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Abstract

Purpose—We use simulations and an empirical example to evaluate the performance of disease 

risk score (DRS) matching compared with propensity score (PS) matching when controlling large 

numbers of covariates in settings involving newly introduced treatments.

Methods—We simulated a dichotomous treatment, a dichotomous outcome, and 100 baseline 

covariates that included both continuous and dichotomous random variables. For the empirical 

example, we evaluated the comparative effectiveness of dabigatran versus warfarin in preventing 

combined ischemic stroke and all-cause mortality. We matched treatment groups on a historically 

estimated DRS and again on the PS. We controlled for a high-dimensional set of covariates using 

20% and 1% samples of Medicare claims data from October 2010 through December 2012.

Results—In simulations, matching on the DRS versus the PS generally yielded matches for more 

treated individuals and improved precision of the effect estimate. For the empirical example, PS 

and DRS matching in the 20% sample resulted in similar hazard ratios (0.88 and 0.87) and 

standard errors (0.04 for both methods). In the 1% sample, PS matching resulted in matches for 

only 92.0% of the treated population and a hazard ratio and standard error of 0.89 and 0.19, 

respectively, while DRS matching resulted in matches for 98.5% and a hazard ratio and standard 

error of 0.85 and 0.16, respectively.

Conclusions—When PS distributions are separated, DRS matching can improve the precision of 

effect estimates and allow researchers to evaluate the treatment effect in a larger proportion of the 
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treated population. However, accurately modeling the DRS can be challenging compared with the 

PS.

INTRODUCTION

Evaluating the comparative effectiveness of newly introduced treatments presents unique 

challenges in pharmacoepidemiologic research. The propensity score, defined as the 

conditional probability of treatment given a set of observed covariates, has become a 

standard tool for controlling large numbers of confounding variables.1, 2 However, 

accurately modeling the PS for a new treatment can be difficult if the treated population is 

small or factors affecting treatment assignment change rapidly.3, 4

In a recent paper, Glynn et al.3 proposed using an alternative covariate summary score, the 

disease risk score (DRS), to control for confounding in settings involving new treatments. 

Glynn et al. argued that factors affecting disease risk are more likely to be stable over time 

than are factors affecting treatment, potentially simplifying the estimation of the DRS 

compared with a time-varying PS. While the DRS can be more stable over time, modeling 

the DRS in practice also presents unique challenges that are not shared by the PS. Unlike the 

PS which models covariate associations with treatment, the DRS models covariate 

associations with the potential outcome under the control or comparator treatment.5 In 

practice, however, this potential outcome is not observed for all individuals in the study 

population, but only for those receiving the comparator treatment. Consequently, the DRS 

must be modeled indirectly for treated individuals.

The DRS has typically been estimated in one of two ways. The first is to fit a regression 

model within the cohort of individuals receiving the comparator treatment and then 

extrapolate this model to predict disease risk for the full cohort. The second is to fit a 

regression model within the full cohort as a function of baseline covariates and treatment 

and then estimate the disease risk for each individual after setting treatment status to 

zero. 3, 5–8 Hansen discussed limitations to both of these strategies, which have been termed 

“same-sample” estimation.5

Fitting the DRS to the full cohort benefits from increased sample size, but introduces 

additional complexity as it requires accurately modeling the relation between treatment and 

outcome. Small misspecifications in the full-cohort DRS model can introduce bias by 

resulting in estimated scores that are non-ancillary or carry information about the treatment 

effect.5, 9 Consequently, Hansen5 recommends using only the control population when 

fitting the DRS model. Leacy and Stuart9 explained that using only the control population 

when modeling the DRS tends to result in estimated scores that are more robust to model 

misspecification. Fitting the DRS only among individuals receiving the comparator 

treatment, however, can lead to overfitting, which results in overestimating disease risk for 

high-risk comparator patients and underestimating disease risk for low-risk comparator 

patients.3, 5 Such overfitting can lead to apparent treatment effect heterogeneity over the 

distribution of disease risk and potentially bias overall effect estimates.3, 5
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To circumvent the problems of same-sample estimation, both Hansen5 and Glynn et al.3 

have proposed using controls from a period prior to the current study to fit the DRS model. 

