more compression/rarefaction cycles - likely influencing the 

probability of an individual droplet vaporizing. In this study, unlike many that report the 

inverse frequency/pressure relationship, we chose to match the number of compression/

rarefaction cycles in short bursts as closely as possible in order to minimize secondary 

effects. With these parameters, the increase in pressure needed with increasing frequency 

may be partly explained by the beam width of the transducer itself. According to Cobbold 

(2007), the lateral and axial full-width half-max of the pressure field delivered from a 

concave piston are approximated as:

(3)

(4)

where λ is the wavelength, Zf is the radial distance to the focus, and D is the transducer 

diameter. With the transducers used, the theoretical lateral FWHM was 3.60 mm, 0.90 mm, 

and 0.62 mm, for 1 MHz, 5.5 MHz, and 8 MHz, respectively, while the axial FWHM was 

18.7 mm, 4.6 mm, and 3.2 mm, respectively. Because the microcellulose tube only 

measured 200 µm in diameter, the difference in the axial beam width between the 

frequencies likely played little role. However, the bubble cloud generated inside the tube 

typically spanned 1 mm or more laterally, and so the lateral beam width likely played a high 

role in the difference between frequencies. In other words, in order to create a similar 

distribution of bubbles between 8 MHz and 1 MHz, it may be that the peak rarefactional 

pressure at 8 MHz needed to be much larger in order to compensate for the rapid pressure 

drop-off laterally and make the FWHM pressure comparable. Because the transition 

threshold measured by bubble distribution tracking takes into account aspects such as these, 

these thresholds are likely to correlate to appropriate in vivo pressures – where it is more 

desirable that a spatial extent of droplets is vaporized rather than a few droplets precisely at 

the peak in the pressure field.

These results should be used as a guide to what in vivo pressures would be necessary for 

very short pulses (such as implementation of vaporization pulses on diagnostic arrays) in 

order to minimize bioeffects introduced by longer pulses, but they can also be used as a 
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baseline for other measurements. For example, if gauging appropriate acoustic parameters 

for activation using a phenomenological method such as release of dye, one could first use 

distribution tracking to assess the relationship between bubble formation and dye release 

using short pulses of varying pressure in order to achieve a baseline. Then the researcher 

could increase the acoustic conditions (pulse length, pulse repetition frequency, etc…) and 

observe the change in the phenomenological effect.

There are certain PCCA formulations where distribution tracking may not be applicable. 

Several researchers have suggested that droplets composed of higher boiling point 

perfluorocarbons may be useful in that they could re-condense immediately after the 

vaporization pulse ends, and can be made to undergo phase-transition several times 

(Rapoport et al. 2011). In this case, measuring the bubble distribution after the pulse ends 

would be impossible. Additionally, droplet formulations with high monodispersity, which 

are often found with microscale droplets in microfluidics-based approaches (Couture et al. 

2011, Bardin et al. 2011, Martz et al. 2011), would not benefit from this method, as the 

activation would be highly uniform across the entire distribution. Finally, nanoemulsions 

where the peak diameter lies on the order of 100 nm or less would produce bubbles too 

small to be optically observed and measured. Though this would prevent a distribution 

tracking method, the bubbles produced would be echogenic and could be measured via more 

commonly-used echo amplitude methods.

5. Summary

Based on these methods, we have shown that vaporization of decafluorobutane droplets in 

the 200 nm diameter range can be achieved using very short pulses with pressures relevant 

to diagnostic use. With a given ultrasound frequency and pulse length, pressure required for 

vaporization of the distribution’s modal peak can be gauged by observing changes in the 

bubble population produced with each pulse as pressure is increased. We additionally show 

that further understanding is needed of the impact of long vaporization pulses, which may 

selectively destroy or fuse bubbles produced in early cycles.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Dynamic light scattering measurements of DFB nanoemulsions produced by microbubble 

condensation. Lines show the result of sizing averaged for 3 repeated measurements per 

sample over 3 samples (9 total measurements), in both a number-weighted and intensity-

weighted format. When number-weighted, the mode diameter occurs at 164 nm, with a 

mean droplet diameter of 192 ± 85 nm; when intensity-weighted, mode size occurs at 190 

nm with mean size of 297 ± 323 nm. Note: Malvern Nano ZS set to ‘Multiple Narrow 

Modes’ for high-resolution analysis.
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Figure 2. 
Experimental setup. A piston ultrasound transducer is manually triggered to deliver a short 

pulse to the portion of the microcellulose tube resting in the optical plane. Prior to droplet 

vaporization, large droplets can be visualized near the bottom of the tube with no significant 

presence of bubbles near the top of the tube. After vaporization is induced, the focal plane is 

adjusted to the top of the microcellulose tube to capture images of bubbles produced. Axes 

indicate the elevational, lateral, and axial dimensions of the incident ultrasound pulse.
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Figure 3. 
Ultra-high-speed microscopy (20 million frames per second) of bubbles produced during a 1 

