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Abstract

AMP-activated protein kinase (AMPK) is a promising therapeutic target for cancer, type II

diabetes, and other illnesses characterized by abnormal energy utilization. During the last decade,

numerous labs have published a range of methods for identifying novel AMPK modulators. The

current understanding of AMPK structure and regulation, however, has propelled a paradigm shift

in which many researchers now consider ADP to be an additional regulatory nucleotide of AMPK.

How can the AMPK community apply this new understanding of AMPK signaling to translational

research? Recent insights into AMPK structure, regulation, and holoenzyme-sensitive signaling

may provide the hindsight needed to clearly evaluate the strengths and weaknesses of past AMPK

drug discovery efforts. Improving future strategies for AMPK drug discovery will require pairing

the current understanding of AMPK signaling with improved experimental designs.
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1. Introduction

1.1. Physiological roles of AMPK

AMPK is an energy sensor that lies at the nexus of a complex network of anabolic and

catabolic signaling pathways (Carling, Thornton, Woods, & Sanders, 2012; Hardie, Ross, &

Hawley, 2012; Russo, Russo, & Ungaro, 2013). With holoenzymes present in the cytoplasm

and the nucleus, AMPK can mediate both rapid changes (i.e., phosphorylation of
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cytoplasmic targets) and gradual adjustments (i.e., changes in gene transcription) to maintain

energetic homeostasis (Fig. 1) (Hardie, 2013; Hardie, et al., 2012; Kodiha, Rassi, Brown, &

Stochaj, 2007). As a ubiquitously expressed protein complex, AMPK’s regulatory reach

extends well beyond the cell membrane. From head to toe, AMPK sustains the energetic

demands of the brain, helps muscles adapt to strenuous workloads, and regulates hepatic

energy stores in response to fasting and feasting (Carling, et al., 2012; Moore, Coate,

Winnick, An, & Cherrington, 2012; Richter & Hargreaves, 2013). Many investigators have

dissected and described AMPK signaling pathways in research papers and reviews.

Although descriptions of these pathways fall beyond the scope of this review, we encourage

clinicians and investigators to revisit these publications (Carling, et al., 2012; Hardie, 2013;

Hardie, et al., 2012; Russo, et al., 2013).

1.2. AMPK structure and regulation

AMPK is a conserved serine/threonine kinase expressed in nearly all eukaryotes (Miranda-

Saavedra, et al., 2007; Russo, et al., 2013). Detailed descriptions of AMPK structure and

regulation can be found in reviews (Carling, et al., 2012; Hardie, et al., 2012; Russo, et al.,

2013). In short, AMPK is composed of a catalytic α subunit, a scaffolding β subunit, and a

regulatory γ subunit (Fig. 2) (Russo, et al., 2013). Mammals express multiple isoforms of

each subunit (α1, α2, β1, β2, γ1, γ2, and γ3) (Russo, et al., 2013). Phosphorylation of

threonine 172 (T172) on AMPK-α is required for kinase activity (Carling, et al., 2012;

Hardie, et al., 2012) (Fig. 2). Upon binding to AMPK-γ, AMP can promote phosphorylation

of T172, allosterically increase activity of phosphorylated AMPK (p-AMPK), and protect p-

AMPK from dephosphorylation by protein phosphatases (Fig. 2) (Carling, et al., 2012;

Hardie, et al., 2012). In addition, ADP can inhibit dephosphorylation upon binding to

AMPK-γ (Fig. 2) (Carling, et al., 2012; Hardie, et al., 2012; Xiao, et al., 2011). Finally,

phosphorylation and myristoylation of AMPK-β have been shown to regulate subcellular

distribution of AMPK-β (Fig. 2) (Sanz, Rubio, & Garcia-Gimeno, 2013). Other possible

AMPK regulatory mechanisms, such as redox sensitivity and oligomerization, have also

been proposed (Cardaci, Filomeni, & Ciriolo, 2012; Scholz, et al., 2009).