Glynn et al. suggested that estimating the DRS with historical data can be particularly 

advantageous in pharmacoepidemiologic studies using large administrative healthcare 

databases to evaluate newly introduced treatments or evolving drug therapies. Modeling the 

DRS with historical data can avoid the problems associated with “same-sample” estimation, 

but can also result in fitted risk models that are not generalizable to the study population. 

This strategy assumes that the effects of risk factors on the outcome, surveillance of 

individuals, and coding practices do not change over time. Violation of these assumptions 

could result in misspecified estimates of disease risk when applied to the study cohort.

Little evidence exists to confirm the theoretical advantages of a historically estimated DRS 

over a traditional PS when evaluating new treatments. A number of studies have shown that 

simply fitting time-specific PS models can perform well when the indication for treatment 

changes rapidly over time.4, 10 Further, the limitations of the PS when the number of 

exposed individuals is small are not well understood. Previous studies have also shown that 

overfitting the PS model does not necessarily compromise confounding control.11 There 

remain few examples demonstrating the application of a historically estimated DRS when 

evaluating new treatments. Potential advantages and challenges of using DRSs in these 

settings remain unclear.

In this paper, we use both simulations and an empirical example to compare the performance 

of DRS matching with that of PS matching when controlling large numbers of covariates in 

settings involving newly introduced treatments. We discuss both challenges and potential 

advantages of using the DRS for confounding control as well as required assumptions for 

using historical data to model the DRS. We then evaluate the performance of DRS matching 

with PS matching in an empirical example where we compare the new oral anticoagulant 

dabigatran with warfarin in preventing ischemic stroke and all-cause mortality in patients 

diagnosed with atrial fibrillation in the Medicare population.

METHODS

Simulation Study

We simulated a causal scenario that was motivated by an empirical example (described later) 

comparing dabigatran with warfarin in preventing ischemic stroke and all-cause mortality 

among new users. We simulated 100 baseline covariates. As in most pharmacoepidemiologic 

settings, the majority of these baseline covariates were dichotomous (simulated as binomial 

random variables). We simulated a dichotomous treatment and a dichotomous outcome 

according to equations 1 and 2.

[1]

[2]
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We considered scenarios where we varied the sample size and the strength of covariate-

treatment and covariate-outcome associations. We also considered a scenario involving 

treatment effect heterogeneity since, in the presence of heterogeneity, incomplete matching 

can result in an estimand that is different from the average treatment effect in the full treated 

population.12, 13 For all scenarios, values for α0 and β0 in Equations 1 and 2 were selected so 

that the baseline prevalence for both treatment and outcome was 30%.

In scenario 1, we considered a constant treatment effect (βT = 0 and βint = 0) and selected 

values for the coefficients α1 through α100 and β1 through β100 so that the effects of 

covariates on both the treatment and outcome were mild (coefficients values ranging from 

−0.182 to 0.182). In Scenarios 2 and 3, we again considered a constant treatment effect, but 

selected values for the coefficients α1 through α100 and β1 through β100 to allow for 

moderate and strong effects, respectively, on the treatment and outcome (coefficient values 

ranging from −0.405 to 0.405 for moderate effects, and from −0.693 to 0.693 for strong 

effects). In Scenario 4 we selected values for the coefficients to allow for moderate effects 

on both the treatment and outcome, but also included treatment effect heterogeneity by 

setting βint= 0.693.

We allowed coefficients to be both positive and negative to reflect practical settings where 

baseline covariates induce confounding in both directions. For each scenario, we considered 

sample sizes of 10,000 and 1,000 for a total of eight scenarios. A full description of the 

simulated structure is provided in the Supporting Information.

We modeled the DRS within a simulated historical population of controls and the PS within 

the original simulated cohort. For each scenario, the historical population of controls 

consisted of 10,000 individuals and was simulated to be similar to the original cohort, but 

with no treatment introduced. We estimated both the PS and DRS using logistic regression 

that included main effects for each of the baseline covariates X1 through X100. Because the 

true PS model (Equation 1) and true DRS model (i.e., outcome model in Equation 2 with 

treatment set to 0) were simulated as a function of only the main effects of X1 through X100, 

this simulation compared the PS and DRS in a situation where both the fitted models were 

correctly specified.