MHz, 20-cycle vaporization pulse of 1.45 MPa rarefactional pressure. Many bubbles are 

observed to emerge through the first rarefactional phase (a–d), but as the transition through 

the second compression phase occurs (e–g) the bubbles are observed to compress and 

disappear from view. Upon the second rarefactional phase (h,i), many of the bubbles re-

emerge (denoted by white arrows), but those indicated by black arrows in (d) do not re-

appear. During the third compression phase (j – i), the bubbles are observed to compress 

again. Scale bars indicate 5 µm. Note: This image comprises 12 selected frames from a 

longer source video. See Supplemental Data for source video.
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Figure 4. 
Ultra-high-speed microscopy (1 million frames per second) of bubbles produced during a 1 

MHz, 20-cycle vaporization pulse of 1.45 MPa rarefactional pressure. Droplets are observed 

to vaporize in the first rarefactional phases and fully expand within 1–2 µs (a–d). 

Microbubble phenomena of fusion (b–d, white arrows) and radiation force (d–i) can be seen, 

indicating that large bubbles may combine to form much larger bubbles under the influence 

of long vaporization pulses. Scale bars indicate 5 µm. Note: This image comprises 9 selected 

frames from a longer source video. See Supplemental Data for source video.
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Figure 5. 
Representative vaporization pulses at (a) 1, (b) 5.5, and (c) 8 MHz when driven with a 2-

cycle sinusoid. Low transducer bandwidth for the high-power piston transducers resulted in 

additional ringing behavior such that droplets were exposed to more than just two 

compression/rarefaction phases. Non-linear propagation effects are clearly visible at these 

pressures.
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Figure 6. 
Examples of bubble distributions generated as a function of ultrasound output at 5.5 MHz. 

At rarefactional pressures near (a) 2 MPa, few bubbles on the order of 1 µm in diameter 

were present, while increasing the pressure to approximately (b) 3 MPa and (c) 4.25 MPa 

increased the proportion of small bubbles present. Scale bar represents 5 µm.
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Figure 7. 
Histogram of sparse bubbles present in 3 droplet emulsion samples (N=610) without the use 

of a vaporization pulse as a result of spontaneous thermal vaporization. Without ultrasonic 

vaporization, the small number of bubbles present had a mean size of 8.6 ± 3.3 µm, with a 

mode of approximately 3 µm.
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Figure 8. 
Changes in distribution statistics as a function of frequency and rarefactional pressure 

averaged for 3 separate samples. Mean diameter (a) decreased in a generally linear fashion 

as rarefactional pressure increased, and all samples settled at a similar mean diameter at the 

highest ultrasound pressure that could be delivered. Mode diameter (b) fluctuated highly at 

the lowest pressures used for each frequency, but once pressures increased past a threshold, 

the mode settled to the lowest resolvable bin size – indicating bubbles primarily resulted 
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from activation of the modal peak. The rarefactional pressure required to achieve a similar 

mode size was seen to increase with frequency.
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Figure 9. 
Histogram of all bubble sizings taken at 5.5 MHz (N=11,654) as a function of rarefactional 

pressure (bin size 0.5 µm). At the lowest pressures tested, the distribution peak shifts to 

much higher than the controls with no ultrasound (figure 7). As pressure increases, the 

number of small bubbles increases in proportion until the smallest bin size overtakes as the 

peak in the distribution. Continued increase in the pressure amplifies the proportion of these 

small bubbles relative to other bubbles present in the distribution.
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Figure 10. 
Measures of distribution skew (Pearson’s first skewness coefficient) averaged for all 

samples at each frequency. At the lowest pressures used, skew was near zero, but increased 

with pressure until a transitional pressure – past which skew remained constant or decreased 

slightly. The transitional pressure (indicating bubbles primarily resulted from nanoscale 

droplets in the modal peak) appears to increase with frequency.
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