Due to the large number of diverse ligand-binding sites on AMPK, delineating AMPK

regulatory mechanisms has been challenging for researchers. Altogether, AMPK has four

potential adenine nucleotide-binding sites – one site on AMPK-α and three sites on AMPK-

γ (Carling, et al., 2012; Russo, et al., 2013). In addition, AMPK-γ has a fourth,

constitutively unoccupied site with no known function (Carling, et al., 2012; Russo, et al.,

2013). Of the four nucleotide-binding sites, no two sites have identical functions or identical

ligand binding affinities (Carling, et al., 2012; Gowans, Hawley, Ross, & Hardie, 2013;

Russo, et al., 2013; Xiao, et al., 2011). Furthermore, the in vitro binding affinities of these

sites vary greatly depending on buffer conditions (Xiao, et al., 2007). This sensitivity to

buffer conditions should be considered when comparing experimental results across

publications. To illustrate the differences among these sites, AMP reversibly binds the

allosteric activation site (commonly referred to as “Site 1”) and the dephosphorylation

inhibition site (commonly referred to as “Site 3”) with strong and weak affinities,

respectively (Xiao, et al., 2011). In contrast, AMP constitutively occupies the remaining

binding site on AMPK-γ (commonly referred to as “Site 4”), while supra-physiological
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concentrations of AMP must be present to occupy the active site on AMPK-α – in which

case, AMP would inhibit AMPK (Gowans, et al., 2013; Hardie, et al., 2012). Interestingly,

point mutation studies have led some researchers to believe that Site 3 mediates allosteric

activation by AMP (Chen, et al., 2012). Indeed, a crystal structure of AMPK prepared with a

low concentration of AMP shows binding of AMP to Site 3, but not at Site 1 (Xiao, et al.,

2011). Regardless of the conflicting data, however, researchers appear to agree that the

various nucleotide-binding sites on AMPK have distinct regulatory roles and differential

ligand-binding affinities.

Researchers had been studying AMPK for over two decades by the time ADP was shown to

regulate AMPK (Xiao, et al., 2011). The discovery that ADP protects p-T172 from

dephosphorylation was historically significant for the AMPK research community, as these

phosphatase experiments initiated a community-wide conversation about the relative

importance of AMP and ADP, particularly in vivo where the concentration of ADP exceeds

that of AMP (Carling, et al., 2012; Gowans, et al., 2013; Oakhill, Scott, & Kemp, 2012;

Xiao, et al., 2011). Regardless of the relative importance, however, the discovery of ADP’s

regulatory role shifted the community’s attention toward a protective regulatory mechanism

characterized in 1995, yet seldom addressed in the literature for years afterward (Davies,

Helps, Cohen, & Hardie, 1995; Goransson, et al., 2007; Sanders, Grondin, Hegarty,

Snowden, & Carling, 2007; Suter, et al., 2006). Instead, researchers often turned to AMPK

substrate phosphorylation assays to help identify new modulators or characterize known

modulators. The AMPK modulators Compound C, A-592107 (the structural pre-cursor of

A-769662), and PT1 were all identified in protein-based activity assays before or concurrent

with Xiao et al.’s phosphatase experiments (Anderson, et al., 2004; Pang, et al., 2008; Zhou,

et al., 2001). The absence of phosphatases biases these activity assays toward the

identification of molecules that modulate the magnitude of activity and away from the

identification of molecules that modulate the duration of activity. Eventually, A-769662 was

shown to both allosterically activate and protect p-AMPK from dephosphorylation

(Goransson, et al., 2007; Sanders, Ali, et al., 2007). Is it possible, however, that the inherent

bias of protein-based activity assays has permitted other potentially useful AMPK drugs to

be misidentified as false negatives in small molecule screens?

1.3. Therapeutic applications of AMPK modulators

As the umbrella of AMPK regulatory mechanisms has expanded to include

dephosphorylation inhibition and subcellular localization, the list of potential therapeutic

applications of AMPK modulators has also grown – both in length and complexity.

Historically, attention has been directed primarily toward activating AMPK to treat diabetes

(Cool, et al., 2006; Hardie, 2013; Russo, et al., 2013; Winder & Hardie, 1999; Xie, et al.,

2011). For example, the AMPK activators AICAR (the prodrug of ZMP) and A-769662

have been shown to decrease blood sugar levels in mouse models of diabetes (Fig. 3)

(Carling, et al., 2012; Cool, et al., 2006). As one may expect, the beneficial effects of

pharmacological AMPK activation on exercise endurance, blood glucose, and body weight

can be inhibited by genetic deletion of a single AMPK subunit (Fig. 3) (Carling, et al., 2012;

Giri, et al., 2006; Halseth, Ensor, White, Ross, & Gulve, 2002; Narkar, et al., 2008;

Steinberg, et al., 2010). In addition, cancer biologists have shown that, under certain
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conditions, AMPK activation can inhibit tumor cell proliferation and cell growth (Hardie &

Alessi, 2013).