We implemented the estimated PSs and DRSs using 1-1 nearest neighbor matching within a 

specified caliper distance. Matching was carried out without replacement. We considered 

two caliper distances. We first followed the recommendation of Rosenbaum and Rubin and 

used a caliper distance of 0.25 standard deviations of the respective PS or DRS distribution 

on the logit scale.14 We then repeated the analysis using a ten-fold decrease in the caliper 

distance of 0.025 standard deviations of the logit of the respective PS or DRS distribution. 

We chose to include a very small caliper distance to observe the sensitivity in the number of 

individuals being matched on the PS versus the DRS as the caliper size is reduced by a 

considerable amount.

We measured the performance of DRS and PS matching by calculating the bias, mean 

squared error (MSE), and precision of the effect estimates. The bias, defined as the expected 

value of the difference between the effect estimate and the true effect, was calculated by 
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taking the mean of this difference over all simulation runs. For scenarios involving treatment 

effect heterogeneity, the true value for the average treatment effect in the treated was 

calculated by simulating the predicted response under both treatment and control for each 

individual in the treated population (i.e., potential outcomes). These potential responses 

were then used to calculate the true value for the average treatment effect in the treated 

population. Details are provided in the Supporting Information. The MSE was calculated by 

taking the mean of the squared bias over all simulation runs. To evaluate precision, we 

estimated the standard error (SE) using the empirical standard deviation of the distribution of 

the treatment-effect estimates across all simulation runs.

Empirical Study: Dabigatran vs. Warfarin in Patients with Atrial Fibrillation

We compared the performance of dabigatran versus warfarin in an elderly population using 

linked Medicare Parts A (hospital), B (outpatient), and D (pharmacy) data. We identified 

eligible individuals from a 20% random sample of Medicare beneficiaries with fee-for-

service enrollment in all three plans for at least one month from October 19, 2010 (when 

dabigatran was introduced) through December 31, 2012. New users were defined as 

individuals who initiated dabigatran or warfarin after a 1-year washout period with no 

prescription for any oral anti-coagulant.15 We required continuous enrollment in Medicare 

for at least 12 months prior to drug initiation. All demographic and clinical covariates 

(described later) were defined during the 12 months prior to drug initiation. Individuals were 

censored only if they lost Medicare enrollment during follow-up (intent-to-treat analysis).

We restricted our study cohort to individuals who were 65 years of age or older and had an 

inpatient or outpatient diagnosis code for atrial fibrillation or atrial flutter (ICD-9 427.31, 

427.32) prior to initiation of dabigatran or warfarin. We excluded individuals with a known 

heart valve replacement because this is a contraindication for dabigatran use. We also 

excluded individuals at a skilled nursing facility at drug initiation.

We modeled the one-year risk of combined ischemic stroke and all-cause mortality within a 

population of new warfarin users with an index date prior to the introduction of dabigatran 

(between January 1, 2008 and October 18, 2010). This model was then used to predict the 

disease risk for all individuals within the study cohort. We also estimated the PS within the 

study cohort for comparison. The PS and DRS models included main effects for 37 

covariates (described later), which were selected a priori using expert knowledge. We added 

200 empirically selected covariates based on Medicare medication claims, inpatient and 

outpatient diagnostic codes, and procedural codes. We identified the 200 most prevalent 

codes within each data dimension using both the historical population of new warfarin users 

and original study cohort of new-users of warfarin and dabigatran (codes with a prevalence 

greater than 0.5 were subtracted from 1). Of the 600 covariates identified in this way, we 

selected the 200 with the strongest univariate associations (odds ratios) with the outcome 

after restricting to individuals receiving the comparator treatment (all new-users of 

warfarin). The estimated PSs and DRSs were implemented using 1-1 nearest neighbor 

caliper matching without replacement. We used the same caliper distances described in the 

simulation study (0.25 and 0.025 standard deviations of the logit of the respective PS or 

DRS distribution). Similar to the simulation study, we repeated the analyses using two 
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different calipers distances to observe the sensitivity in the number of individuals matched 

on the PS versus the DRS as the caliper size is reduced. We estimated the hazard ratio (HR) 

within the matched populations using Cox proportional hazards models.

