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Abstract
Objectives—Adverse drug reactions are common, serious, difficult to predict, and may be
influenced by genetics, prompting the increasing popularity of pharmacogenomic studies. Many
pharmacogenomic studies are conducted in non-experimental settings, yet little is known about the
influence of confounding by contraindication. We therefore compared the two designs (the overall
population (OPD) and the treated-only (TOD) design) by simulating a pharmacogenomic study of
the electrocardiographic QT interval (QT).

Methods—Simulations were informed by data from the Atherosclerosis Risk in Communities
Study and a literature review examining QT, QT-prolonging drug use, and modification by single
nucleotide polymorphisms (SNP). Drug treatment was assigned based on age, gender, and QTlong,
representing confounding by contraindication. QT was simulated as a function of drug treatment,
one SNP, the drug-SNP interaction, and clinical covariates.

Results—Failure to adjust for confounding by contraindication produced a varying degree of
bias in the OPD, while the TOD was biased by the SNP main effect. For example, in the OPD, the
false positive proportion (FPP) for the drug-SNP interaction was 5% across the range of SNP main
effects (0–10 ms), but increased to 19% without adjusting for confounding by contraindication. In
the TOD, the FPP increased to 89% with SNP main effects >4 ms, although bias was reduced by
39% with adjustment for covariates affected by the SNP.

Conclusions—The potential for bias from confounding by contraindication (OPD) should be
weighed against bias from SNP main effects (TOD) when selecting the study design that best suits
the given context.
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INTRODUCTION
Adverse drug reactions (ADR) cause approximately 100,000 deaths and 2.2 million serious
events annually in the United States and occur even when drugs are administered according
to clinical guidelines [1]. Although factors that increase susceptibility to ADRs are not
always clear [2], genetic factors may improve their prediction. For example, the U.S. Food
and Drug Administration had approved labeling that incorporates information on genetic
variants affecting drug metabolism for upwards of 70 drugs [3], including warfarin, where
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genes encoding the VKORC1 and CYP2C9 proteins are now routinely evaluated when
assigning dosage regimens [4–6]. Other examples of the use of pharmacogenomics to avoid
ADRs include ITPA assessment to prevent anemia during hepatitis C treatment [7] and
multigene assays to predict the recurrent of tamoxifen-treated, node-negative breast cancer
[8]. Thus, an improved understanding of genetic susceptibility underlying ADRs is of
interest to patients, clinicians, the pharmaceutical industry, and regulatory agencies.

Contemporary pharmacogenomic research typically leverages exposure and outcome data
from randomized trials [9–11] or non-experimental studies [12,13]. Analytical approaches
also vary, with some investigators favoring a treated-only design (TOD) that limits
confounding by contraindication (i.e. when a factor is associated with the avoidance of a
treatment and independently influences the outcome) because every participant is treated
[14,15]. Others employ an overall population design (OPD) that includes treated and
untreated participants and addresses confounding by contraindication by adjustment [16,17],
which allows estimation of interaction on different scales as well as the separation of SNP
main effects from gene-environment effects. However, no studies have contrasted these two
commonly used pharmacogenomic study designs to determine whether scenarios exist
where one study design might be preferred over the other.

We therefore conducted a series of simulations contrasting the OPD and TOD. The
simulations were informed by empirical data from the Atherosclerosis Risk in Communities
study (ARIC), an ongoing and population-based epidemiologic study in four United States
communities [18]. QT interval duration (QT), a common measure of ventricular
repolarization that is heritable [19,20], reliable [21], heterogeneous among populations
exposed to arrhythmogenic drugs [22,23], and associated with life-threatening cardiac
arrhythmias [24,25], served as the simulation model.

METHODS
Simulation overview

To design the simulations, we conducted a literature review to inform conceptualization of
the relationship between QT, QT-prolonging drug use, and modification by single nucleotide
polymorphisms (SNP, Figure 1) using published clinical and genome-wide association
studies (GWAS) to establish plausible effect sizes for drug, SNP, and drug-SNP effects on
QT [10,26–28] as well as risk factors for QT prolongation [29]. Based on the review, a
directed acyclic graph (DAG) [30,31] was constructed, which is a causal diagram used to
identify variables that must be controlled to obtain an unbiased effect estimate [29, 30]. Our
DAG included two study visits (visit 1=baseline and visit 2=follow-up). QT (milliseconds,
ms) was measured at each visit and QT2 was the dependent variable. QT-prolonging drug
use, initiated between visit 1 and visit 2 and measured at visit 2, was the exposure of
interest. One SNP was then included as a modifier of the drug-QT2 effect. By design, QT1
and QT2 were affected by the SNP because QT is heritable [19,20]. In addition to the SNP,
we also included three covariates affecting QT1 and QT2 (sex, age, and U, representing
unknown/unmeasured variation in QT). Drug treatment was affected by sex and age
(confounders of the drug-QT association). Finally, QTlong was created from QT1 to
represent confounding by contraindication and was based on the assumption that participants
with a longer QT were less likely to be prescribed QT-prolonging medications than those
without a prolonged QT. QTlong was not included in the DAG because it was derived from
QT1 and therefore does not belong to the causal structure. QT1 also did not affect QT2 by
design outside the drug because QT measured at one occasion does not have a causal effect
on QT measured at another point in time. Instead, the correlation between the QT1 and QT2
was a function of unmeasured covariates (“U”, e.g. congenital heart disease, drugs, and
SNPs other than the SNP included in the simulation, hypothyroidism, hypokalemia, and
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myocardial infarction, among others). Consistent with DAG theory, the SNP and U did not
confound the drug-QT association if we controlled for QTlong or QT1. Further, using DAG
methodology [30,31], the SNP-QT2 association is unconfounded because there are no
unblocked backdoor paths.

