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Overview
http://www.pharmgkb.org/search/annotatedGene/cyp2c9/index.jsp CYP2C9 is a phase I
drug-metabolizing cytochrome P450 (CYP450) enzyme isoform that plays a major role in
the oxidation of both xenobiotic and endogenous compounds. Gray et al. [1] identified
CYP2C9 as one of several CYP2C genes clustered in a 500 kb region on chromosome
10q24. The cluster comprises four genes arranged in the order CYP2C8-CYP2C9-CYP2C19-
CYP2C18 [1]. Several studies identified a single nucleotide polymorphism (SNP) linkage
between the CYP2C8 and CYP2C9 genes [2-4]. CYP2C9 is primarily expressed in the liver,
and the expression level is reported to be the second highest among CYP isoforms [5]. Only
the CYP enzyme CYP3A4 is quantitatively more highly expressed in the human liver [6].

Substrates
It has been estimated that CYP2C9 is responsible for the metabolic clearance of up to
15-20% of all drugs undergoing phase I metabolism [7,8]. Table 1 is a partial list showing
examples of the broad substrate spectrum of drugs that are metabolized by CYP2C9,
including relevant references. Further information is also available at
http://medicine.iupui.edu/clinpharm/ddis/table.asp and in the following reviews [6,9].

Inducer and inhibitors
CYP2C9 is induced by rifampicin [38]. Treatment with rifampicin has been shown
consistently to increase the clearance of drugs eliminated by CYP2C9. The clearance of
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losartan, phenytoin, tolbutamide, and S-warfarin is approximately doubled in healthy
volunteers or patients treated with rifampicin [9,39].

CYP2C9 is inhibited by amiodarone, fluconazole, and sulphaphenazole among other drugs
[9]. Dangerous drug- drug interaction can arise when an inhibitor such as one of these is
added to a therapeutic regime that includes drugs with a low therapeutic index, such as S-
warfarin, tolbutamine, and phenytoin [40-42]. For example, there are numerous studies
documenting potentiation of the anticoagulant effect of warfarin in patients coadminis- tered
with amiodarone [43-45].

Structure
CYP2C9 is the enzyme responsible for the metabolism of the S-isomer of warfarin that is
principally responsible for the anticoagulant effect of the drug. The crystal structure of
human CYP2C9 was described by Williams et al. [46], for both CYP2C9 in complex with
warfarin and unliganded CYP2C9 (Protein Data Bank ID: 1OG2 and 1OG5, respectively).
The structure showed unanticipated interactions between CYP2C9 and warfarin, revealing a
new binding pocket, suggesting that CYP2C9 may simultaneously accommodate multiple
ligands during its biological function [46]. Structural analysis suggested that CYP2C9 may
undergo an allosteric change when binding warfarin [46]. An X-ray crystal structure of
CYP2C9, in complex with the NSAID flurbiprofen, has also been described (Protein Data
Bank ID: 1R9O) [47].

Genetic phenotypes and adverse drug reactions
The gene coding for the CYP2C9 enzyme is highly poly- morphic, including functional
variants of major pharma- cogenetic importance. Changes in metabolic activity caused by
genetic variants in CYP2C9 play a major role in pathogenesis caused by adverse drug
reactions. Patients with low enzyme activity are at risk of adverse drug reaction, especially
for CYP2C9 substrates with a narrow therapeutic window, such as S-warfarin, pheny- toin,
glipizide, and tolbutamide [48].

A large body of literature investigates two common non- synonymous variants within
CYP2C9 (R144C, rs1799853 and I359L, rs1057910), leading to poor metabolism
phenotypes. Both variants have significantly lower frequencies in African and Asian
populations compared with Caucasian populations [8,49], see frequency tables (Tables 2 and
3) below.

Individuals with these variants are at risk of prolonged bleeding time and increased
incidence of severe bleeding in warfarin therapy [65], higher possibility of low blood sugar
levels during glipizide and tolbutamide therapy [31], and more frequent symptoms of
overdose in phenytoin therapy [66].

