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Abstract

A method to identify distinct dynamical regimes and transitions between those regimes in a short 

univariate time series was recently introduced [1], employing the computation of fluctuations in a 

measure of nonlinear similarity based on local recurrence properties. In the present work, we 

describe the details of the analytical relationships between this newly introduced measure and the 

well known concepts of attractor dimensions and Lyapunov exponents. We show that the new 

measure has linear dependence on the effective dimension of the attractor and it measures the 

variations in the sum of the Lyapunov spectrum. To illustrate the practical usefulness of the 

method, we identify various types of dynamical transitions in different nonlinear models. We 

present testbed examples for the new method’s robustness against noise and missing values in the 

time series. We also use this method to analyze time series of social dynamics, specifically an 

analysis of the U.S. crime record time series from 1975 to 1993. Using this method, we find that 

dynamical complexity in robberies was influenced by the unemployment rate until the late 1980’s. 

We have also observed a dynamical transition in homicide and robbery rates in the late 1980’s and 

early 1990’s, leading to increase in the dynamical complexity of these rates.

I. INTRODUCTION

One of the central challenges in nonlinear time series analysis has been to develop 

methodologies to identify and predict dynamical transitions, i.e., time points where the 

dynamics show a qualitative change [1–12]. The application of such methods is widespread 

in a variety of areas of science and society [13]. For example, such approaches could be 

useful in medicine in identifying pathological activities of vital organs such as the heart and 

the brain from ECG and EEG data [14–16]. In earth sciences, one can use these methods to 
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identify tipping points in modern and paleoclimate data sets [2, 7, 9–11, 17]. In the analysis 

of financial data, these methods may be used to better comprehend the behavior of markets 

and their vulnerabilities [18–20]. In physics, one may similarly study the response of an 

interacting many-body system to an external perturbation [21]. Finally, such methods could 

be used to analyze social and economic indictors to better understand societal changes and 

to predict possible future changes [13, 18–20].

The challenge in developing such methods is that there may be a variety of reasons in a 

particular system that can lead to different types of qualitative changes in the dynamics [3–5, 

22–24]. Common reasons might include the evolving control parameters of the system 

passing through a bifurcation point, the rate of change of these control parameters, internal 

feedbacks, and noise induced effects [3–5, 22, 24]. In many natural systems it has been 

suggested that dynamic bifurcations lead to critical transitions in their dynamical state [24–

26]. While these transitions are visually apparent and can be identified with little effort in 

some cases, in other cases these transitions may be much more subtle, especially where 

transition occurs from one chaotic regime to another complex chaotic regime. For example, 

in palaeoclimate studies, Dansgaard-Oeschger events on millennial time scales are visible in 

ice records to the naked eye and have been hypothesised to be caused by a noise induced 

transition [27–29]. In contrast, on similar time scales we do not observe such visibly 

apparent transitions in many other components of climate, such as the Indian summer 

monsoon, though it has also gone through dynamical transitions between distinct chaotic 

regimes due to variations of Milankovitch cycles [1, 30, 31], and we need more careful 

analysis. Similarly, certain brain states like sleep cycling or epileptic seizure are easily 

detectable from EEG data but gamma rhythms or the ultra-slow BOLD rhythms are harder 

to detect without more sophisticated mathematical tools to identify such dynamical 

transitions [32]. The intricacies and diversities involved in the origins of dynamical 

transitions make it difficult to develop one single method to identify and quantify all 

possible types of transitions. Rather, we need to have a toolbox consisting of several 

methodologies and approaches inspired by the paradigm of nonlinear dynamics to solve 

such problems. The case we will be most interested in here in the present work is where the 

changes in one single control parameter takes the system from a regime of one dynamical 

complexity to another dynamic state of different complexity. The method used here is 

particularly applicable when the available time series is relatively short (from several 

hundred to a few thousand time points).

Most of the widely used methods for the above mentioned applications are linear, such as 

auto correlation functions and detrended fluctuation analysis, among others [8, 11, 33–35]. 

But some methods for the analysis of time series using the paradigm of nonlinear dynamics 

have also shown tremendous promise, including recurrence plot based methodologies such 

as recurrence quantification analysis and recurrence network analysis [2, 7, 9, 10, 36–41]. 

The method discussed here—which we call FLUS (FLUctuation of Similarity)—is based on 

the concept of nonlinear similarity between two time points. FLUS is computationally 

simple, automatized, and yet extremely robust in distinguishing distinct dynamical regimes 

and identifying time points where transitions occur between these distinct dynamical 

regimes, even in the case where available time series is short. FLUS also tends to work well 

in the presence of noise and missing values.
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FLUS was previously briefly introduced in the context of analyzing a short paleoclimatic 

time series of the Indian summer monsoon [1]. In the present manuscript, we for the first 

time present the method in full theoretical detail. In particular, we discuss in detail the 

analytical properties of the newly introduced measure and relate them to more standard 

concepts in nonlinear time series analysis such as attractor dimensions and Lyapunov 

exponents, providing a deeper understanding of the measure and its properties as well as its 

possible limitations. We also present an extensive numerical testing of this method, not 

previously provided in [1], using a variety of nonlinear dynamical models to demonstrate the 

capabilities of the method in distinguishing different dynamical regimes and in identifying 

transitions between them. We also include tests of the method’s robustness in the presence of 

observational noise and missing values, which are among the common problems 

encountered in time series analysis. Finally, we also present a novel example application of 

the method, analyzing crime rate time series from the U.S.

This paper is organized as follows. In Sec. II, we describe the method and some of the 

analytical results about it, with supporting numerical results. In Sec. III, we illustrate the 

strengths and practical utility of this method using several different numerical cases of 

dynamical transitions in nonlinear systems. We also test the method’s robustness against the 

presence of noise and missing values in a pragmatic nonlinear model. In Sec. IV, we apply 

the method to the question of the role of unemployment in robberies and homicides by 

considering the corresponding time series in the U.S. from 1975 to 1993.

II. FLUCTUATION OF SIMILARITY (FLUS)

Let xj represent the jth vector of a delay embedded time series of length N. The embedding 

dimension m and time delay L are estimated respectively by false nearest neighbors and 

mutual information, as often done in nonlinear time series analysis [3–5, 42, 43]. In this 

reconstructed phase space, we denote the neighborhood containing k nearest neighbors of 

any point xj by U(xj) = {xl : ∥xj – xl∥ < ϵj ∣ #(xl) = k}, where the set l contains indices of the 

k nearest neighbors and ∥ · ∥ is a specified norm. Because we choose a fixed number of k 
nearest neighbors for each point xj, ϵj varies with the change in the values of k i.e., ϵj = ϵj(k). 