Simulation parameters and values
Age for each observation was simulated using a normal distribution with a mean (54 years)
and standard deviation (6 years) equal to that observed at the ARIC baseline visit. Sex was
simulated as a uniform random variable with a defined probability of being male (45%). A
uniform distribution also was used to simulate SNP genotype according to a pre-specified
minor allele frequency (MAF, ranging 0.05–0.45). The probabilities of a participant being
heterozygous or homozygous for the major or minor allele were calculated under the
assumption of Hardy-Weinberg equilibrium. Unknown/unmeasured confounding (U) was
simulated using a normal distribution with a mean (0) and standard deviation (2) to produce
a correlation between QT1 and QT2 (r = 0.62) similar to that observed in the ARIC study.

QT1 was then simulated as a linear function of the SNP, age (centered), sex, U, and a
standard deviation of 16 ms based on data from the ARIC baseline visit:

eq (1)

where mean QT was simulated to be 418 ms when all other variables equaled 0. An
additional copy of the minor allele, one-year increase in age, male sex, and 1 unit increments
in U were associated with 5, 0.3, −8, and 2 ms changes in QT1, respectively (Table 1).
QTlong was then defined as QTlong=1 when QT1≥ 450 ms and QT1=0 otherwise, using a
published threshold for QT abnormalities [32].

Initiation of drug treatment between the first and second visit was predicted conditional on
age, sex and QTlong, using a logit function:

eq (2)

where α0 (−3.222) corresponded to a 5% prevalence of drug use (Table 1). Each one-year
increase in age, male sex, and having a prolonged QT were each associated with changes of
0.041, 0.693, and −2.30 in the log odds of drug exposure, respectively. Drug treatment was
then assigned using a binomial distribution with size =1 and this calculated probability.

Finally, we calculated QT2 using a linear model as:

eq (3)

where β0 was 418 ms when all other variables equaled 0. An additional copy of the minor
allele, one-year increase in age, male sex, 1 unit increment in U, and treatment with the QT-
prolonging drug were associated with 5, 0.3, −8, 2, 5 ms changes in QT2, respectively
(Table 1). The drug-SNP interaction was set to 3 ms. Changes in the basic scenario
presented in equation 3 involved varying the SNP main effect from 0 to 10 ms and the drug-
SNP interaction from −6 to 6 ms, and the MAF from 0.05–0.45 while the remaining
parameters were fixed at their basic scenario values, unless otherwise specified. A total of
10,000 closed cohort studies of n=25,000 participants were then simulated for each baseline
and alternative simulation scenario (Table 1). All analyses were performed using the
statistical programming package SAS (Cary, N.C.).
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Analyses of drug-SNP interactions: OPD versus TOD
We used our simulations to contrast two study designs, the OPD that included treated and
untreated participants and the TOD, which was restricted to participants treated with a QT-
prolonging drug at visit 2. For each design, we evaluated full (SNP, age, sex, and QTlong in
the TOD; SNP, age, sex, QTlong, drug, and drug-SNP interaction in the OPD) and reduced
(inclusive of all parameters in the OPD except QTlong) models, the later to evaluate the
influence of failure to account for confounding by contraindication, e.g., a cross-sectional
study without measures of the contraindication. This approach was then repeated
substituting QT1 for QTlong.

In the OPD, the drug-SNP interaction effect was estimated using linear regression with QT2
as the dependent variable and the SNP, drug, drug-SNP interaction, QTlong (or QT1), age
centered at the mean, and sex as independent variables, as follows:

eq (4)

For the TOD, the drug-SNP interaction effect (β1) was estimated conditional on treatment
using linear regression with QT2 as the dependent variable, and the SNP, QTlong(or QT1),
age, and sex as independent variables:

eq (5)

RESULTS
The simulated mean QT at visit 1 was 407 (26) ms in the OPD and 2 ms lower in the TOD
(Table 2). The prevalence of prolonged QT was 4.6% in the OPD and by design only 0.76%
in the TOD, reflecting confounding by contraindication. There also was a higher proportion
of males in the TOD, consistent with findings that QT is generally longer in females than in
males [33,34].