Researchers have also found distinct therapeutic applications for AMPK inhibition. Tumor

cells, for example, may rely on activated AMPK to survive nutrient-poor, hypoxic

conditions during solid tumor formation (Hardie & Alessi, 2013; Jeon & Hay, 2012). In

addition, knockout of both AMPK-α1 and −α2 has been shown to decrease proliferation of

astrocytes expressing the constitutively active oncogene HRasV12 (Rios, et al., 2013).

Finally, inhibition of AMPK by ischemic preconditioning, Compound C (a non-selective

AMPK inhibitor), and genetic deletion of AMPK-α2 has been shown to reduce infarct

volumes in mouse models of ischemia (Fig. 3) (J. Li, Zeng, Viollet, Ronnett, &

McCullough, 2007; Manwani & McCullough, 2013; Venna, Li, Benashski, Tarabishy, &

McCullough, 2012). Clearly, there is a need for both inhibitors and activators that directly

regulate AMPK. Unfortunately, the direct AMPK inhibitors Compound C and sunitinib are

promiscuous; in contrast, direct AMPK activators may have poor bioavailability or regulate

only a subset of AMPK holoenzymes (Table 1) (Chu, et al., 2007; Karagounis & Hawley,

2009; Kerkela, et al., 2009; Laderoute, Calaoagan, Madrid, Klon, & Ehrlich, 2010; Y. Y. Li,

et al., 2013; Machrouhi, et al., 2010; Scott, et al., 2008).

2. Strategies to identify selective AMPK modulators

2.1. The double-life of the first selective AMPK inhibitor

Compound C, one of the most commonly used AMPK inhibitors, was first identified in a

high-throughput kinase assay (Table 1) (Zhou, et al., 2001). Originally described as a

selective inhibitor, Compound C was eventually shown to inhibit many kinases. (Machrouhi,

et al., 2010; Zhou, et al., 2001). Even though AMPK researchers are now well aware of

Compound C’s promiscuity, many may not realize that Compound C is also sold under the

name “dorsomorphin”. The name “dorsomorphin” is derived from the molecule’s ability to

regulate dorsalization of zebrafish embryos via inhibition of bone morphogenetic protein

(BMP) receptors (P. B. Yu, et al., 2008). In agreement with this discovery, another lab

published the structure of dorsomorphin binding to the ATP-binding site of a type 1 BMP

receptor kinase (Chaikuad, et al., 2012). Although the first description of dorsomorphin

states that the inhibitor is “structurally identical to Compound C”, the term dorsomorphin

and its AMPK-independent effects during development have seldom been mentioned in

AMPK papers, despite the prevalent use of Compound C (P. B. Yu, et al., 2008).

2.2. Orthogonal strategies to identify AMPK modulators

To determine if the structure of Compound C could be optimized to improve selectivity for

the catalytic site of AMPK-α, researchers simulated binding of Compound C fragments to

human AMPK-α2 (Machrouhi, et al., 2010). The fragment-based drug design (FBDD)

strategy helped generate a collection of molecules that directly inhibited AMPK

(Machrouhi, et al., 2010). However, of the molecules tested in a kinase selectivity panel,

each was shown to potently inhibit one or more off-target kinases (Machrouhi, et al., 2010).

Clearly, FBDD did not eliminate off-target effects. The strategy did, however, generate a

collection of molecules with biased selectivity profiles and, if paired with the right
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molecular scaffold, could prove to be enormously helpful for guiding AMPK drug

discovery.

To realize the full potential of FBDD, one may need to generate in silico fragments for a

molecule shown to bind not at the highly conserved ATP-binding active site, but at a less

conserved regulatory site on AMPK. Candidate binding sites may include regulatory Sites 1

and 3, the recently discovered binding site for A-769662, or the predicted binding sites for

the direct activators C24 or PT1 (which have not yet been crystallographically identified!)