Throughout the present text, we express k as a percentage of the total number of points N 
and use Euclidean distance if not indicated otherwise. The pointwise closeness of xj to its k 
neighbors is obtained as the mean distance

(1)

At a later time j + τ, the neighborhood of xj+τ is generally different from that of xj, so we 

calculate the closeness of xj+τ to the neighborhood of xj by means of a conditional distance, 

defined as

(2)
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The dynamical similarity of xj conditioned to xj+τ can then be defined by

(3)

Larger values of Sj∣j+τ indicate higher similarities in the signal (i.e., for a periodic trajectory 

with period T, xj = xj+nT yields a periodic variation of Sj∣j+τ). It is easy to see that Sj∣j+τ is 

time dependent and relies on the initial conditions. The distribution of inter-spike interval of 

Sj∣j+τ reflects the associated recurrent period information, which shows unique properties for 

different dynamics (i.e., quasiperiodic or chaotic [44]). Fully comparing two time points, 

Sj+τ∣j characterizing the similarity of xj+τ conditioned to xj can also be calculated, noting 

that Sj+τ∣j need not be the same as Sj∣j+τ since the neighborhoods used in the calculations of 

d(xj+τ∣xj) and d(xj∣xj+τ) can be different. A similar measure has been used previously to 

estimate the nonlinear interdependency in bivariate studies [45], where the conditional 

distance was calculated between time points coming from two separate time series.

The measure Sj∣j+τ, indicating local properties of the time series, is computationally 

cumbersome to calculate for all possible Sj∣j+τ for a complete time series. We therefore 

devise a strategy to obtain a measure from Sj∣j+τ which is not only computationally simpler 

but also depends on the global properties of the attractor and will thereby be sensitive to 

dynamical transitions. To achieve this task, we first need to discuss the kinds of behaviors 

that we would recognize as dynamical transitions. For these purposes, let us consider two 

consecutive time points in a deterministic system with a locally sufficiently smooth mapping 

ϕ such that

(4)

We are particularly interested in the situations where these strong constraints on ϕ and its 

local behavior break down, indicating a dynamical transition. If we fix τ = 1 and if there is 

no dynamical transition between j and j + 1, then we expect (as explained in detail in the 

next section, and see also Fig. 1 for a schematic representation of the associated concepts) 

the values of a finite time series Sj∣j+1 to fluctuate around a constant value μS specific to the 

mapping ϕ. If a dynamical transition occurs between j and j + 1, we expect substantially 

larger fluctuations in Sj∣j+1. We therefore aim to quantify such differences in terms of the 

variance of Sj∣j+1 over a window of n points:

(5)

where μS = ⟨Sj∣j+1⟩ and ⟨·⟩ denotes an average over n points. We call σS the fluctuation of 
similarity (FLUS). Our numerical experimentation with a variety of nonlinear models with 

different kinds of transitions demonstrates that σS is a robust measure for identifying distinct 

dynamical regimes and corresponding transitions. FLUS shows even more subtle transitions 
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than the standard measure of Lyapunov exponents, and its potential has been previously 

demonstrated using chaotic transitions in the logistic map [1]. Here we analyze several other 

nonlinear models using FLUS, to further explore its properties and demonstrate its 

effectiveness.

Before we employ σS to identify dynamical transitions and distinguish different dynamical 

regimes in a time series, first we must understand what are those analytical properties of σS 

that give it the capability to achieve these tasks. In the next subsection, we show that σS is 

linearly dependent on the effective dimension of the attractor in the absence of transitions. 

The concept of dimension of an attractor is inherently related to the complexity present in a 

time series originating from a nonlinear dynamical system [2–5]. Hence, showing an 

analytical relationship between σS and the effective dimension of the attractor amounts to 

demonstrating a dependence of σS on the dynamical complexity present in the time series. 

This relationship gives σS the capability of identifying changes in the dynamical regimes. In 

the process of exploring this relationship we also present some numerical arguments for σS 

working well in the case of short time series. We then discuss the relationship between the 

above introduced measures and the Lyapunov spectrum of the system, which is significant 

because the spectrum of Lyapunov exponents is perhaps the most widely used concept for 

measuring and understanding chaotic dynamics [3–5]. We will establish relationships 

between the similarity measure Sj∣j+1 and the Lyapunov spectrum, yielding insight into the 

features of σS and its possible applications for measuring or providing information about the 

Lyapunov exponents, which could in turn be used to classify system dynamics.

A. Relationship with attractor dimensions

FLUS relies on comparing dynamical similarity of two consecutive time points in the 

embedded space, in terms of calculations of Sj∣j+1 for the dynamics under study. To get 

further detailed insights into the properties of Sj∣j+1, we investigate the scalings of the mean 

distances d(xj) and d(xj+1∣xj) with the number of nearest neighbors considered in defining 

the respective neighborhoods [45].

Suppose that a vector xj in phase space has k nearest neighbors. Let  be the mean 

density of the whole point cloud around xj, i.e., . For k ≪ N, we 

expect the following scaling law (see [45–50] for analytical details):

(6)

where N is the length of the time series and aj is a scaling coefficient. In the N → ∞ limit, 

αj = DF, where 1/DF is the effective dimension of the attractor. First introduced in [46], 1/DF 

has been conjectured in [49, 50] to be related to the qth order Renyi dimension Dq by an 

implicit relationship where q satisfies
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(7)

For a stochastic time series, 1/DF = m where m is the embedding dimension.

Because the conditional distance d(xj+1∣xj) between xj and xj+1 has a similar geometric 

formulation as the distance d(xj), the conditional distance also scales with the ratio k/N, 

which we write as

(8)

where bj is a scaling coefficient. In Fig. 2(a-d) we have numerically demonstrated these 

scalings for d(xj) and d(xj+1∣xj), using two different nonlinear systems. The first example 

system is the Rössler system described by

(9)

where the selected parameter a = 0.39 corresponds to screw type chaos (see Fig. 2(a-b) for 

scaling behavior). The second example system is the logistic map

(10)

with corresponding scaling plotted in Fig. 2(c-d). Generally such scaling laws require large 

numbers of data points [3, 4, 39, 51–54], but here we have attempted to estimate them using 

smaller amounts of data, namely with time series of length N = 4500. (In particular, we 

numerically solve the respective systems with a fourth-order Runge-Kutta integrator with 

step size h = 0.001. We then sample 4,500 points of the x-component with τ = 200h.) In Fig. 

2 we can clearly observe that the scaling laws of Eq. (6) and Eq. (8) hold even for short time 

series, though there are fluctuations in the values of the exponents. Therefore, for short time 

series we assume that αj = DF + δj, where δj are fluctuations due to the shortness of the time 

series. Important to the further development and application of the method, we further 

explore the relationship between DF and σS under the constraints imposed by considering 

short time series.