Simulations with drug-SNP interaction = 0 and varied SNP main effect
First, we evaluated the performance of the OPD and TOD in the absence of a simulated
drug-SNP interaction (i.e. the drug-SNP interaction = 0), but in the presence of a SNP main
effect (range: 0 to 10 ms), which represent the effect of the SNP independent of its
interactive effect with the drug. Estimates of the drug-SNP interaction in the OPD were
unconfounded across simulated SNP main effects when QTlong or QT1 were included in the
model (Figure 2, panels A and C). When QTlong or QT1 were excluded from the OPD,
moderate bias was observed, which increased with increasing SNP main effect (bias= −1.36
ms when SNP main effect =10 ms). Bias of the drug-SNP interaction was much more
pronounced in the TOD and varied based on adjustment for QTlong or QT1 (Figure 2, panels
B and D). For example, substantial bias of the drug-SNP interaction (bias = 8.69 ms when
SNP main effect = 10 ms) for the TOD was observed regardless of adjustment for QTlong.
However, adjustment for QT1 markedly decreased the potential for bias in the TOD (bias =
3.88 ms when SNP main effect = 10 ms). No variation in the magnitude of bias by MAF was
seen for either the OPD or TOD.

Estimates of the FPP in the OPD remained 5% when adjusting for QTlong or QT1, but
increased in the absence of adjustment for either QTlong or QT1 (FPP=0.19 when SNP main
effect=10) (Figure 2, panels E and G). For the TOD, the estimated FPP was 5% in the
absence of a SNP effect, but rose with increasing SNP main effect (FPP= 89% when SNP
main effect = 4 ms and MAF = 0.25) (Figure 2, panel F), regardless of adjustment for
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QTlong. Notably, the FPP estimated for SNPs with MAF = 0.45 approached 99% at SNP
main effects of 4 ms. However, adjustment for QT1 reduced the FPP markedly (FPP= 39%
when SNP main effect = 4 ms and MAF = 0.25) (Figure 2, panel H).

Simulations with SNP main effect = 0 and varied drug-SNP interaction
Next, we evaluated the performance of the OPD and TOD in the presence of a simulated
drug-SNP interaction (range: −6 to 6 ms) in the absence of a SNP main effect. For the OPD
and TOD, results were unbiased across the range of drug-SNP effects regardless of
adjustment for QTlong or QT1 (Figure 3, panels A–D). The proportion of significant studies
in the OPD and TOD models, estimated when the drug-SNP effect=0, was identical (5%)
(Figure. 3, panel E–H)regardless of adjustment for QTlong or QT1. Power to detect the
interaction (estimated when the drug-SNP effect ≠ 0) also was comparable for the OPD and
TOD, increased symmetrically as the simulated drug-SNP effect increased, and was higher
for SNPs with higher simulated MAFs. Power also was slightly higher when adjusting for
QT1 (Figure 3, panels G and H).

Simulations with SNP main effect = 5 and varied drug-SNP interaction
Finally, a strong SNP main effect (SNP main effect = 5) and a varied drug-SNP effect
(range: −6 to 6 ms) were simulated. For the OPD, the full model was slightly biased across
the range of drug-SNP effects (bias = 0.14) (Figure 4, panels A and C) and became more
pronounced in the absence of adjusting for QTlong or QT1 (bias = −0.59). A bias of 4.43 ms
across the range of drug-SNP effects was observed for the TOD (Figure 4, panels B and D),
which did not vary with adjustment for QTlong. However, adjustment for QT1 decreased the
bias to 1.93 ms. The FPP was 5% in the OPD when the drug-SNP interaction was 0 and
increased slightly to 6.7% in the absence of adjusting for QTlong or QT1 (Figure 4, panels E
and G).

Differences in statistical power also were observed for the OPD when including or
excluding QTlong or QT1. For example, there was a 25.8% reduction in power for a
simulated drug-SNP effect = −2 ms and MAF = 0.25 in the absence of controlling for QTlong
orQT1, although differences in power were greatly attenuated when simulated drug-SNP
interactions exceeded |4| ms. For the TOD, the FPP was 97.7% when the simulated drug-
SNP interaction = 0 and MAF = 0.25 (Figure 4, panel F). The TOD FPP did not change with
adjustment for QTlong, but was reduced to 55.3% when QT1 was included in the model
(Figure 4, panel H). Interestingly, the nominal 5% level was observed for the TOD when the
simulated drug-SNP interaction was −4 ms in the absence of adjusting for QT1 (Figure 4,
panel F) and −2 ms otherwise (Figure 4, panel H). As expected, statistical power for both the
OPD and TOD was greatest for SNPs with MAF = 0.45 and lowest for SNPs with MAF =
0.05.

DISCUSSION
In these simulations, we examined the influence of bias from confounding by
contraindication in non-experimental pharmacogenomic studies. Our simulations identified
several scenarios where confounding by contraindication affected estimated drug-SNP
interactions, albeit to different degrees and conditional on study design. Adjustment for
confounding by contraindication in the OPD and by variables affected by the SNP in the
TOD, as well as the magnitude of the simulated SNP main effect, also influenced the degree
of bias in these simulated pharmacogenomic studies.