We conducted analyses using 20 and 1 percent samples of the Medicare data to observe the 

sensitivity of the results as the sample size is reduced. Previous studies have shown that 

confounding can be stronger shortly after a treatment’s introduction.16–18 To observe the 

sensitivity of the results to the duration of follow-up, we repeated the analysis using data 

only for the first year of dabigatran use (index date between October 19, 2010 through 

October 18, 2011).

RESULTS

Simulation results

For simulation scenarios not involving treatment-effect heterogeneity, Figures 1 and 2 show 

the PS and DRS distributions by treatment group for one simulation run with a sample size 

of 10,000 (Figure 1) or 1,000 (Figure 2). The degree of overlap (i.e., area of overlapping 

region) between the DRS distributions was always larger than the degree of overlap between 

the PS distributions. Varying the sample size and the strengths of covariate-treatment and 

covariate-outcome associations affected the overlap in PS distributions more strongly than it 

affected the overlap in DRS distributions (Figures 1 and 2).

Table 1 shows results when matching on the smaller caliper distance of 0.025 standard 

deviations of the logit of the PS or DRS distribution. For every scenario, a larger percentage 

of the treated population could be matched on the DRS versus the PS because of the greater 

overlap in DRS distributions (percent matched was approximately 100 for DRS matching 

and ranged from 96.5 to 54.5 for PS matching). The DRS-matched estimate generally had 

greater precision and lower MSE compared to the PS-matched estimate, with MSE ranging 

from 0.02 to 0.30 for DRS matching and 0.03 to 0.39 for PS matching (Table 1). Both DRS 

and PS matching resulted in approximately unbiased estimates for scenarios where there was 

no treatment effect heterogeneity. In the presence of treatment effect heterogeneity, matching 

on the DRS resulted in a more accurate evaluation of the treatment effect within the entire 

treated population (Table 1). When using a larger caliper distance of 0.25 standard 

deviations of the logit of the PS or DRS distribution, differences in the percent matched and 

standard errors were smaller, but the overall patterns were similar (not shown).

Empirical results

We present results for the empirical study in Figures 3 and 4 as well as Tables 2 and 3. Table 

2 shows the distribution of the 37 a priori selected covariates by treatment group. New users 

of dabigatran were generally healthier, with fewer comorbidities and greater use of the 

healthcare system than new users of warfarin (Table 2). Similar patterns of initiation have 

been found in other studies.19, 20

Figures 3 and 4 show the PS and DRS distributions by treatment group for the 20% (Figure 

3) and 1% (Figure 4) samples of the Medicare data, with follow-up through 2012. In both 

analyses, controlling for the larger set of empirically selected covariates resulted in greater 
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separation in PS distributions while having little impact on the separation in DRS 

distributions.

For the 20% sample (Table 3), approximately 100% of the treated population was matched 

on the PS and the DRS, regardless of the caliper distance or number of covariates included 

in the models. In this case, both PS and DRS matching resulted in similar hazard ratios and 

standard errors, both when controlling for the covariates selected a priori (HRs 0.75 and 0.73 

respectively; SEs both 0.03) and after adding the empirically selected covariates (HRs 0.88 

and 0.87 respectively; SEs both 0.04).