(Fig. 2, Table 1) (Y. Y. Li, et al., 2013; Pang, et al., 2008; Xiao, et al., 2013; L. F. Yu, et al.,

2013). Indeed, investigators outside of the AMPK community have already successfully

used FBDD to develop the anti-tumor molecule ABT-263 (a Bcl-2 family inhibitor) and the

anti-coagulant LY517717 (a Factor X inhibitor) (Denas & Pengo, 2013; Erlanson, 2012).

Thus, it is possible to use FBDD to develop drugs that target different types of ligand-

binding sites, including but not limited to canonical kinase active sites.

As an alternative to targeting a single binding site, an in silico or in vitro screen could be

designed to target a larger regulatory region including multiple known (and perhaps

unknown) ligand-binding sites. A recently developed high-throughput assay aims to detect

small molecules that bind AMPK through displacement of a protein-sensitive fluorescent

probe shown to bind the AMPK regulatory region (Fig. 4) (S. Sinnett, J. Sexton, & J.

Brenman, 2013). The rationale for this assay was based on insights gained from published

crystal structures of mammalian AMPK (Xiao, et al., 2007; Xiao, et al., 2011). These crystal

structures were a long-awaited milestone for the AMPK community, as they helped to

pinpoint the ADP/AMP-binding regulatory sites on AMPK-γ (Xiao, et al., 2007; Xiao, et

al., 2011). In addition, the structures illustrated the differential ligand-binding affinities of

AMPK’s nucleotide-binding sites, confirmed that fluorescent coumarin- and

methylanthraniloyl (MANT)-labeled nucleotides bind AMPK-γ, identified intermolecular

interactions between protein residues and bound nucleotides, and illustrated the

conformation of the AMPK “regulatory fragment”, which is missing the kinase active site

(Fig. 4) (Xiao, et al., 2007; Xiao, et al., 2011). Equipped with these new insights, researchers

were then able to design a high-throughput screening assay using MANT-ADP, a protein-

sensitive fluorescent probe that detects competitive binding of ADP to the regulatory

fragment and full-length AMPK (Fig. 4) (S. Sinnett, et al., 2013). Investigators who use this

assay to identify molecules that bind full-length AMPK can then confirm that these

molecules bind the regulatory region in a secondary assay using the regulatory fragment (S.

Sinnett, et al., 2013).

2.3. Unexplored methods

To facilitate drug discovery, the binding assay described in the previous section must be

paired with orthogonal studies to determine if molecules that bind AMPK also regulate

activity. Molecules that bind but have no effect on activity may be candidates for

optimization through structure-activity-relationship studies (SAR). If the binding sites are

identified, FBDD could potentially be used as a tool to guide molecular synthesis. Structural

biologists have made strides that may pave the way for the successful application of FBDD.

The AMPK community now has a wide range of published AMPK structures generated
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from protein crystals soaked with nucleotides and protein co-crystallized with nucleotides

(Chen, et al., 2012; Xiao, et al., 2007; Xiao, et al., 2013; Xiao, et al., 2011). The choice of

crystallization technique may be important, as the soaked AMPK structures counter-

intuitively demonstrate no major conformational changes upon nucleotide binding (Chen, et

al., 2012). Indeed, investigators have noted conflicting data between soaked and co-

crystallized structures for other proteins (e.g., the signaling molecule p38α and the antiviral

protein griffithsin) (Azevedo, et al., 2012; Ziolkowska, Shenoy, O’Keefe, & Wlodawer,

2007). Recently, a group of AMPK researchers concluded that AMPK does undergo

conformational changes upon nucleotide binding based on their comparisons of co-

crystallized ATP-bound regulatory fragment (rat α1β1γ1) and AMP-bound regulatory

fragment (rat α1, human β2, rat γ1) (Chen, et al., 2012). By comparing both techniques

against a single holoenzyme, researchers may be able to confirm this conclusion. For those

investigators who choose to begin drug discovery projects with in silico FBDD, the use of

accurate, physiologically representative crystal structures – be they soaked or co-crystallized

– may prove to be useful for the development of successful drugs.

A recent discovery that may expedite AMPK drug discovery is the identification of the

binding site for the direct activator A-769662 (Xiao, et al., 2013). Crystallographic data

indicate that A-769662 binds at the interface between AMPK-α and -β (Xiao, et al., 2013).