Particularly striking was the observed bias in and proportion of false positive effects
estimated from drug-SNP interactions in the TOD when a SNP main effect was simulated.
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These observations reflect the inseparability of the SNP and drug-SNP interaction effects in
models restricted to treated participants. Dependence between the SNP and drug-SNP
effects was not observed in the OPD. While these results are a logic consequence of the
corresponding designs, we believe that researchers might not fully appreciate the magnitude
of bias in the TOD. Interestingly enough, the bias in the TOD resulting from a SNP main
effect was reduced by conditioning on factors affected by the SNP, including QT1.
Specifically, in the TOD conditioning on QT1 opens a backdoor path between the SNP and
U, although in our simulation this appears to considerably reduce bias. However, this result
may vary by the scenario under investigation. Also, controlling for QT1 requires
longitudinal data from two time-points and in such a setting researchers would tend to
implement the OPD.

A scenario analogous to that seen in the TOD in the presence of a simulated SNP effect
occurs when case-only approaches for the assessment of gene-environment interaction are
used in case-control studies [35]. In these circumstances, even modest SNP-environment
associations in the population can produce inflated type I errors. For both the TOD and the
case-only design, the error is bounded by the degree of departure from independence. In
genomic studies of QT, estimated SNP main effects generally range between 2–3 ms per
copy of the minor allele [26,27], corresponding to an estimated bias and FPP of 1.79–2.68
ms and 36–67% when the true drug-SNP interaction is 0 and the TOD is selected. However,
adjusting for variables affected by the SNP reduced the bias and FPP to 0.76–1.15 and 14–
24%. Therefore, skepticism is warranted when interpreting results from pharmacogenomic
studies of QT that use the TOD and report interactions for genes with established main
effects, although adjustment for variables affected by the SNP may help reduce such
skepticism.

Despite the potential for bias and type I error associated with the TOD, scenarios exist
where its use may be preferred. Confounding by contraindication (or indication), which
results from the assignment of different treatments to patients with different prognoses, is a
major challenge in pharmacoepidemiology and potentially pharmacogenomics as well. In
this simulation study, confounding by contraindication, and thus a biased drug-QT effect,
generally had modest influence on estimates of the drug-SNP interaction. However, the
magnitude of confounding by contraindication is a function of the strength of the confounder
effect on treatment and outcome (independent of treatment) as well as its prevalence in the
population [36]. In this scenario, we assumed a strong effect on drug prescribing, but the
prevalence of QTlong was low, limiting its influence. Although the potential for substantial
bias and an increase in the proportion of false positive associations also were observed with
strong (i.e. > 5 ms) SNP effects in the presence of uncontrolled confounding by
contraindication for the OPD, prior main effect and pharmacogenomic GWAS have not
identified associations with QT of this magnitude [26,36].

However, bounds placed on the expected magnitude of SNP and interactive effects may not
hold for future studies of rare variants, which may harbor much stronger effects. Also
concerning are the potential for bias and elevated false positive proportions resulting from
SNPs in the “gray zone”, i.e. those with relatively modest effects that are difficult to identify
by conventional methods. Researchers therefore must balance the tradeoffs of the OPD and
TOD on a study-by-study basis. Indeed, several methods have been developed that leverage
small SNP main effects to boost statistical power for detecting gene-environment effects in
large-scale genomics studies [37].

Although our simulations evaluated gene-environment interaction for a continuous outcome,
the associated challenges apply to assessments of interaction between any pair of risk factors
and a (e.g., binary) trait. Interaction exists if there is a different effect of a treatment on risk
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of disease in individuals with different genotypes [38] and may be synergistic, antagonistic
or null for additive and multiplicative scales [39]. In addition to the challenges described
above, a further drawback of the TOD is that if the outcome is binary, only multiplicative
interaction can be estimated, although a number of epidemiologists have advocated additive
interaction as the relevant scale for the assessment of biological interaction [40–42].

The lack of an ideal study design in non-experimental pharmacogenomic research may
prompt suggestions to preferentially choose clinical trials, where confounding by
contraindication is avoided by design. However, non-experimental studies have advantages
over clinical trials that exclude potential participants experiencing early manifestations of
drug intolerance before they are randomized (e.g. during a run-in phase) and/or those with
relevant co-morbidities. Such exclusions often yield selected populations that are less prone
to ADRs than community-based populations [43]. Clinical trials also may not be large
enough to detect pharmacogenomic effects given the requisite scale of even modestly well-
powered genetic epidemiologic studies. For example, a recently published
pharmacogenomic GWAS of QT conducted in non-experimental settings reported that
longitudinal studies exceeding 30,000 participants were required to detect pharmacogenomic
effects [28]. Clearly, very few clinical trials of the same drug or drug class have been
performed on such large numbers of participants and have the necessary genetic data.

Several limitations of the present study warrant further consideration as future efforts to
evaluate the influence of study design in pharmacogenomic studies. The simulations
presented in this manuscript are of course limited by the scope of the scenarios and the
selection of the parameter space. As such, conclusions may be made for the specified
scenarios, but generalization to scenarios with different confounding patterns should be done
with caution. We also limited our evaluation to two study designs: the TOD and OPD. Other
designs that deserve consideration are those using active comparators, e.g. participants
initiating other hypertensive agents could serve as the reference group in a
pharmacogenomic study of thiazide diuretics. Outside of the current scope also was the
consideration of selection bias and treatment duration, although both warrant future
investigation.