When using the 1% sample of the Medicare data and controlling for the covariates selected a 

priori (Table 3), PS and DRS matching yielded similar results, with approximately 100% of 

the treated population being matched for both methods and caliper distances (HR and SE of 

0.75 and 0.14 for PS matching and 0.74 and 0.14 for DRS matching). However, when 

controlling for the expanded covariate set in this sample and matching on the smaller caliper 

distance, only 92% of the treated patients were matched on the PS, compared to 

approximately 99% on the DRS (Table 3). The reduction in the percentage matched resulted 

in reduced precision for the PS-matched estimate (SE 0.19 versus 0.16) (Table 3). When 

matching on the larger caliper distance (not shown), the overall patterns were similar except 

the differences in the percent matched on the PS versus the DRS were smaller (e.g., 95.3% 

and 99.9% were matched on the PS and DRS, respectively, when controlling the expanded 

set of covariates with the 1% Medicare sample). In the analyses evaluating treatment effects 

in the first year of dabigatran use (not shown), the pattern of results was similar to that 

shown in Table 3, except that unadjusted and adjusted estimates were further from the null 

and standard errors were larger.

Each of the PS models resulted in good model fit in terms of calibration and discrimination 

for all scenarios (Hosmer-Lemeshow p-value ranging from 0.16 to 0.49; c-statistic ranging 

from 0.68 to 0.79). The PS models also performed well in terms of balancing covariates 

across treatment groups with an average standardized absolute mean difference (ASAMD) 

of 0.01 or less for all scenarios. In terms of predictive performance, the DRS models had 

good discrimination (c-statistic ranging from 0.73 to 0.78), but performed poorly in terms of 

calibration (Hosmer-Lemeshow p-value <0.01 for three out of four scenarios).

DISCUSSION

In this study, we used both simulations and an empirical example to explore potential 

benefits of using a historically estimated DRS when controlling large numbers of covariates 

in settings with newly introduced treatments. With few exposed individuals and smaller 

sample sizes, fitting a high-dimensional PS model can increase separation between the PS 

distributions of the treatment groups, reducing the number of treated individuals who can be 

matched on the PS. In theory, the overlap in DRS distributions across treatment groups 

should always be at least as great as the overlap in PS distributions when the PS and DRS 

models include the same covariates. Therefore, matching on the DRS may allow researchers 

to evaluate the treatment effect within a larger proportion of the treated population, 

compared to matching on the PS.
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This potential for greater overlap in the distribution of disease risk across treatment groups is 

because conditioning on the PS (e.g., matching or stratifying) is more restrictive than 

conditioning on the DRS. PS methods require that there be no combination of covariate 

values that result in individuals receiving treatment or control with certainty (i.e., positivity 

assumption).5, 21, 22 Hansen formally shows that adjustment on the DRS requires a weaker 

condition that there be no levels of disease risk at which treatment or control is received with 

certainty.5 Consequently, adjustment using the DRS can allow researchers to include 

individuals who would otherwise be excluded with PS adjustment. Even when positivity is 

satisfied, conditioning on the PS can still be more restrictive than conditioning on the DRS. 

Balance on the PS will result in covariates being independent of treatment assignment. This 

implies that any function of baseline covariates, including the DRS, will also be independent 

of treatment. Therefore, PS balance across treatment groups implies balance on the DRS in 

expectation. The reverse is not true. Because the DRS does not balance covariates across 

treatment, but only with respect to the potential outcome under control, balance on the DRS 

across treatment does not imply balance on the PS.5 DRS matched treatment groups can 

include the same population of individuals who are balanced on the PS as well as individuals 

who may have differing PS distributions but similar overall risk for the outcome.5

In the simulations, we demonstrated that when there was strong separation in the PS 

distributions across treatment groups, matching on the DRS can result in a larger proportion 

of the treated population being matched, improving the precision of the effect estimate and, 

in the presence of treatment effect heterogeneity, provide more accurate estimates of the 

treatment effect in the full treated population. As with any simulation, results are specific to 

the scenarios considered. In this simulation study, we did not consider unmeasured 

confounding or instrumental variables (i.e., variables that do not affect the outcome except 

through treatment). The inclusion of instruments would have created larger differences in the 

degree of overlap in PS versus DRS distributions and, in the presence of unmeasured 

confounding, resulted in greater bias amplification when matching on the PS versus a 

historically estimated DRS.23

For the empirical example, we found that when there was moderate separation in the PS 

distributions across treatment groups, DRS and PS matching gave similar estimates of the 

effect of the new oral anticoagulant dabigatran versus warfarin in reducing combined 

ischemic stroke and all-cause mortality within the Medicare population. However, when 

controlling for large numbers of covariates with reduced sample size, the separation in the 