In addition, researchers have proposed a mechanism explaining how A-769662 can mimic

the allosteric effects of AMP without binding to AMPK-γ (Xiao, et al., 2013). The crystal

structures of A-769662 and the AMP-mimetic 991, each bound to p-AMPK, are major

milestones for the AMPK community, as they are the first to pinpoint a regulatory non-

nucleotide binding site in vitro (Xiao, et al., 2013). Now that the binding site for A-769662

has been identified, the AMPK community may perhaps look forward to the in vitro

confirmation of the predicted binding sites for the non-nucleotide modulators C24 and PT1

(Table 1). These new insights into AMPK structure and regulation should be strongly

welcomed by AMPK researchers directing drug discovery efforts. How can the

identification of new ligand-binding sites accelerate translational research? In contrast to the

MANT-ADP assay described previously, if researchers design an assay that targets a non-

nucleotide-binding site, then this second-generation binding assay may have a greater

chance of helping to identify selective AMPK modulators. Now that the binding site for

A-769662 has been identified, one may be able to rationally synthesize fluorescent

A-769662 analogs to help detect small molecules that bind AMPK in a mutually exclusive

manner. If successful, this strategy would identify non-nucleotide-like AMPK-binding

molecules that would otherwise pass as false negatives in the complementary MANT-ADP

assay. Finally, the identification of non-nucleotide-like modulators may be particularly

appealing to clinicians, as nucleoside analogs (e.g., AICAR) often have poor oral

bioavailability (Table 1) (Karagounis & Hawley, 2009; F. Li, Maag, & Alfredson, 2008).

3. Identification of holoenzyme-sensitive modulators

3.1. Functional differences among subunit isoforms

Mammalian AMPK subunits can assemble into twelve distinct heterotrimers, or

holoenzymes (α1β1γ1, α1β1γ2, α1β1γ3, etc.). Tissue-specific expression patterns of these
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holoenzymes have been published (Kim & Tian, 2011; Quentin, et al., 2011). In short, α1,

β1, and γ1 subunits are moderately to highly expressed in many tissues, including lung,

liver, and bone; skeletal muscle expresses high levels of α2 and β2 (Kim & Tian, 2011).

Understandably, the moderate to high expression levels of α1, β1, and γ1 in many tissues

may motivate researchers to use purified α1β1γ1 in protein-based assays. Indeed, the

MANT-ADP binding assay described earlier was validated and optimized in the presence of

α1β1γ1 (Neumann, Woods, Carling, Wallimann, & Schlattner, 2003; S. Sinnett, et al.,

2013). Likewise, other publications have used α1β1γ1 for a range of in vitro studies,

including crystallography, mutagenesis studies, and activity assays (Chen, et al., 2012;

Neumann, et al., 2003; Sanders, Grondin, et al., 2007). The frequent use of α1-containing

complexes is particularly interesting in light of early AMPK research indicating that α2-

containing complexes from rat liver are more sensitive to allosteric activation by AMP (Salt,

et al., 1998). What would happen to AMPK drug discovery efforts if researchers routinely

tested a panel of AMPK heterotrimers instead of a single holoenzyme? Could small

molecules differentially regulate distinct holoenzymes in drug discovery screens? Would the

discovery of holoenzyme-sensitive drugs permit researchers to manipulate specific AMPK

signaling pathways (e.g., cytosolic targets) while leaving other AMPK pathways (e.g., gene

transcription) unperturbed, thus minimizing unwanted side effects? The answers depend on

whether AMPK subunit isoforms are redundant or functionally distinct.

Inactivating mutations and genetic deletion of subunit isoforms have been shown to exert

tissue-specific physiological effects. Genetic deletion of AMPK-β2 and -γ3, for example,

has been shown to decrease exercise endurance in mice and inhibit post-exercise glycogen

recovery in gastrocnemius muscle, respectively (Fig. 3) (Barnes, et al., 2004; Steinberg, et

al., 2010). This result makes intuitive sense, as β2-containing heterotrimers are highly

expressed in skeletal muscle, and α2β2γ3 has been shown to generate most of the AMPK

activity in skeletal muscle during high intensity exercise (Birk & Wojtaszewski, 2006).