CONCLUSION
Our simulations suggest that there is no ideal design for pharmacogenomic studies
conducted in non-experimental settings. Although effects of confounding by
contraindication were modest, thus favoring the OPD, the TOD may be preferred when
strong confounding by contraindication is suspected or prior data support the absence of a
SNP main effect. Ultimately, pharmacogenomic researchers using data collected in non-
experimental settings must carefully weigh the counterbalancing influences of all error
sources before selecting the design that best suits the given context.

Acknowledgments
This effort was partially supported by an award from the National Heart, Lung, and Blood Institute (CLA, EAW,
TS, R01-HL-103612). CLA was supported in part by grant R00-HL-098458 from the National Heart, Lung, and
Blood Institute. JSD acknowledges support by the Gary G. and Carolyn J. Koch Merit Scholarship. TS was
supported in part by grant R01 AG023178 from the National Institute of Aging.

References
1. Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a

meta-analysis of prospective studies. JAMA. 1998; 279:1200–5. [PubMed: 9555760]

Avery et al. Page 7

Pharmacogenet Genomics. Author manuscript; available in PMC 2015 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2. Aronson JK, Ferner RE. Joining the DoTS: new approach to classifying adverse drug reactions.
BMJ. 2003; 327:1222–5. [PubMed: 14630763]

3. Khoury MJ, Gwinn M, Clyne M, Yu W. Genetic epidemiology with a capital E, ten years after.
Genet Epidemiol. 2011; 35(8):845–52. [PubMed: 22125223]

4. Daneshjou R, Tatonetti NP, Karczewski KJ, Sagreiya H, Bourgeois S, Drozda K, Burmester JK,
Tsunoda T, Nakamura Y, Kubo M, Tector M, Limdi NA, Cavallari LH, Perera M, Johnson JA,
Klein TE, Altman RB. Pathway analysis of genome-wide data improves warfarin dose prediction.
BMC Genomics. 2013; 14 (Suppl 3):S11. [PubMed: 23819817]

5. Niinuma Y, Saito T, Takahashi M, Tsukada C, Ito M, Hirasawa N, Hiratsuka M. Functional
characterization of 32 CYP2C9 allelic variants. Pharmacogenomics J. 2013 In press.

6. Perera MA, Cavallari LH, Limdi NA, Gamazon ER, Konkashbaev A, Daneshjou R, Pluzhnikov A,
Crawford DC, Wang J, Liu N, Tatonetti N, Bourgeois S, Takahashi H, Bradford Y, Burkley BM,
Desnick RJ, Halperin JL, Khalifa SI, Langaee TY, Lubitz SA, Nutescu EA, Oetjens M, Shahin MH,
Patel SR, Sagreiya H, Tector M, Weck KE, Rieder MJ, Scott SA, Wu AH, Burmester JK, Wadelius
M, Deloukas P, Wagner MJ, Mushiroda T, Kubo M, Roden DM, Cox NJ, Altman RB, Klein TE,
Nakamura Y, Johnson JA. Genetic variants associated with warfarin dose in African-American
individuals: a genome-wide association study. Lancet. 2013; 382:790–6. [PubMed: 23755828]

7. Fellay J, Thompson AJ, Ge D, Gumbs CE, Urban TJ, Shianna KV, Little LD, Qiu P, Bertelsen AH,
Watson M, Warner A, Muir AJ, Brass C, Albrecht J, Sulkowski M, McHutchison JG, Goldstein
DB. ITPA gene variants protect against anaemia in patients treated for chronic hepatitis C. Nature.
2010; 464:405–8. [PubMed: 20173735]

8. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T,
Hiller W, Fisher ER, Wickerham DL, Bryant J, Wolmark N. A multigene assay to predict
recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004; 351:2817–26.
[PubMed: 15591335]

9. Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F, Gut I, Lathrop M, Collins R.
SLCO1B1 variants and statin-induced myopathy--a genomewide study. N Engl J Med. 2008;
359:789–99. [PubMed: 18650507]

10. Volpi S, Heaton C, Mack K, Hamilton JB, Lannan R, Wolfgang CD, Licamele L, Polymeropoulos
MH, Lavedan C. Whole genome association study identifies polymorphisms associated with QT
prolongation during iloperidone treatment of schizophrenia. Mol Psychiatry. 2009; 14:1024–31.
[PubMed: 18521091]

11. Aberg K, Adkins DE, Liu Y, McClay JL, Bukszar J, Jia P, Zhao Z, Perkins D, Stroup TS,
Lieberman JA, Sullivan PF, van den Oord EJ. Genome-wide association study of antipsychotic-
induced QTc interval prolongation. Pharmacogenomics J. 2012; 12:165–72. [PubMed: 20921969]

12. van Winkel R, Moons T, Peerbooms O, Rutten B, Peuskens J, Claes S, van Os J, De Hert M.
MTHFR genotype and differential evolution of metabolic parameters after initiation of a second
generation antipsychotic: an observational study. Int Clin Psychopharmacol. 2010; 25:270–6.
[PubMed: 20523222]