PS distribution across treatment groups increased and matching on a historically estimated 

DRS improved the precision of the effect estimate by allowing a larger proportion of the 

treated population to be matched. For both PS and DRS matching, when we added a large 

set of empirically selected covariates, effect estimates became more consistent with the 

results of clinical trials and other studies comparing these treatments within the Medicare 

population.24, 25 When we restricted the analysis to the first year of dabigatran use, estimates 

moved further from the null (becoming less consistent with trial results), likely reflecting the 

strong channeling that occurs shortly after a treatment’s introduction.16–18

With greater overlap in the distribution of disease risk across treatment groups, it is likely 

that for any given study, the optimal caliper distance for matching on the DRS will be 
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smaller than the optimal caliper distance for matching on the PS. For both the simulations 

and empirical example, we found that reducing the caliper distance resulted in fewer 

individuals being matched on the PS while having less of an impact on the number of 

individuals being matched on the DRS. While many studies have discussed the importance 

of choosing an appropriate caliper distance when matching on the PS, more research is 

needed in determining appropriate caliper distances when matching on the DRS.13, 26

While matching on the DRS can allow for a larger portion of individuals to be compared 

across treatment when there is separation in the PS distributions, it is important to consider 

why the PS distributions are separated. If the separation is due to strong differences in 

confounding variables rather than overfitting the PS model, researchers should proceed 

cautiously. Strong differences in measured confounders can indicate strong differences in 

unmeasured confounders, which could be addressed best in the study design phase rather 

than the analysis phase. We stress the importance of reducing differences in the distribution 

of baseline covariates across treatment groups through proper study design (e.g., new-user 

design and other restriction criteria).16, 27

While we have focused on potential benefits of matching on the DRS, the DRS also has 

some theoretical disadvantages compared to the PS. Because the DRS is formally defined in 

terms of a potential outcome, estimating the DRS in practice can be challenging and requires 

additional assumptions. Further, unlike the PS, the DRS cannot be evaluated using measures 

of covariate balance within the full study population. In this study, the estimated PS models 

resulted in good model fit and PS matching balanced covariates across treatment groups. 

When modeling the DRS using historical data, we found it difficult to obtain good model fit 

in terms of the Hosmer-Lemeshow test, particularly when controlling for larger numbers of 

covariates. Other studies have reported similar findings when estimating high-dimensional 

DRSs and have proposed implementing shrinkage methods to reduce the dimensionality of 

covariates to improve model fit.28 For this study, however, poor fit in terms of the Hosmer-

Lemeshow test did not appear to have a strong impact on the performance of the DRS 

compared with the PS. More research is needed to determine how best to estimate and 

evaluate the validity of DRS models.

We conclude that under certain assumptions, using historical data to model the DRS is a 

valid method to control for confounding when evaluating newly marketed drugs. Further, 

when there is strong separation in the distribution of the PS across treatment groups, 

matching on a historically estimated DRS versus a PS can allow researchers to evaluate the 

treatment effect within a larger proportion of the treated population. We further conclude, 

however, that accurately modeling the DRS can be more challenging as compared with 

modeling the PS, even in settings involving newly introduced treatments. When using 

summary scores for confounding control, we recommend conducting and reporting results 

from PS analyses in addition to analyses using a historically estimated DRS.
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KEY POINTS

• In theory, the degree of overlap in the distribution of disease risk across 

treatment groups will always be at least as large as the overlap in the propensity 

score across treatment groups.

• Controlling for a high-dimensional set of covariates can improve confounding 

control, but increases separation between the PS distributions of the treatment 

groups while having less impact on the separation between the disease risk 

distributions of the treatment groups.