Assuming the scaling forms of Eqs. (6, 8), the Eq. (3) definition of the similarity between 

two consecutive time points becomes

(11)
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where γj = αj – βj,  and . The dynamical similarities 

between two consecutive time points xj and xj+1 will be determined by the relationship 

between the exponents αj and βj. If no abrupt transition has occurred at the time point j then 

a simple determinism existing between time points j and j + 1 in the form of a mapping of 

the kind ϕ exists and Eq. (4) holds. In that case, we expect γj ≈ 0, i.e., βj ≈ αj (as determined 

in the limit of large N), and d(xj) and d(xj+1∣xj) are expected to scale by the same exponent. 

We provide an intuitive explanation for this behavior in the sketch in Fig. 1: locally at xj the 

mapping ϕ can be approximated by a linear transformation, deforming the neighborhood 

U(xj) into an ellipsoid upon application of ϕ. Any expansion in the ball U(xj) by inclusion of 

more points thereby will lead to rescaling of the size of ϕ(U(xj) by stretching or contraction 

in different directions. Hence, the sizes of these regions scale with the same exponent of 

k/N. We also expect in Eq. (11) that  → const. as N → ∞. Hence, in the absence 

of a dynamical transition, Sj∣j+1 → const. as N → ∞. Rigorous mathematical expression for 

 is considered in [47–50]. However, all of these scalings are only valid 

asymptotically for large N. In the practical case of time series of finite length, we observe 

fluctuating deviations of the calculated exponents of the scaling, similar to that observed in 

our numerical examples in Fig. 2.

To study the influence of these fluctuations on the method and find an approximate 

expression for σS, we start with some definitions for notational convenience. We define the 

quantity rj such that , so that Eq. (11) can be written as

(12)

Expecting γj = αj – βj to be approximately zero in the absence of dynamical transitions, we 

define  and remark that Δj → 0 in the limit of large N in the absence of a 

dynamical transition. Indeed, in the examples considered in Fig. 2 we observe βj ≈ αj, even 

for finite N. Again assuming that αj = DF + δj for finite N, we substitute γj = ΔjDF + Δjδj 

into Eq. (12). Expanding in powers of {Δj, δj} and discarding higher-order terms we then 

obtain

(13)

where we have defined . The mean and variance of Sj∣j+1 can then be 

expressed as

(14)
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and

(15)

elucidating the explicit dependence on DF, recalling that 1/DF is the effective dimension of 

the attractor [45]. The quantity ln(k/N) will be taken as fixed over the length of the time 

series. Consequently, such transitions changing the attractor’s structure and thus 

significantly altering DF can be well identified by σS. A large variety of systems show such 

transitions, as will be shown in Sec. III.

Because rj and Δj are expected to converge to constant values in the limit of large N, for 

fixed k/N we expect  to also converge in this limit. For finite N, however, we expect non-

zero , and then σS represents a multiple of the inverse attractor dimension. To obtain σS, 

we numerically sample over a window of length n within the time series. In Fig. 3 we 

demonstrate convergence of σS under different length samples n, again considering both the 

logistic map and Rössler system in Fig. 3(a) and (b) respectively. We generate an ensemble 

of 10, 000 bootstrap samples of σS by resampling with replacement of windows containing 

consecutive values n of Sj∣j+1 from the possible N – 1 values and then calculating σS for each 

of these samples.  is the median of these sampled values of σS, whereas ϵ is the standard 

error. Then we calculate  and ϵ by progressively increasing n to see whether increasing n 
(sample size) leads to the convergence of σS to a certain value. We observe in 3(a) and (b) 

that the values of  quickly converge as n is increased. The standard error ϵ in calculation 

of σS also shows a continuous drop before saturating to small value around 0.0002. All this 

substantiates the usefulness of the windowing technique we have used in this work.

Further discussion about the analytical properties of Sj∣j+1 and its moments continues in Sec. 

II B. But first we present a numerical example to demonstrate that σS is sensitive to changes 

in the dimension or complexity of the attractor.

As our numerical experimentation here and in later sections will demonstrate, σS is 

extremely sensitive to changes in the dynamics, beyond the dependence on DF elucidated 

above. In particular, in the presence of a dynamical transition the simple linear 

approximation of the local mapping may break down, so that we no longer have γj → 0 (or 

), in turn producing a large fluctuation in the values of Sj∣j+1 that is captured by σS. 

We thereby expect the statistically most significant fluctuations to indicate dynamical 

transitions. Indeed, as described in Sec.III, we will identify such transitions by means of 

statistical significance tests.

Before we discuss further analytical properties of the above introduced measure, we will 

first demonstrate the sensitivity of σS to changes in the dynamical complexity through a 

simple yet challenging numerical example. We will consider the coupled map
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(16)

This map can exhibit two distinct dynamical regimes for certain parameter regimes: one is 

the ordinary chaotic attractor and another is a strange non-chaotic attractor (SNA). SNA 

appears in various quasi-periodically driven dissipative dynamical systems [55–57] and the 

transition between chaos and SNA can be quite subtle. Identifying such transitions is a 

challenging numerical problem [58, 59]. In this example our main aim will be to show that 

σS is sensitive to changes in the dynamical complexity due to transition between these two 

distinct dynamical regimes. Later in Sec. III. we will further illustrate the ways in which σS 

can be employed to identify dynamical transitions.

The transitions between chaos and SNA can only be observed in the space of Lyapunov 

exponents of Eq. (17). The two types of Lyapunov exponents, namely, the largest transverse 

Lyapunov exponent ΛT and the largest Lyapunov exponent Λy of the subsystem y, are given 

by [56, 57]

(17)

It is known that in the case of ΛT > 0 and Λy < 0 we have SNA while for ΛT > 0 and Λy > 0 

we have a chaotic regime. In Fig. 4 (a, b) the grey band represents the transition to SNA 

from chaos. This transition is known to occur via on-off intermittency, whereas the grey 

band in Fig. 4 (c, d) highlights the transition from SNA to chaos.

We generate a short time series of length N = 4500 at 100 different values of a separated by 

0.002. Then we calculate σS using embedding parameters m = 5 and L = 2. In Fig. 4 we 

have plotted σS with the ΛT and Λy. An abrupt change in the values of σS would indicate a 

transition. Comparing Fig. 4 (a, b) we observe that as Λy starts to decrease and becomes 

negative, the values of σS show a simultaneous drop, signifying the dependence of σS on the 

complexity or qualitative features of the dynamics. We observe lower values of σS for SNA 

than for chaos. A similar change is observed if we reverse these transitions, i.e., going from 

SNA to chaos (Fig.4 (c, d)). As the values of Λy increase to positive values there is again a 

sharp drop in the values of σS. This example demonstrates that σS is able to capture even a 

subtle change in dynamics, like the ones that occur in transitions between SNA and chaos. In 

[1] we have shown that σS can uncover all the transitions that are induced by the variation of 

the parameter in a logistic map like period-chaos transitions, intermittency, chaos-chaos 

transitions, etc..