13. Kaab S, Crawford DC, Sinner MF, Behr ER, Kannankeril PJ, Wilde AA, Bezzina CR, Schulze-
Bahr E, Guicheney P, Bishopric NH, Myerburg RJ, Schott JJ, Pfeufer A, Beckmann BM, Martens
E, Zhang T, Stallmeyer B, Zumhagen S, Denjoy I, Bardai A, Van Gelder IC, Jamshidi Y,
Dalageorgou C, Marshall V, Jeffery S, Shakir S, Camm AJ, Steinbeck G, Perz S, Lichtner P,
Meitinger T, Peters A, Wichmann HE, Ingram C, Bradford Y, Carter S, Norris K, Ritchie MD,
George AL Jr, Roden DM. A large candidate gene survey identifies the KCNE1 D85N
polymorphism as a possible modulator of drug-induced torsades de pointes. Circ Cardiovasc
Genet. 2012; 5:91–9. [PubMed: 22100668]

14. de Keyser CE, Eijgelsheim M, Hofman A, Sijbrands EJ, Maitland-van der Zee AH, van Duijn CM,
Uitterlinden AG, Witteman JC, Ch Stricker BH. Single nucleotide polymorphisms in genes that
are associated with a modified response to statin therapy: the Rotterdam Study.
Pharmacogenomics J. 2011; 11:72–80. [PubMed: 20195290]

15. Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH. Genetic
variation in the organic cation transporter 1 is associated with metformin response in patients with
diabetes mellitus. Pharmacogenomics J. 2009; 9:242–7. [PubMed: 19381165]

Avery et al. Page 8

Pharmacogenet Genomics. Author manuscript; available in PMC 2015 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



16. Hajjar I, Kritchevsky S, Newman AB, Li R, Yaffe K, Simonsick EM, Lipsitz LA. Renin
angiotensin system gene polymorphisms modify angiotensin-converting enzyme inhibitors’ effect
on cognitive function: the health, aging and body composition study. J Am Geriatr Soc. 2010;
58:1035–42. [PubMed: 20722844]

17. Lee CR, North KE, Bray MS, Couper DJ, Heiss G, Zeldin DC. Cyclooxygenase polymorphisms
and risk of cardiovascular events: the Atherosclerosis Risk in Communities (ARIC) study. Clin
Pharmacol Ther. 2008; 83:52–60. [PubMed: 17495879]

18. ARIC Investigators. The Atherosclerosis Risk in Communities (ARIC) Study: design and
objectives. The ARIC investigators. Am J Epidemiol. 1989; 129:687–702. [PubMed: 2646917]

19. Havlik RJ, Garrison RJ, Fabsitz R, Feinleib M. Variability of heart rate, P–R, QRS and Q–T
durations in twins. J Electrocardiol. 1980; 13:45–8. [PubMed: 7188949]

20. Newton-Cheh C, Larson MG, Corey DC, Benjamin EJ, Herbert AG, Levy D, D’Agostino RB,
O’Donnell CJ. QT interval is a heritable quantitative trait with evidence of linkage to chromosome
3 in a genome-wide linkage analysis: The Framingham Heart Study. Heart Rhythm. 2005; 2:277–
84. [PubMed: 15851319]

21. Vaidean GD, Schroeder EB, Whitsel EA, Prineas RJ, Chambless LE, Perhac JS, Heiss G,
Rautaharju PM. Short-term repeatability of electrocardiographic spatial T-wave axis and QT
interval. J Electrocardiol. 2005; 38:139–47. [PubMed: 15892024]

22. Pratt CM, Ruberg S, Morganroth J, McNutt B, Woodward J, Harris S, Ruskin J, Moye L. Dose-
response relation between terfenadine (Seldane) and the QTc interval on the scalar
electrocardiogram: distinguishing a drug effect from spontaneous variability. Am Heart J. 1996;
131:472–80. [PubMed: 8604626]

23. McAllister RG Jr, Kirsten EB. The pharmacology of verapamil. IV. Kinetic and dynamic effects
after single intravenous and oral doses. Clin Pharmacol Ther. 1982; 31:418–26. [PubMed:
7060323]

24. Yap YG, Camm AJ. Drug induced QT prolongation and torsades de pointes. Heart. 2003;
89:1363–72. [PubMed: 14594906]

25. Zhang Y, Post WS, Blasco-Colmenares E, Dalal D, Tomaselli GF, Guallar E. Electrocardiographic
QT interval and mortality: a meta-analysis. Epidemiology. 2011; 22:660–70. [PubMed: 21709561]

26. Newton-Cheh C, Eijgelsheim M, Rice KM, de Bakker PI, Yin X, Estrada K, Bis JC, Marciante K,
Rivadeneira F, Noseworthy PA, Sotoodehnia N, Smith NL, Rotter JI, Kors JA, Witteman JC,
Hofman A, Heckbert SR, O’Donnell CJ, Uitterlinden AG, Psaty BM, Lumley T, Larson MG,
Stricker BH. Common variants at ten loci influence QT interval duration in the QTGEN Study.
Nat Genet. 2009; 41:399–406. [PubMed: 19305408]