Patients with the poor metabolizer *2 (identified by R144C) and *3 (identified by I359L)
haplotypes require lower doses of warfarin to achieve a similar anticoagulant as patients
with at least one *1 (wild-type) haplotype [65,67]. However, it is now known that CYP2C9
genotype accounts for only part of the variability in warfarin sensitivity [68,69], because
VKORC1 genotype, age, and weight are also key factors in predicting the therapeutic dose
for warfarin [54].

CYP2C9 is responsible for about 90% of phenytoin metabolism, and the CYP2C9*2 and *3
haplotypes decrease the metabolism of phenytoin [70-72].
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Besides the two variants mentioned above, a large number of SNPs have been described in
the regulatory and coding regions of the CYP2C9 gene
(http://www.cypalleles.ki.se/cyp2c9.htm). Some of the polymorphisms are associated with
reduced enzyme activity compared with wild-type in in-vitro experiments; only a few
enzyme experiments have been done in vivo. CYP2C9*6 (818delA, rs9332131) is a rare (1
allele in 158 African-Americans, 0 in Caucasians) null allele with lack of activity because of
a splicing muta- tion that causes a frameshift resulting in a truncated protein [73]. The
variant I359T (CYP2C*4) is also a rare (0.5% in African-Americans, 6% in Caucasians)
polymorph- ism [53,74]. Both have been detected in patients who had adverse reactions to
phenytoin [73,75]. CYP2C9*5 (D360E, rs28371683), *6, *8 (R150H, rs7900194), and *11
(R335W, rs28371685) variants were associated with decreased phenytoin metabolism in a
black population [76].

The CYP2C9 promoter contains important regulatory elements: two HNF4α sites, a nuclear
receptor pregnane X receptor binding site, a constitutive androstane receptor/PXR site, and a
glucocorticoid responsive ele- ment [59,77,78]. There have been multiple polymorph- isms
detected in the 5′ untranslated region of CYP2C9 but these have not yet been shown to
contribute to response to warfarin [79,80] or phenytoin [72] in vivo, beyond those which
seem to be in linkage disequilibrium with known exonic variants [79,81,82]. A recent study
investigating 22 known and 9 novel promoter SNPs with an in-vitro promoter activity assay
suggests that genetic variation within CYP2C9 regulatory sequences is likelyto contribute to
differences in CYP2C9 phenotype, both within and among different populations,
independent from known exonic variants [83].

Important variants
CYP2C9: R144C; 144Arg > Cys; 430C > T (rs1799853)

This variant in exon 3 is the defining allele for the CYP2C9*2 haplotype. Other variant
positions delineate between haplotypes in the *2 series (see
http://www.imm.ki.se/CYPalleles for defining website), but a T allele at this position defines
a CYP2C9*2 haplotype. For further information about the CYP2C9*2 haplotype (see
http://www.pharmgkb.org/search/annotatedGene/cyp2c9/haplotype.jsp).

According to most in-vitro data, substrate affinity is not affected substantially by the *2
haplotype, but the maxi- mum rate of metabolism (Vmax) is reduced to approximately 50%
of that for CYP2C9*1 (wild-type) [8,84-86].

Individuals homozygous for this variant have been found to have much lower clearance
values for S-acenocoumarol, S-warfarin, phenytoin, tolbutamide, ibuprofen, nategli- nide,
fluvastatin, phenprocoumon, when compared to individuals homozygous for R (Arg)
[84,87]. Homozy- gotes for this variant also have a lower clearance as com- pared with
individuals homozygous for R (Arg) (68-90%) for the following drugs: phenytoin,
tolbutamide, ibupro- fen, nateglinide, fluvastatin, phenprocoumon [84].

The R144C variant has been genotyped in various popu- lations (Table 2). The variant exists
in about 10-20% of the Caucasian population, and is rare in the tested Asian and African-
American populations [49,88].

CYP2C9: I359L; 359Ile > Leu; 1075A > C (rs1057910)
The variant at this position is the defining allele for the CYP2C9*3 haplotype. Other variant
positions delineate between haplotypes in the *3 series (see
http://www.imm.ki.se/CYPalleles for defining website), but a C allele at this position
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defines a CYP2C9*3 haplotype. For further infor- mation about the CYP2C9*3 haplotype
see http://www.pharmgkb.org/search/annotatedGene/cyp2c9/haplotype.jsp

The catalytic activity of the *3 haplotype is significantly reduced for most CYP2C9
substrates because of both an increase in Km and a reduction in Vmax [8,84,85].