• Matching on the DRS can allow researchers to evaluate the treatment effect 

within a larger proportion of treated individuals, compared to matching on the 

PS. However, accurately modeling the DRS can be challenging compared to the 

PS, even in settings involving newly introduced treatments.
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Figure 1. 
Propensity score (PS) and disease risk score (DRS) distributions across treatment groups for 

one run of the simulation study with a sample size of 10,000 subjects and 100 covariates 

included in the PS and DRS models. In plots A and B the effects of covariates on both 

treatment and the outcome were mild, in plots C and D covariate effects were moderate, and 

in plots E and F the covariate effects were strong. The overlapping coefficient is an estimate 

of the percentage of overlapping area between the two density functions.
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Figure 2. 
Propensity score (PS) and disease risk score (DRS) distributions across treatment groups for 

one run of the simulation study with a sample size of 1,000 subjects and 100 covariates 

included in the PS and DRS models. In plots A and B the effects of covariates on both 

treatment and the outcome were mild, in plots C and D covariate effects were moderate, and 

in plots E and F the covariate effects were strong. The overlapping coefficient is an estimate 

of the percentage of overlapping area between the two density functions.
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Figure 3. 
propensity score (PS) and disease risk score (DRS) distributions across dabigatran and 

warfarin treatment groups for a 20% sample of the Medicare data and individuals with an 

index date between October 2010 and December 2012. In plots A and B the PS and DRS 

models included 37 a priori selected covariates, in plots C and D the PS and DRS models 

included 37 a priori selected covariates and 200 empirically selected covariates. The 

overlapping coefficient is an estimate of the percentage of overlapping area between the two 

density functions.
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Figure 4. 
propensity score (PS) and disease risk score (DRS) distributions across dabigatran and 

warfarin treatment groups for a 1% sample of the Medicare data and individuals with an 

index date between October 2010 and December 2012. In plots A and B the PS and DRS 

models included 37 a priori selected covariates, in plots C and D the PS and DRS models 

included 37 a priori selected covariates and 200 empirically selected covariates. The 

overlapping coefficient is an estimate of the percentage of overlapping area between the two 

density functions.
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Table 2

Baseline covariates measured during 1-year washout period

Warfarin (N=56,260) Dabigatran 150mg (N=11,407)

Demographics:

Age 78.91 76.76

Race (1 white, 0 other) (%) 89.2 91.72

Sex (% female) 42.17 48.95

Diagnoses: (%)

Cardiovascular:

 Chest pain 38.41 35.05

 Heart disease 74.56 66.62

 Heart failure 30.74 19.23

 Hypertension 65.08 63.30

 Hyperlipidemia 35.21 41.09

 Myocardial Infarction 3.49 1.89

 Cerebrovascular disease 21.29 17.38

Stroke

 Ischemic 6.09 4.31

 Hemorrhagic 0.34 0.16

TIA 6.9 6.34

VTE 10.36 1.67

Diabetes 35.09 30.02

Kidney disease 12.58 4.74

Renal failure 16.09 5.75

Bleeding 1.88 0.68

Anemia 15.63 9.95

Baseline Meds: (%)

Anti-depressants 28.27 22.89

Antihypertensives:

 ACE/ARB 52.22 50.23

 Loop diuretics 40.91 28.70

 Nonloop diuretics 52.55 41.97

Hypolipidemic drugs:

 Statins 49.40 52.45

 Fibrate 5.02 4.98

Rate Control Therapy:

 Beta blockers 70.83 71.99

 CCB 43.97 41.80

 Glycoside 18.49 17.10

Rhythm Control Therapy 19.10 23.21

Healthcare Use (average #):

# ECG claims 3.74 3.80
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Warfarin (N=56,260) Dabigatran 150mg (N=11,407)

# PSA claims 0.36 0.49

# of fecal occult blood tests 0.12 0.13

# colonoscopies 0.14 0.14

# flu shot claims 0.76 0.79

# of lipid assessments 1.52 1.72

# of mammography claims 0.25 0.29

# of PapSmear claims 0.05 0.07

TIA, transient ischemic attack; VTE, venous thromboembolism; ACE/ARB, angiotensin-converting enzyme/angiotensin II receptor blocker; CCB, 
calcium channel blockers; ECG, electrocardiography; PSA, prostate-specific antigen.
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