27. Pfeufer A, Sanna S, Arking DE, Muller M, Gateva V, Fuchsberger C, Ehret GB, Orru M, Pattaro
C, Kottgen A, Perz S, Usala G, Barbalic M, Li M, Putz B, Scuteri A, Prineas RJ, Sinner MF,
Gieger C, Najjar SS, Kao WH, Muhleisen TW, Dei M, Happle C, Mohlenkamp S, Crisponi L,
Erbel R, Jockel KH, Naitza S, Steinbeck G, Marroni F, Hicks AA, Lakatta E, Muller-Myhsok B,
Pramstaller PP, Wichmann HE, Schlessinger D, Boerwinkle E, Meitinger T, Uda M, Coresh J,
Kaab S, Abecasis GR, Chakravarti A. Common variants at ten loci modulate the QT interval
duration in the QTSCD Study. Nat Genet. 2009; 41:407–14. [PubMed: 19305409]

28. Avery CL, Sitlani CM, Arking DE, Arnett DK, Bis JC, Boerwinkle E, Chen Y-DI, de Craen AJM,
Eijgelsheim M, Enquohabarie D, Evans DS, Ford I, Garcia ME, Gudnason V, Harris TB, Heckbert
SR, Hochner H, Hofman A, Hsueh W-C, Isaacs A, Jukema JW, Knekt P, Kors JA, Krijthe BP,
Kristiansson K, Laaksonen M, Liu Y, Li X, MacFarlane PW, Newton-Cheh C, Nieminen MS,
Oostra BA, Peloso GM, Porthan K, Rice K, Rivadeneira FF, Rotter JI, Salomaa V, Sattar N,
Siscovick DS, Slagboom PE, Smith AV, Sotoodehnia N, Stott DJ, Stricker BH, Stürmer T,
Trompet S, Uitterlinden AG, van Duijn CM, Westendorp RGJ, Witteman JC, Whitsel EA, Psaty
BM. Drug-gene interactions and the search for missing heritability: a cross-sectional
pharmacogenomics study of the QT interval. The Pharmacogenomics Journal. 2013 In press.

29. Benoit SR, Mendelsohn AB, Nourjah P, Staffa JA, Graham DJ. Risk factors for prolonged QTc
among US adults: Third National Health and Nutrition Examination Survey. Eur J Cardiovasc
Prev Rehabil. 2005; 12:363–8. [PubMed: 16079644]

Avery et al. Page 9

Pharmacogenet Genomics. Author manuscript; available in PMC 2015 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



30. Geneletti S, Gallo V, Porta M, Khoury MJ, Vineis P. Assessing causal relationships in genomics:
From Bradford-Hill criteria to complex gene-environment interactions and directed acyclic graphs.
Emerg Themes Epidemiol. 2011; 8:5. [PubMed: 21658235]

31. Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology.
1999; 10:37–48. [PubMed: 9888278]

32. Robbins J, Nelson JC, Rautaharju PM, Gottdiener JS. The association between the length of the
QT interval and mortality in the Cardiovascular Health Study. Am J Med. 2003; 115:689–94.
[PubMed: 14693320]

33. Merri M, Benhorin J, Alberti M, Locati E, Moss AJ. Electrocardiographic quantitation of
ventricular repolarization. Circulation. 1989; 80:1301–8. [PubMed: 2805266]

34. Lepeschkin E, Surawicz B. The duration of the Q–U interval and its components in
electrocardiograms of normal persons. Am Heart J. 1953; 46:9–20. [PubMed: 13057814]

35. Albert PS, Ratnasinghe D, Tangrea J, Wacholder S. Limitations of the case-only design for
identifying gene-environment interactions. Am J Epidemiol. 2001; 154:687–93. [PubMed:
11590080]

36. Bross ID. Spurious effects from an extraneous variable. J Chronic Dis. 1966; 19:637–47. [PubMed:
5966011]

37. Manning AK, LaValley M, Liu CT, Rice K, An P, Liu Y, Miljkovic I, Rasmussen-Torvik L, Harris
TB, Province MA, Borecki IB, Florez JC, Meigs JB, Cupples LA, Dupuis J. Meta-analysis of
gene-environment interaction: joint estimation of SNP and SNP x environment regression
coefficients. Genet Epidemiol. 2011; 35:11–8. [PubMed: 21181894]

38. Ottman R. Gene-environment interaction: definitions and study designs. Prev Med. 1996; 25:764–
70. [PubMed: 8936580]

39. Brennan P. Gene-environment interaction and aetiology of cancer: what does it mean and how can
we measure it? Carcinogenesis. 2002; 23:381–7. [PubMed: 11895852]

40. Rothman, KJ. Epidemiology: an introduction. Oxford: University press; 2002. Measuring
interactions.

41. Andersson T, Alfredsson L, Kallberg H, Zdravkovic S, Ahlbom A. Calculating measures of
biological interaction. Eur J Epidemiol. 2005; 20:575–9. [PubMed: 16119429]

42. Rothman KJ. The estimation of synergy or antagonism. Am J Epidemiol. 1976; 103:506–11.
[PubMed: 1274952]

43. Wilke RA, Xu H, Denny JC, Roden DM, Krauss RM, McCarty CA, Davis RL, Skaar T, Lamba J,
Savova G. The emerging role of electronic medical records in pharmacogenomics. Clin Pharmacol
Ther. 2011; 89:379–86. [PubMed: 21248726]