Leu/Leu homozygotes have lower metabolic activity for CYP2C9 substrates in general,
including tolbutamide and phenytoin [89]. However, much of the supporting data are from
in-vitro studies and homozygous individuals are rare [90]. In other studies, it has been found
that heterozygotes have about half the clearance as wild-type, for the following drugs: S-
warfarin, tolbutamide, fluvas- tatin, glimepiride, tenoxicam, candesartan, celecoxib,
phenytoin [84].

The clearance of S-ibuprofen is reduced in CYP2C9*3/*3 homozygotes compared with
wild-type homogozygotes [3]. In in-vivo studies, the CYP2C9*3 haplotype in hetero-
zygotes has been associated with a lower clearance and longer half-life of flurbiprofen [91].
The I359L variant has been genotyped in various populations (Table 3). Supplemental
digital content for the CYP2C9 gene (PA126) and VIP is available at
http://www.pharmgkb.org/search/annotatedGene/cyp2c9/.
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Table 1
Examples of substrates that are metabolized by CYP2C9

Drug name Class References

Irbesartan Angiotensin II blocker [10,11]

Losartan Angiotensin II blocker [12]

Phenytoin Antiepileptic [13]

Cyclophosphamide Alkylating agent [14,15]

Tamoxifen Anti-estrogen [16]

Fluvastatin Statin [17]

Celecoxib NSAID [18,19]

Diclofenac NSAID [20,21]

Ibuprofen NSAID [22]

Lornoxicam NSAID [23,24]

Meloxicam NSAID [25]

Naproxen NSAID [26,27]

Glibenclamide Sulfonylurea [28]

Glimepiride Sulfonylurea [29,30]

Glipizide Sulfonylurea [31,32]

Tolbutamide Sulfonylurea [33]

Warfarin Anticoagulant [34-37]
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Table 2
Frequency of the 144C allele in different populations

Population No. of subjects
Allele frequency

of 144C References

Chinese (Shanghai) 394 0.001 [50]

Korean 574 0.000 [51]

Japanese 147 0.000 [52]

Japanese 140 0.000 [53]

Japanese 64 0.000 [54]

Vietnamese (Kinh) 157 0.000 [55]

Iranian 200 0.128 [56]

Turkish 499 0.106 [57]

Ashekenazi Jew 100 0.085 [52]

Yemenite Jew 99 0.051 [52]

Moroccan Jew 100 0.095 [52]

Libyan Jew 89 0.152 [52]

Egyptian 247 0.120 [58]

Ethiopian 150 0.040 [59]

African-American 66 0.000 [54]

US-Caucasians 115 0.143 [54]

Russian 290 0.105 [60]

Croatian 200 0.165 [61]

French-Caucasians 151 0.150 [50]

German 118 0.140 [62]

Swedish 430 0.107 [63]

Spanish 157 0.143 [64]

Italian 157 0.110 [59]
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Table 3
Frequency of the 359Leu allele in different populations

Population
No. of

subjects
Allele frequency

of 359Leu References

Chinese (Shanghai) 394 0.036 [50]

Korean 574 0.011 [51]

Japanese 147 0.007 [52]

Japanese 140 0.054 [53]

Japanese 64 0.016 [54]

Vietnamese (Kinh) 157 0.022 [55]

Iranian 200 0.000 [56]

Turkish 499 0.100 [57]

Ashekenazi Jew 100 0.080 [52]

Yemenite Jew 99 0.081 [52]

Moroccan Jew 100 0.115 [52]

Libyan Jew 89 0.174 [52]

Egyptian 247 0.060 [58]

Ethiopian 150 0.020 [59]

African-American 66 0.008 [54]

US-Caucasian 115 0.109 [54]

Russian 290 0.067 [60]

Croatian 200 0.095 [61]

French-Caucasians 151 0.080 [50]

German 118 0.050 [62]

Swedish 430 0.074 [63]

Spanish 157 0.162 [64]

Italian 157 0.090 [59]
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