B. Relationship with Lyapunov spectrum

Lyapunov exponents λi are the most extensively used measures for a quantitative 

characterization of nonlinear dynamics [3–5, 23, 48]. Several dynamical invariants are 
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conjectured in terms of them such as Lyapunov dimension. However, reliably estimating λi 

from short time series remains a challenging problem [48, 60, 61], frequently encountered in 

various real time systems. The main objective of this section is to understand the new 

measure Sj∣j+1, its mean μS, and variance σS in terms of these well known dynamical 

measures of Lyapunov exponents.

Suppose that Eq. (4) holds and  are the eigenvalues of the Jacobian matrix 

Dϕ(xj). Then the deformation of the infinitesimal ϵj(k) ball neighborhood of xj in any 

direction i will be a multiple of exp( ) (see Fig. 5). Defining , where  are 

called the Lyapunov numbers, the local Lyapunov exponents, λi, are given by

(18)

The global Lyapunov exponent Li corresponding to the direction i is the asymptotic value of 

λi

(19)

If the Euclidean distance metric is used for calculation of d(xj), a simple geometrical 

consideration yields

which directly leads to

(20)

Hence, Sj∣j+1 measures the total deformation of the ϵj(k) ball neighborhood of point xj when 

a mapping ϕ is applied on it.

From Eq. (20), we find that the average of Sj∣j+1 taken over a window of size n is,

(21)
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Comparing, Eq. (21) with Eq. (18) and Eq. (19) we can conclude that μS will resemble the 

sum of the local Lyapunov exponents, approximating the sum of the global Lyapunov 

exponents over large n. This is shown numerically for the Logistic map in Fig. 6. In a 

chaotic system we always have at least one direction i such that the , i.e., , 

representing the expansion in the direction i. In other directions we will either have 

contraction, , i.e.,  or , i.e., . Therefore, in a chaotic system with few 

degrees of freedom the most dominant contribution to Sj∣j+1 in Eq. (20) comes from the 

largest positive eigenvalue corresponding to the expansion. Hence, for such systems μS will 

be similar to the Lyapunov exponent. In Fig. 6 we observe a strong correspondence between 

μS and the Lyapunov exponent of the logistic map. We know for certain systems the sum of 

the largest Lyapunov exponents is provably related to the dynamical invariants such as 

Lyapunov dimension, topological entropy, and information dimension (due to Kaplan-Yorke 

conjecture) [22, 23, 62, 63]. Therefore, we might think that μS could also be used in 

quantifying dynamics but our numerical analysis has shown that μS is not well suited for 

detecting dynamical transitions in the series because it is not sensitive in quantifying and 

capturing large fluctuations in Sj∣j+1. It will be better to use σS for this purpose, as σS is 

better suited to quantify variation in parameters of a dynamical system and corresponding 

changes in the dynamics, because any variation in the parameters of a dynamical system will 

lead to variation in the Lyapunov spectrum too. Transitions lead to large deformations of the 

ϵj(k) neighborhood, leading to large fluctuations in the magnitude of Sj∣j+1, which are then 

captured by σS. A point to note is that the global Lyapunov exponents Li are not defined for 

a time series with a transition, due to the constraints imposed by ergodicity.

In order to get further insights into the properties of σS we take a look at the distribution of S 

(dropping subscript for simplicity) over window size n of vectors, P (S, n). Since the  are 

in a sense random numbers for chaotic systems, and the expression of S, Eq. (20) consists of 

a summation over , therefore, the central limit theorem implies that S follows a 

Gaussian distribution at least asymptotically. Following [22], we find that asymptotically P 
(S, n) has the following general analytical form,

(22)

where Φ(S) is a convex quadratic function with minimum zero, occurring at S = μS, i.e., 

Φ(μS) = 0, Φ′(μS) = 0, Φ″(μS) > 0. Expanding Φ(S) around μS and neglecting higher order 

terms, we write Eq. (22) as,

(23)

which gives a familiar looking form of a Gaussian distribution. Then
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(24)

A similar expression for distribution and variance could also be written for the local 

Lyapunov exponents [22], where Φ(λi) is known as the spectrum of the local Lyapunov 

exponents and can be used for characterising the dynamics of the system [64–66]. So as an 

analogy we propose that Φ(S) can also be used to characterise the dynamics. The 

distribution of S for different types of dynamics may follow a Gaussian distribution of the 

type P (S, n) asymptotically but each type of dynamics must correspond to unique μS and σS. 

This is because of the fact that each type of dynamics has a unique ϕ (see Eq. (4)) and hence 

unique eigenvalues and the corresponding deformations and values of S should also be 

unique. In future research we intend to develop a method based on estimation of Φ(S) to 

classify distinct dynamics.

III. DYNAMICAL TRANSITION INDUCED BY CO-EVOLVING PARAMETERS

In the numerical example above, values of σS could distinguish two distinct chaotic regimes 

and SNA, demonstrating that σS can be used to distinguish different types of dynamics. A 

similar example about the capability of σS in identifying distinct dynamics was presented in 

[1] for the logistic map, where σS was used to uncover all of the transitions induced there by 

variation of the parameter in the map, including period-chaos transitions, intermittency, and 

chaos-chaos transitions. An important point is that in these examples we had access to a 

whole time series at each value of the parameter. However, in many applications we do not 

have the luxury of a whole time series being available at a single value of the control 

parameters; rather, the more common real-world situation involves control parameters co-

evolving with the system dynamics [13, 24–26]. In such cases, we only have very few points 

available at a particular value of the control parameter. For example, in the study of 

palaeoclimate, we have few observations of a climate variable via proxies, while the 

parameters driving climate like solar insolation co-evolve with these climate variables in 

time leading to transitions in the dynamics [1, 11, 17, 26, 30]. Other examples of such 

situations are readily imagined in social dynamics, where we have very few observation of 

social indices while the parameters driving social dynamics, like economic and political 

factors, coevolve with variables of interest [13, 18–20]. A further example is in 

neuroscience, where event-related potentials (ERP) measured by electroencephalography 

(EEG) show several distinct dynamical behaviors as a response to changing stimuli [67, 68].

As a conceptual model for studying such transitions in the presence of co-evolving 

parameters, we consider

(25)

where y is a set of variables of a dynamical system and ζ(t) is a parameter evolving in time. 

A variety of qualitative changes in the dynamics of the system may be generated by the 

passing of ζ(t) through a bifurcation point or even the rate of change of ζ(t). Some of the 
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system changes may be subtle, such as shifting from one regime of complex chaotic 

dynamics to another chaotic dynamics of higher or lower complexity [3, 17, 24–26]. In the 

numerical examples following this section, we let the parameter simultaneously evolve with 

variables of the system, in order to better test the method for practical utility in real systems.