Avery et al. Page 10

Pharmacogenet Genomics. Author manuscript; available in PMC 2015 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Directed acyclic graph (DAG) of the relationship between QT-prolonging drug use and QT
assessed at visit 2 (QT2, ms). Single nucleotide polymorphism (SNP) dosage was added as
an effect measure modifier. The confounders sex and age, independent of the SNP, were
included to examine the degree to which confounders of the drug-QT2 association bias the
drug-SNP interaction. U represents unknown or unmeasured factors influencing the
correlation between QT1 and QT2, including other SNPs, drugs, and clinical covariates. QT
at visit 1 (QT1), was added to model confounding by contraindication, knowing that
participants with a prolonged QT are less likely to be prescribed QT-prolonging
medications.
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Figure 2.
The bias in (panels A–D) and proportion of false positive associations estimated for (panels
E–H) a pharmacogenomic study of QT in among populations unexposed to the drug (i.e.
drug-SNP interaction = 0) over a varied SNP main effect (SNP main effect range: 0–10
milliseconds). Left column panes represent the overall population design (OPD) and right
column panels denote the treated only design (TOD). The influences of adjusting for
confounding by contraindication (QTlong) and covariates affected by the SNP (QT1) are
gauged by contrasting models with (—) and without (- - -) adjustment for QTlong or QT1.
Blue, black, and red shading represent SNPs with minor allele frequencies (MAF) of 0.05,
0.25, and 0.45, respectively. Simulations were performed assuming a population size of
25,000 participants with approximately 5% of the participants receiving QT-prolonging
treatment. A total of 10,000 iterations were performed per scenario.
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Figure 3.
The bias in (panels A–D) and proportion of significant associations estimated for (panels E–
H) a pharmacogenomic study of QT in the absence of a simulated SNP main effect (i.e. SNP
= 0), but a varied drug-SNP interaction effect (drug-SNP interaction effect range: −6 – 6
milliseconds). Left column panes represent the overall population design (OPD) and right
column panels denote the treated only design (TOD). The influences of adjusting for
confounding by contraindication (QTlong) and covariates affected by the SNP (QT1) are
gauged by contrasting models with (—) and without (- - -) adjustment for QTlong or QT1.
Blue, black, and red shading represent SNPs with minor allele frequencies (MAF) of 0.05,
0.25, and 0.45, respectively. Simulations were performed assuming a population size of
25,000 participants with approximately 5% of the participants receiving QT-prolonging
treatment. A total of 10,000 iterations were performed per scenario.
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Figure 4.
The bias in (panels A–D) and proportion of significant associations (panels E–H) estimated
for a pharmacogenomic study of QT in the presence of a simulated SNP main effect (i.e.
SNP = 5) and a varied drug-SNP interaction effect (drug-SNP interaction effect range: −6–6
milliseconds). Left column panes represent the overall population design (OPD) and right
column panels denote the treated only design (TOD). The influences of adjusting for
confounding by contraindication (QTlong) and covariates affected by the SNP (QT1) are
gauged by contrasting models with (—) and without (- - -) adjustment for QTlong or QT1.
Blue, black, and red shading represent SNPs with minor allele frequencies (MAF) of 0.05,
0.25, and 0.45, respectively. Simulations were performed assuming a population size of
25,000 participants with approximately 5% of the participants receiving QT-prolonging
treatment. A total of 10,000 iterations were performed per scenario.
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Table 1

Parameter values for the basic and alternative simulation scenarios.

Parameter Notation Equation Meaning

Parameter values (ms)

Basic scenario Alternative scenarios

β0 1,3 Mean QT at Visit 2 for female of mean age with 0 copies of
the minor allele and the mean amount of unmeasured
confounding

410

βSNP 1,3 SNP effect 5 0 to 10

βAge 1,3 Age effect 0.3

βSex 1,3 Sex effect −8

βU 1,3 Effect of unknown/unmeasured correlates of QT1 and QT2 2

βDrug 3 Drug effect 5

βDrug*SNP 3 Drug-SNP interaction effect 3 −6 to 6

α0 2 Value chosen for 5% prevalence of drug exposure −3.222

αAge 2 Log odds of drug exposure for one-year increase in age 0.041

αSex 2 Log odds of drug exposure for male versus female 0.693

αQTlong 2 Log odds of drug exposure for prolonged versus normal QT −2.303
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Table 2

Descriptive statistics in simulation studies using overall population design versus treated-only design.

Overall (n=25,000) Treated only (n=1,313)

Mean (SD) or % Range Mean (SD) or % Range

QT1 407 (26) 296, 506 405 (23) 321, 469

QTlong 4.6% 0.76%

QT2 407 (26) 300, 504 410 (25) 328, 481

Drug 5.3% 100%

SNP MAF* 25% 25%

Age 54 (6) 29, 76 55 (6) 34, 75

Sex 44.9% male 62% male

*
When a MAF of 25% was simulated. MAF, minor allele frequency; QT1, duration of QT measured at visit 1; QT2, duration of QT measured at

visit 2; QTlong, indicator variable (QTlong=1 when QT1>450 ms, = 0 otherwise); SD, standard deviation
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