Similarly, mutations of highly conserved residues in AMPK-γ2 have frequently been

associated with human cardiomyopathies (Fig. 5) (Burwinkel, et al., 2005; Liu, et al., 2013;

Moffat & Ellen Harper, 2010). Finally, deletion of AMPK-α2 has been shown to reduce

infarct volume in mouse models of stroke, whereas deletion of α1 does not reduce infarct

volume (Kim & Tian, 2011; J. Li, Benashski, Siegel, Liu, & McCullough, 2010; J. Li, et al.,

2007; Steinberg & Kemp, 2009).

Aside from tissue-specific expression, how can subunits exert isoform-specific physiological

effects? Subcellular localization of subunits may reduce redundancy among isoforms. For

example, several in vitro techniques have consistently demonstrated differential localization

of AMPK-α1 and -α2 in insulinoma cells (cytoplasmic versus nuclear, respectively) (Salt, et

al., 1998). More recently, researchers demonstrated that leptin-stimulated expression of

peroxisome proliferator-activated receptor alpha (PPAR-α) was mediated by nuclear

translocation of AMPK-α2 – but only when α2 was bound to β2 (Suzuki, et al., 2007). Since

the expression of PPAR-α has been linked with activation and translocation of a specific

AMPK subunit isoform, one may now begin to contemplate the therapeutic applications

(such as treatment of dyslipidemia or diabetes) of a holoenzyme-specific AMPK drug (Ling,

Burns, & Hilleman, 2012).
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3.2. Correlation between disease states and isoform expression profiles

When characterizing AMPK under specific physiological conditions (e.g., cancer or

diabetes), researchers typically measure total AMPK activity and the ratio of p-AMPK to

total AMPK. Few publications comprehensively contrast the expression levels of subunit

isoforms in diseased tissue versus normal control tissue (Table 2) (Kim, et al., 2012; C. Li,

Liu, Chiu, Chan, & Ngan, 2012; Merrill, et al., 2012; Sanli, Linher-Melville, Tsakiridis, &

Singh, 2012). In addition, publications typically do not contrast the percent of total AMPK

activity contributed by each distinct holoenzyme in diseased tissue versus normal tissue.

Would filling in this information gap help researchers identify functional differences

between isoforms? If so, would AMPK researchers then be able to develop isoform-sensitive

drugs that correct metabolic abnormalities in diseased tissue while leaving the metabolic

pathways in healthy tissue unperturbed? This proposed strategy is similar to a genetic

approach researchers recently used after observing decreased AMPK-α2 expression in breast

tumor tissue versus patient-matched non-tumor adjacent tissue (Fox, Phoenix, Kopsiaftis, &

Claffey, 2013). Genetic restoration of AMPK-α2 in MCF7 cancer cells (which

predominantly express α1) increased cell death in vitro and decreased tumor weight in vivo

(Fox, et al., 2013).

3.3. Therapeutic applications of holoenzyme-specific modulators

During the past decade, AMPK researchers have identified a number of tool compounds for

in vitro studies and fewer compounds suitable for animal studies (Table 1). To date, no one

has intentionally designed an assay for the discovery of holoenzyme-specific AMPK

modulators, but this may change as the list of potential therapeutic applications for

holoenzyme-specific drugs continues to grow. This review has briefly touched upon a

number of isoform-specific genetic studies whose results suggest therapeutic applications

for isoform-sensitive modulators (Figs. 3, 5 and Table 2). These applications include weight

management and the treatment of ischemia and cancer (Fox, et al., 2013; Giri, et al., 2006;

Venna, et al., 2012). Forward-thinking researchers may ask: How does one bias drug

discovery assays toward the identification of isoform-sensitive drugs?

3.4. Past and future discoveries of isoform-sensitive modulators

In 2004, Abbot Laboratories published a microarrayed kinase activity assay for identifying

AMPK modulators (Anderson, et al., 2004). In lieu of assembling assays in wells,

researchers incubated a gel containing biotinylated substrate peptide and AMPK (pre-

incubated with compounds) between a 33P-ATP membrane and a streptavidin affinity

membrane (SAM™). Importantly, the AMPK used for the screen was purified from rat liver,

which expresses high levels of AMPK-β1 (Anderson, et al., 2004; Kim & Tian, 2011;

Stapleton, et al., 1996). After screening more than 700,000 small molecules, researchers

identified 211 hits, including 3 activators (Anderson, et al., 2004). One activator, A-592107,

became the structural template for A-769662 (Cool, et al., 2006). The development of

A-769662 was a milestone for the AMPK community, as the drug has since been shown to

selectively activate β1–containing holoenzymes in vitro and in vivo at lower doses than

those used for other activators (Table 1) (Cieslik, et al., 2013; Corton, Gillespie, Hawley, &

Hardie, 1995; Scott, et al., 2008). If the microarrayed screen had been performed with a β2-
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containing complex, however, the structural precursor A-592107 may not have been

discovered.