A statistical test for assisting with a more automatized identification of dynamical transitions 

presented in [1] is briefly described here again for convenience. To test the relative statistical 

significance of two values of σS belonging to distinct dynamics we use a bootstrapping 

procedure where we randomly draw n values with replacement from the series of Sj∣j+1, 

where n is the window size used in calculation of σS. Repeating this procedure several 

thousand times, we generate an ensemble of values of σS and interpret the 0.05 and 0.95 

quantiles of this ensemble as the 90% confidence bounds. The values of σS outside this 

bound are then classified as belonging to dynamics of two distinct complexity with 90% 

confidence. The time band over which the crossover between the two levels occurs contains 

the point of dynamical transition. The points with lower values of σS may be regarded as 

belonging to dynamical regimes which are relatively more stable and lower in dynamical 

complexity.

A. Identifying drift in the dynamics (nonstationarity)

In order to explore the challenge of identifying a continuous drift in the dynamics of a time 

series, we consider the generalized Baker’s map [69], with a time series generated following 

the procedure described in [6]:

(26)

with Lyapunov exponents

(27)

(28)

Introducing a drift in the parameter β as done in [6], we generate a time series of length 15, 

000 with fixed α = 0.4 and varying β = i/15, 000. We remove the trend from the resulting 

time series by the transformation

where wi = ui + vi and averages are taken locally over the k = 50 nearest times.
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Ignoring the initial transient, we consider only a relatively short section of the time series, 

1000 ≤ i ≤ 7000 (cf. the 40, 000 data points used in [6]). The top panel in Fig. 7 shows the 

times series and the middle panel shows the evolution of λ2. Observe that there is no visibly 

apparent trend in the time series even though λ2 is continuously evolving. Using embedding 

parameters m = 5 and L = 2, we observe in Fig. 7 that values of σS drift from significantly 

higher values (orange dots) to significantly lower ones (green dots), indicating a dynamical 

drift that has occurred during this time interval. This evolution of σS can be described by a 

quadratic fit, as shown in Fig. 7 (lowest panel) with thick red line. Given the limited range of 

β here, λ2 = ln β can be approximated by quadratic polynomial in β. Therefore, the 

dynamical drift defined by λ2 should be visible in the form of a quadratic trend in any other 

measure of dynamical complexity. It seems σS is very well able to capture this feature of the 

dynamics.

B. Transition between transient chaos and Lorenz’s attractor

In order to explore a continuous-time example with a transition from transient chaos to a 

chaotic attractor, we next consider the Lorenz system

(29)

with a = 10 and b = 8/3. The chaotic Lorenz attractor exists for γ > 24.74, whereas transient 

chaos exists for 13.9 < γ < 24.06. For the transition zone 24.06 < γ < 24.74, there is a 

coexistence of three attractors: two steady states and one a chaotic attractor [70]. The 

transient chaos disappears due to a crisis at γ ≈ 24.06 and Lorenz’s attractor emerges as the 

only possible stable attractor due to a subcritical Hopf bifurcation at γ ≈ 24.74. We 

investigate a time series of the x variable as generated by a fourth-order Runge-Kutta 

numerical solution with time step h = 10−3 that is sampled every 103 time steps. We sample 

6, 000 such time points during which γ is varied linearly from 23.5 to 25.25 (γ = γ0 + 2.92 

× 10−4t, where γ0 = 23.5 and t is the integration time). This variation leads the system to 

pass from transient chaos to a transition zone (crisis and subcritical Hopf transitions) to the 

formation of of the Lorenz attractor (Fig. 8).

To calculate σS for this example we have used m = 10, L = 10 and a window size of 300 

with 90% overlap. A detailed explanation for our choice of rather higher values of 

embedding parameters is provided in Sec. III F. The calculated values of σS are shown in the 

lowest panel of Fig. 8. We observe lower values of σS (green open squares) predominantly 

below the confidence bound for transient chaos and higher values (orange dots) 

predominantly above the confidence bound for the Lorenz attractor, distinguishing the two 

dynamical regimes in this time series. The transition zone (grey shaded region) not only 

contains multiple transitions but also multiple attractors, which is also reflected in the values 

of σS jumping between green open squares and orange dots. Due to the fact that the 

formation of an attractor is temporally delayed [71], and we also lose a few initial points due 

to windowing and embedding, the transitions are typically rightward shifted, as expected.
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C. Abrupt transitions between chaos and intermittent chaos

We next explore abrupt jumps between distinct dynamical regimes, by way of an Ikeda map. 

In this map, two different kinds of chaos can be observed by changing one of the parameters. 

The first type of chaos is distinguished from the second one by the existence of intermittent 

bursts of activity. The phenomenon that describes this feature is called an interior crisis or an 

attractor merging crisis, where a chaotic attractor suddenly widens while still spending long 

stretches of time within the region of the former attractor [72–74]. The Ikeda map is given 

by

(30)

with z = x+iy complex [22, 75]. We consider the parameters a = 0.85, b = 0.9, and κ = 0.4, 

for which we will have chaos for η < ηc ≐ 7.2688489 and intermittent chaos above the 

critical value (η > ηc) [76]. We here make η abruptly change between η = 7.2 (precrisis) and 

η = 7.4 (postcrisis) in every 100th iteration of the map to generate a time series of the 

variable yj = Im(zj) of length N = 500 (i.e., containing four transitions between precrisis 

chaos and postcrisis intermittent chaos in a relatively short time series).

In Fig. 9 we observe that σS (calculated with window size n = 50 and embedding parameters 

m = 5 and L = 5) correctly identifies these four transitions in the time series of the variable 

yj. We note that σS has higher values (orange dots) for intermittent chaos (η = 7.4) and lower 

values (green open squares) for chaos (η = 7.2). The width of the grey bands is equal to n 

and they are centered at the transitions and hence the jump in the values of σS between 

different dynamical regimes is expected to occur within these bands. This example also 

illustrates the capability of the method to identify transitions even in the presence of short 

lived nonstationarity in the form of intermittent burst in the dynamics.

D. Tolerance of the measure against observational noise

To test the influence of observational noise on FLUS, we again consider the example of the 

Rössler model, Eq. (9). In this system, two topologically distinct attractors exist, namely 

spiral type chaos for a = 0.32 and screw type chaos for a = 0.38. Somewhere in the interval 

0.32 < a < 0.38, a transition from screw to spiral type chaos occurs via the formation of a 

homoclinic orbit [77, 78].

We generate a test time series for our method by varying the control parameter a by 

 where t is the integration time, and we have used a fourth-

order Runge-Kutta integrator with h = 10−3. We sample 6, 000 points of the x-component 

separated in time by 200h. The control parameter a crosses the transition point four times 

during this time series [see Fig. 10(c)]. While this example system was also discussed in [1], 

we do so here in the context of observational noise (the present subsection) and missing 

values (in the next subsection).
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We add simple white noise to this time series, adding to each time point a random variable ξ 
from a normal distribution with mean 0 and standard deviation σ(ξ) = ησ(x), where σ(x) is 

the observed standard deviation of the original time series [see Fig. 10(b)]. We vary the 

strength of noise by varying η: for instance, η = 0.01 corresponds to a 1% noise level in the 

signal. We test the tolerance of the measure against three different noise levels here, viz. 1%, 

5%, and 7% [see Fig. 10(d-f)]. The error bars on the values of σS are obtained by generating 

1, 000 different realizations of noise at each level. We have replaced the significance levels 

from dotted red lines to solid red lines, as these are the mean of the significance levels for 

the different realizations of the noise. In Fig. 10(d-f) we observe that all the transitions seem 

to remain intact for all the different levels of noise. This is a clear indication that this method 

is robust against nominal levels of noise. We have also attempted the above numerical 

experiment with some other models, and the results of those experiments also demonstrate 

similar robustness of this method against nominal levels of noise. The embedding 

parameters used for every level of noise are exactly the same: m = 10 and L = 15 with 

window size of 300 and 90% overlap. These parameters are also the same as used in [1] to 

discuss the same example system in the absence of noise.

E. Strategy for treatment of missing values

Apart from shortness of the data, another central problem which surrounds data analysis is 

irregular sampling or missing values [79–81]. This is a common problem in fields such as 

astronomy, medical, earth, and social sciences [79–84]. We here propose a strategy to deal 

with missing values while using FLUS. To generate a test time series, we consider the same 

Rössler model as used in the previous section and randomly remove some of the values in 

the time series. The number of time points removed from the time series are given in terms 

of percentage of missing values. A straightforward application of the FLUS method will not 

work in such a case, due to the incompatibility of embedding a time series in delayed 

coordinates with missing values. The first step of our strategy for dealing with treatment of 

missing values involves replacing the missing values with a flag (e.g. a NaN character). 

Then we continue to embed the time series in time delayed coordinates, with some of the 

coordinates just being the flags. But this would make the numerical calculation of a distance 

metric impossible. To get over this issue we recommend to use of the Chebyshev distance, 

rather then Euclidean distance as done elsewhere in this work. Chebyshev distance between 

two vectors xj and xl is given by , where  is the ith component 

of the vector xj. It ignores the non-numerical flags and maximum is only calculated over the 

numerical values. Thus, it returns non-numerical values only in the rare case when all the 

components of both the vectors are non-numerical flags. Using the same delay and 

embedding dimensions as in the previous section, we present the result at different amounts 

of missing values in Fig. 11 (c-e). The error bar on the values of σS were obtained from 

1000 different realizations of missing values. The solid horizontal red lines are again the 

mean significance levels for different realizations of missing values. In Fig. 11 we observe 

that the above strategy seems to work with a reasonable amount of missing values in the 

data. The embedding parameter used in this case were exactly the same as used in previous 

example.
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F. A note about embedding parameters, window size and length of the time series

In the examples above, we have used a rather high embedding dimension, which is due to 

the fact that the systems we are considering have one of its parameters varying with time 

(such as Bakers’ map, and Lorenz system with a drift, and Rössler system with nonlinear 

transitions). This converts the systems into non-autonomous systems. Taken’s theorem is not 

valid for such a system. Hence, we cannot take the embedding dimension 2m + 1 as 

prescribed by the Taken’s theorem (m is the known dimension of the system) [43, 85]. 

Though there is no specific embedding theorem for such systems, heuristic arguments in 

[86] state that a proper choice for the embedding dimension should be larger than 2(m + P) 

where P is the number of time varying parameters of the system. It has been suggested that 

this technique of “overembedding” a time series helps in overcoming both nonstationarity 

and noise effects [86, 87]. We will continue using high embedding dimension in the next 

section, where we apply our method to the analysis of crime record’s time series, as these 

time series have originated from a system (society) which is not only high dimensional but 

also a large parameter space. So, 2(m + P) must be a large number. In the crime record’s 

time series used below, apart from visible non-stationarity the time series also have a high 

amount of noise which is also visible by eye and via its power spectrum. Hence, a high 

embedding dimension is an appropriate choice.

In Fig. 3 we have shown a quick convergence of σS on taking large enough window sizes, 

which in turn gives the measure dependence on the structure of the attractor through the 

effective dimension DF. By taking overlapping windows, we avoid reducing the amount of 

data appreciably. The presented method differs in one very basic aspect from other methods, 

in particular those based on recurrence properties. In many of them one first takes a window 

over the data (or embedded vectors) and then calculate some measure based on the 

recurrence property [2, 7, 9, 10, 88]. This creates a relationship between windowing, 

dimension and delay. In our method we follow a different approach, first the recurrence 

distances of a point over the whole time series are calculated and, then, by comparing each 

consecutive time point, we calculate the measure Sj∣j+1 for each point. Up to this step we 

have no windowing. In the next step we calculate the fluctuations in this measure by taking 

windows. The way we have defined the significance test, the window size now helps in 

resolving time scales on which we wish to see the transitions. The real task of windowing is 

to give control over resolving time scales for transitions.

Another crucial point is the minimum length of the time series required to apply this 

method. The only requirement for the method to work is that we should have enough points 

so that a convergent value of σS can be obtained. We observe the quick convergence of σS in 

Fig. 3(a-b), where σS converges over only a few hundred points. In general, a minimum of 

few hundred points should be sufficient to apply this method. An exception to this 

requirement may occur in a case where the rate of occurrence of transitions is faster than the 

time the attractor takes to set in.

IV. APPLICATION TO SOCIAL DYNAMICS

Now we present an application of our method to an observed time series in social dynamics. 

Crime rates in society might be interpreted as following some nonlinear dynamics and 
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affected by political, economic, and social situations [89]. Analytic methods of time series 

analysis and agent based modeling have been used to predict and quantify the evolution of 

crime rates in different settings and societies [90–94]. Various methods from the rich 

paradigm of nonlinear time series analysis do not appear to have been applied to available 

data sets of crime records. We here analyze time series of robberies and homicides in the 

United States from 1975 to 1993 with monthly resolution. With this analysis we attempt to 

understand the nature of relationship if any between unemployment and robberies, and 

unemployment and homicides over this period [91, 95, 96].

A. Data source

The source of data studied here on monthly robberies and monthly homicides is ICPSR 

(Inter-university Consortium for Political and Social Research) study 6792 (Uniform Crime 

Reports: Monthly Weapon-Specific Crime and Arrest Time Series, 1975-1993). The source 

of unemployment data is the US Bureau of Labour Statistics (http://www.bls.gov/data/), 

using the monthly levels of unemployment for the whole US for the period 1975-1993. In 

Fig. 12 (a) and Fig. 13 (a), black lines correspond to monthly robberies and monthly 

homicides respectively and blue dotted lines represent the unemployment rate over the same 

period. For the results below, we have removed the linear trend from monthly robberies and 

monthly homicides time series by subtracting a linear least squares fit to the data.

B. Results

The calculation of σS for the monthly robberies and homicides time series was done using a 

window size of 20 months with 90% overlap, embedding dimension 12, and delay of 3, 

plotted in Fig. 12(b) and Fig. 13(b). As emphasised in the discussion above, higher values of 

σS correspond to greater variability or complexity in the dynamics; while low values 

correspond to low complexity in the dynamics. For the monthly robberies time series in Fig. 