This drug discovery case study begs the following questions: Have other modulators been

incorrectly identified as negative hits due to the choice of AMPK holoenzyme for screening?

How would one identify new holoenzyme-sensitive modulators? Preparing multiple

heterotrimers for parallel screening would be labor intensive. Theoretically, one could

design vectors encoding distinct holoenzymes for protein expression and purification.

However, both mammalian and bacterial protein expression systems have limitations.

Whereas mammalian cell culture may be expensive, bacterial expression systems are unable

to post-translationally modify AMPK (Oakhill, et al., 2010; Sanz, et al., 2013). In addition,

researchers may worry that the conformation of AMPK purified from E. coli may not be

physiologically representative. These limitations may push researchers toward screening

small molecule libraries against AMPK holoenzymes in silico. Alternatively, a more focused

starting point could be to rationally synthesize a β2-sensitive modulator using existing

crystallographic data. Now that the binding site for A-769662 on α2β1γ1 has been

crystallographically identified, researchers may have an easier time identifying key

structural differences between the α-β subunit interfaces for β1- and β2-containing

heterotrimers. This in turn may help researchers design molecules that are tailored for the α-

β2 interface.

Summary

Today’s community of AMPK researchers is comprised of experts devoted to the treatment

of cancer, diabetes, cardiomyopathy, and obesity. Although AMPK literature has become

increasingly interdisciplinary, a recurring and unifying theme is the demand for potent,

selective AMPK drugs that can either be administered to patients or be used as tool

compounds for in vitro studies. Early drug discovery efforts led to the development of the

AMP-mimetic A-769662 and the discovery of Compound C, an essential inhibitor found in

every AMPK lab (Cool, et al., 2006; Zhou, et al., 2001). Since the first appearance of these

modulators in the literature, biologists have made more strides in AMPK research. These

strides include the publication of numerous AMPK structures (soaked and co-crystallized;

full-length and truncated; phosphorylated and non-phosphorylated) along with the

discoveries of ADP’s protective role, the first non-nucleotide regulatory binding site, and the

first instance of holoenzyme-sensitive pharmacological AMPK activation (Chen, et al.,

2012; Scott, et al., 2008; Xiao, et al., 2013; Xiao, et al., 2011). With new insights in mind,

early small molecule screens can be refined to bias drug discovery toward the identification

of new molecules with diverse regulatory mechanisms.
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Abbreviations

AICAR 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside

AMPK AMP-activated protein kinase

FBDD fragment-based drug design

MANT methylanthraniloyl

p-AMPK phosphorylated AMPK

p-T172 phosphorylated threonine 172
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Fig. 1.
A partial list of AMPK targets. A. AMPK phosphorylates and inhibits acetyl CoA

carboxylase 1 and 2 (ACC1 and ACC2), resulting in decreased fatty acid synthesis and

increased fatty acid oxidation, respectively (Hardie, et al., 2012). CPT1, carnitine

palmitoyltransferase 1. B. AMPK phosphorylates CREB-regulated transcription coactivator

2 (CRTC2). Phosphorylation sequesters the coactivator to the cytoplasm, ultimately down-

regulating gluconeogenesis (Hardie, et al., 2012; Yoon, et al., 2010). The graphical portrayal

of this pathway varies, with some authors depicting phosphorylation of CRTC2 by AMPK

prior to nuclear export; others depict only cytoplasmic phosphorylation (Lee, et al., 2010;

Steinberg & Kemp, 2009).
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Fig. 2.
Regulatory mechanisms of AMPK. The simplified cartoon shows two nucleotide-binding

sites on AMPK-γ. The remaining sites (Site 2 and Site 4) are omitted for clarity (Carling, et

al., 2012; Hardie, et al., 2012; Russo, et al., 2013; Sanz, et al., 2013).
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Fig. 3.
In vivo studies. A. The effects of pharmacological activation of AMPK have been studied in

models of diabetes, obesity, and sedentary lifestyle (Carling, et al., 2012; Cool, et al., 2006;