12(b) we observe low values of σS until 1982 (green open squares). Between 1983-1985 we 

also observe lower values of σS but in a statistically insignificant regime (black plus signs). 

Then close to 1987 there is a significant increase in the values of σS (orange dots) and the 

values cross the significance band during a transition between the period 1987–1990 

(highlighted by a grey band). We uncover a similar transition in Fig. 13(b) occurring close to 

1987 (see the grey band in both figures covering the period 1987–1990.)

If we closely observe the original time series of robberies and homicides, then it is visible 

even to the naked eye that there are higher variabilities and larger fluctuations after this 

period. A fact to be noted here is that crimes in the US across all categories of crime started 

to drop in the 1990’s and this drop has continued since [97–100]. Several reasons have been 

hypothesized for this decrease, including increased incarceration [101], more police [102], 

the decline of crack use [103], legalized abortion [97], improvement in the quantity and 

quality of security [99] and changing demographics [100]. Our time series analysis above 

only brings forward the point that some fundamental change in the dynamics of crime in the 

US occurred in the late 1980’s and early 1990’s, leading to continuous drop in the crime rate 

in the following decades.
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In Fig. 12 (c) and Fig. 13 (c), the continuous color variation gives the cross correlation ρ 
between σS and unemployment rate averaged over exactly the same time windows as σS. 

The blue curves in the middle panels of Fig. 12 and Fig. 13 correspond to this averaged 

unemployment rate. In the case of unemployment and robberies, we observe high positive 

values of cross correlation (ρ ~ 1.0) between the two curves from 1979 to 1989 and then an 

abrupt breakdown of this correlation, indicating some fundamental shift in the crimes related 

to robberies around this time. In our second case of homicides, however, we do not observe 

any such relation between unemployment and homicides: the values of cross correlation 

between σS and average unemployment are rather low starting in the mid 1980s, fluctuating 

between negative and positive values. That is, the signals of unemployment rate driving 

variability and complexity in dynamics of robberies before the 1990’s are quite apparent but 

they do not seem to play a similarly significant role in homicides.

Sociologists have pointed out that the relationship between unemployment and robberies is a 

rather complex one: increasing unemployment increases the criminal motivation 

(unemployed individuals are more motivated to indulge in robbery for their financial needs 

and survival) but it also decreases the criminal opportunity (more men start to stay at home, 

so less opportunity for criminals to break into homes), creating a counter balancing effect 

[104]. Hence, we cannot expect a linear relationship between both. We have also not 

observed a strong linear correlation (see Fig. 14) or a Granger causal relationship between 

these two variables. What our above analysis shows is that unemployment may have been 

driving the complexity or variability in the dynamics of robberies prior to the late 1980’s and 

early 1990’s. The breakdown in this relationship corresponds to a time period when the 

crime rate in the US started to steadily drop, due to several reasons discussed in detail in the 

references [97–103].

An important perspective in criminology has been conflict theory, where it is considered that 

economic deprivations influence crime rates [92], but there does not exist a conclusive 

empirical support for this relationship [95, 96, 105]. In our analysis, if we treat the 

unemployment rate as being one of the economic indicators then we observe an episodic 

relationship between robberies and unemployment but the same cannot be said for 

homicides. Undoubtedly multiple interconnected factors including economic indicators drive 

crime rates. It is not possible to discern all such relationships with our method. To accept or 

reject the economic deprivations perspective of crime, one would need to do an extensive 

analysis of different social and economic indicators. Our method can only help in identifying 

certain fundamental shifts or transitions in the dynamics of the system at different temporal 

scales, though some of those transitions would be in the realm of speculation until and 

unless we have some independent means to verify them.

V. CONCLUSION

Developing a set of methods that can be used to distinguish distinct dynamical regimes and 

transitions between them in a given time series has been a challenge in nonlinear time series 

analysis with wide applicability in a variety of fields. We have recently proposed the new 

method FLUS, based on computation of nonlinear similarities between time points of a 

univariate time series [1]. FLUS is robust, automatized, and computationally simple and can 
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be used even in cases with shorter time series, or missing values, or observational noise. 

Here we have presented some new analytical findings, where we have related this measure to 

some classical concepts in nonlinear dynamics such as attractor dimensions and Lyapunov 

exponents. We have shown that the new measure has linear dependence on the variation of 

change in dimensionality or complexity of the attractor. Also, it measures the variance of the 

sum of the Lyapunov spectrum. One of the problems we have studied in detail with this 

method is identification of transitions in dynamics when the parameters of the system are 

also evolving with dynamics. The proposed method is able to identify these most subtle of 

transitions, even including those where the evolution of parameters induces only a drift or 

nonstationarity in the dynamics. Also, employing a wide variety of prototypical model 

systems we have demonstrated the practical usefulness of this method.

Furthermore, we have used this method to analyze a time series from social dynamics, 

studying time series of US crime from 1975 to 1993. In doing so we have attempted to 

understand the nature of the relationship between crime rates (robbery and homicides) and 

unemployment levels during this period. We have found a dynamical transition in the late 

1980’s in both homicide and robbery rates and also found the dynamical complexity in 

robbery rates was driven by unemployment before this transition in 1990’s. As demonstrated 

above, FLUS could be useful in such analysis and in other endeavours where similar 

questions could arise.
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FIG. 1. 
(Color online) Schematic representation of the ϵj(k) ball neighborhood U(xj), corresponding 

to the k nearest neighbors of xj, and its deformation (region within red boundary) due to 

application of the mapping ϕ, xj+1 = ϕ(xj). Note that the neighborhood of xj+1 corresponding 

to its k nearest neighbors is usually different. Locally at xj the mapping ϕ is approximated by 

a linear transformation. Expansion of U(xj) by inclusion of more points rescales ϕ(U(xj) by 

stretching or contraction in different directions. Hence, their radii will scale by the same 

exponent.
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FIG. 2. 
(Color online) (a) and (b) Scaling laws for the Rössler system for two different randomly 

chosen time points taken over a short time series of length N = 4500. See Eq. (6) for red 

lines (lines fitted to the dots) and Eq. (8) for blue lines (lines fitted to the open squares). 

Note that  here in the absence of dynamical transitions in the model. The embedding 

parameters used were m = 10 and L = 15. (c) and (d) Scaling laws in the logistic map for 

two different randomly chosen time points over a short time series of length N = 4500. See 

Eq. (6) for red lines and Eq. (8) for blue lines. Note again that  as there are no 

dynamical transitions. The embedding parameters used were m = 3 and L = 2. We also 

observe the fluctuations in the values of exponents α and β, possibly caused by the shortness 

of these time series and numerical error in the evolution of the dynamics.
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FIG. 3. 
(Color online) Convergence of σS under sampling over windows of size n. We generate 

different realizations of σS by bootstrapping, i.e., resampling windows of size n of Sj∣j+1 

values with replacement and calculating σS for each of the resampled window.  is the 

median of 10, 000 such bootstrap realizations and ϵ gives the corresponding standard error 

in the estimation of the median over these realizations. (a) Logistic map (b) Rössler system 

(in both cases, the total length of the time series is N = 4500.)
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FIG. 4. 
(Color online) An illustration of σS’s sensitivity to the changes in the dynamical complexity: 

identifying transition between chaos and strange non-chaotic attractor (SNA). Chaos exists 

when both ΛT (largest transverse Lyapunov exponent) and Λy (largest Lyapunov exponent) 

have positive values whereas SNA exists when Λy is negative and ΛT is positive. (a,c) 

Largest transverse Lyapunov exponent ΛT (blue lines) and largest Lyapunov exponent Λy 

(red dots) on varying parameter a (see Eq. (17) and Eq. (18)). Transitions between chaos and 

SNA are highlighted by gray vertical band in all the panels. (a) Observe Λy becoming 

negative while a is increased whereas ΛT is positive and continues to increase leading to a 

transition from chaos to SNA (gray band). In (b) we show σS (black dots) calculated from 

time series of x variable of Eq. (17). Observe the sharp drop in values of σS as the chaos 

converts into SNA (gray band). (c) Observe Λy becoming positive while a is increased 

whereas ΛT is positive and continues to decrease leading to a transition from SNA to chaos 

(gray band). (d) The value of σS shows a sharp drop as SNA disappears into chaos.
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FIG. 5. 
(Color online) Evolution of the ϵ(k) neighborhood of the time point xj into an ellipsoid by 

the application of the smooth mapping ϕ such that xj+1 = ϕ(xj). The expansion or contraction 

in any direction i is a multiple of exp( ), where  are the eigenvalues of Dϕ at j.
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FIG. 6. 
(Color online) Correspondence between μS (blue line in (b)) and the Lyapunov exponent λ 
(black line in (a)) for the logistic map. The parameters used for this figure are the same as 

used for Fig. 2.
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FIG. 7. 
(Color online) Identifying drift in the dynamics of the Baker’s map with continuously 

changing parameter β. As indicated in Eq. (27), λ1 is constant with respect to β. In contrast, 

λ2 = ln β. We observe σS changing from significantly higher values to significantly lower 

values as the time progresses. A quadratic fit describes this evolution (red curve), indicating 

the nonlinear change of parameter of the system.
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FIG. 8. 
(Color online) Formation of Lorenz’s attractor, when parameter γ is varied from 23.5 to 

25.25 (see Eq. (29)). When γ < 24.06, transient chaos exist whereas 24.06 < γ < 24.74 is a 

transition zone where multiple attractors coexist and for γ > 24.746 only Lorenz’s attractor 

exists. The σS distinguishes between these three regions, for γ < 24.06 green open squares 

indicates low complexity dynamics, for γ > 24.74 only orange dots exist indicating higher 

complexity dynamics. In between these two regions we have a state where multiple 

attractors coexist, indicated by jumps in the values of σS below and above the significance 

bands (red dotted horizontal lines). The thick black vertical lines are drawn at the times 

points when γ ≈ 24.06 (crisis) and γ ≈ 24.74 (subcritical Hopf bifurcation)
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FIG. 9. 
(Color online) Identifying abrupt transition between chaos and intermittent chaos induced by 

an interior crisis. The iterations of the Ikeda map (Eq. 30) for η = 7.2 and η = 7.4 belong to 

the precrisis chaos and the postcrisis intermittent chaos respectively. yj is the imaginary part 

of zj. Observe the values of σS jumping between the green color markers (open squares) and 

the orange color markers (dots) as η is abruptly changed between two dynamical regimes. 

The vertical grey bars indicate the region where transitions should be found and their width 

is equal to the window size n.
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FIG. 10. 
(Color online) Test the effect of presence of observational noise on the method: (a) xj are 

values of x variable of Eq. 9 sampled at time step j, (b) shows the effect of adding white 

noise to xj. (c) shows the variation of control parameter a, note the crossing of four grey 

bands by the parameter a. These grey band represent the four dynamical transition that take 

place when a crosses the value close to 0.38. The width and location of these bands is the 

same as in the noiseless case presented in [1]. (d-f) shows the variation of σS with three 

different levels of noise added to the signal. For 1% we see the smallest error bars and all the 

four transitions are clearly visible, i.e., crossing of significane band by values of σS right 

between the grey bands. In higher noise levels the transitions are still intact but with 

increasing error bars.
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FIG. 11. 
(Color online) Testing the effect of missing values on the method: (a) Red points represent 

the time points missing from the dynamics (black points) of the Rössler system at the level 

of 5% missing values. The transitions highlighted by grey bands are introduced by changing 

the parameter a in Eq. 9 as described above in Sec. III D. (c-e), showing the variation of σS 

at different levels of missing values, in all the three we observe the transitions to remain 

intact. An important point to note is that even on using Chebyshev distance, there is no 

structural change in evolution of σS compared to the previous example (See Fig. 10).
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FIG. 12. 
(Color online) (a) Black line indicates the monthly robberies in the US between 1975 to 

1993, whereas the blue dotted line is the monthly unemployment rate between the same 

period. (b) Values of σS calculated for monthly robberies time series, represented by green 

open squares, black + signs and orange dots. The blue dotted line is the average values of 

monthly unemployment rate, calculated exactly with the same window sizes as used for σS. 

Note the change in the values of σS from green open squares to orange dots, representing a 

transition from one dynamical regime to other, as also highlighted with the grey band. (c) 

Continuous color variation shows running windowed linear cross-correlation ρ between 

average values of monthly unemployment rate and values σS. Observe the high correlation 

between the two until 1987.

Malik et al. Page 35

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2016 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 13. 
(Color online) (a) Black line indicates the monthly homicides in the US between 1975 to 

1993, whereas the blue dotted line is the monthly unemployment rate between the same 

period. (b) Values of σS calculated for monthly homicides time series, represented by green 

open squares, black + signs and orange dots. The blue dotted line is the average values of 

monthly unemployment rate, calculated exactly with the same window sizes as used for σS. 

Note the change in the values of σS from green open squares to orange dots, representing a 

transition from one dynamical regime to other, as also highlighted with the grey band. (c) 

Continuous color variation shows running windowed linear cross-correlation ρ between 

average values of monthly unemployment rate and values σS. Observe the low correlation 

between the two for almost over the whole of time period.
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FIG. 14. 
(Color online) (a) Scatter plot between the level of unemployment and monthly robberies. 

(b) Scatter plot between the level of unemployment and monthly homicides. ρ is the cross-

correlation between the plotted variables and the red color line is the linear fit. Note the low 

correlations between the plotted variables in both (a) and (b).
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