Giri, et al., 2006; Halseth, et al., 2002; Narkar, et al., 2008; Xie, et al., 2011). B. Genetic

deletion of isoforms has been studied in models of energetic stress. Deleted isoforms are

indicated in parentheses (Barnes, et al., 2004; Steinberg, et al., 2010; Venna, et al., 2012).
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Fig. 4.
Protein-sensitive fluorescent probes. MANT- and coumarin-labeled nucleotides have been

used to detect binding of molecules to the AMPK regulatory region (S. E. Sinnett, J. Z.

Sexton, & J. E. Brenman, 2013; Xiao, et al., 2007; Xiao, et al., 2011). The Markush

structure depicts the structure of adenine nucleotides that can be labeled with MANT and

coumarin moieties. Note that the MANT moiety can substitute the 2′ or 3′ ribosyl hydroxyl

(Cheng, Jiang, & Hackney, 1998). The stylized inset graph shows the protein-sensitive

signal of a hypothetical probe.
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Fig. 5.
A partial list of AMPK-γ2 mutations observed in patients with cardiomyopathy (Burwinkel,

et al., 2005; Liu, et al., 2013; Moffat & Ellen Harper, 2010). These mutations affect residues

(red) that are highly conserved throughout Eukarya. CBS, cystathionine-β-synthase domains

in AMPK-γ.
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Table 1

Direct modulators of AMPK.

Molecule Effect Binding site Commonly used concentrations Limitations

In vitro (μM) Rodents (mg/kg)#

A-7696621 ↑ activity, protection Between AMPK-α and
-β

*1 – 10; §10 – 300 3 – 30 targets β1-complexes

C242 ↑ activity AMPK-α (in silico) *1 – 20; §5 – 20 50-150 (oral gavage) ND

Compound C3 ↓ activity AMPK-α *<1; §10-40 10-20 promiscuous

PT14 ↑ activity AMPK-α *<10; §10-80 No published experiments poor oral availability

ZMP5 ↑ activity AMPK-γ *150 – 1500 (ZMP)
§300 – 1000 (AICAR)

500 (AICAR) short half-life, poor
bioavailability

sunitinib6 ↓ activity AMPK-α (in silico) *<1; §5 – 20 10-25 mg/kg (with food) promiscuous, toxic

A-769662 C24 Compound C PT1 ZMP sunitinib

*
cell-free assays

§
cell-intact assays

#
drugs delivered intraperitoneally, except where otherwise noted. ND, not determined.

1
(Cool, et al., 2006; Goransson, et al., 2007; Sanders, Ali, et al., 2007; Scott, et al., 2008; Xiao, et al., 2013)

2
(Y. Y. Li, et al., 2013; L. F. Yu, et al., 2013)

3
(J. Li, et al., 2007; Machrouhi, et al., 2010; Venna, et al., 2012; Zhou, et al., 2001)

4
(Y. Y. Li, et al., 2013; Pang, et al., 2008)

5
(Cieslik, et al., 2013; Cool, et al., 2006; Corton, et al., 1995; Karagounis & Hawley, 2009)

6
(Chu, et al., 2007; Kerkela, et al., 2009; Laderoute, et al., 2010).
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Table 2

Correlation between physiological conditions and isoform expression profiles. Except where otherwise noted,

expression levels are compared to those of healthy controls.

Illness/stressor Tissue source Protein expression

α 1 α 2 β 1 β 2

iron deficiency1 rat skeletal muscle ↑ ↓ -- ↓

heart failure2 mouse heart -- ↑ ↓ ↑

heart failure2 human heart ↑ -- ↑ --

ovarian cancer3 human ovaries -- ↑ ↑ ↑

breast cancer with elevated expression of
the metabolic regulator sestrin*4

MCF7 cells ↑ none# ↑ ND

*
Expression levels compared to those of low sestrin breast cancer control.

#
Protein not detected in cell line. ND, no recorded data

--
no change.

1
(Merrill, et al., 2012)

2
(Kim, et al., 2012)

3
(C. Li, et al., 2012)

4
(Sanli, et al., 2012).
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