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Abstract
Purpose—It is often preferable to simplify the estimation of treatment effects on multiple
outcomes by using a single propensity score (PS) model. Variable selection in PS models impacts
the efficiency and validity of treatment effects. However, the impact of different variable selection
strategies on the estimated treatment effects in settings involving multiple outcomes is not well
understood. The authors use simulations to evaluate the impact of different variable selection
strategies on the bias and precision of effect estimates to provide insight into the performance of
various PS models in settings with multiple outcomes.

Methods—Simulated studies consisted of dichotomous treatment, two Poisson outcomes, and
eight standard-normal covariates. Covariates were selected for the PS models based on their
effects on treatment, a specific outcome, or both outcomes. The PSs were implemented using
stratification, matching, and weighting (IPTW).

Results—PS models including only covariates affecting a specific outcome (outcome-specific
models) resulted in the most efficient effect estimates. The PS model that only included covariates
affecting either outcome (generic-outcome model) performed best among the models that
simultaneously controlled measured confounding for both outcomes. Similar patterns were
observed over the range of parameter values assessed and all PS implementation methods.

Conclusions—A single, generic-outcome model performed well compared with separate
outcome-specific models in most scenarios considered. The results emphasize the benefit of using
prior knowledge to identify covariates that affect the outcome when constructing PS models and
support the potential to use a single, generic-outcome PS model when multiple outcomes are being
examined.
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INTRODUCTION
The propensity score (PS), defined as the conditional probability of treatment given a set of
observed covariates, has been shown to effectively balance measured covariates across
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treatment groups through methods such as matching, stratification, and weighting.1,2

Variable selection in PS analysis has an impact on the efficiency and validity of the
estimated treatment effect.3–5 Both theory and simulations have shown that including
variables that affect treatment but not the outcome (instrumental variables or IVs) decreases
the efficiency of effect estimates and, in the presence of unmeasured confounding, can
increase the bias of those estimates.6–9 Studies have further shown that the inclusion of
variables affecting only the outcome (risk factors) can increase the precision of estimated
treatment effects by controlling for random or chance imbalances of the risk factors across
treatment groups.3 These studies indicate that the ideal PS model, with respect to efficiency
and bias, is a model that includes all variables affecting the outcome of interest while
excluding IVs.

Although the potential negative effects of controlling for IVs are known, the magnitude of
these effects is not well understood. In a recent study conducted by Myers, et al.,10 the
authors explored this issue by evaluating the effects of controlling for IVs in various
settings. Their results showed that the increase in variance and potential increase in bias of
effect estimates due to conditioning on IVs was relatively small in most of the settings
examined. Although these findings provide valuable insight into the magnitude of the impact
that conditioning on IVs can have on effect estimates, their results are specific to the
scenarios assessed in their study.11 Uncertainty remains regarding the performance of
various PS variable selection strategies in settings specific to multiple outcomes.

Evaluating the effect of a treatment or exposure on multiple outcomes is common in many
areas of epidemiologic research, particularly in the area of drug safety where monitoring
multiple health events is often the focus.12–14 In these settings, it is often preferable to
simplify the causal analysis by fitting a single, higher-dimensional PS model to
simultaneously balance measured covariates across treatment groups instead of fitting
separate PS models for each outcome.12 In practice, however, identifying the ideal or
optimal set of covariates for inclusion in the PS model(s) may be unclear and can become
increasingly difficult in studies involving multiple outcomes. Even if the true relations
among covariates are known, when estimating the effect of a treatment on multiple
outcomes with non-identical risk factors, it is not always possible to include the optimal set
of variables using a single, high-dimensional PS model. This is because the same covariate
may be a confounder for one outcome but an IV for another.

Because uncertainty exists regarding the performance of various PS variable selection
strategies and since it is not always possible to exclude IVs when using a single PS model in
settings involving multiple outcomes, it is important to understand the relative loss in
precision and potential increase in bias that can occur when using a single or “generic” PS
model to simultaneously control measured confounders for multiple outcomes. In this study,
we conducted Monte Carlo simulations in an effort to better understand the relative
performance of various PS models with respect to bias and precision of effect estimates in
settings involving multiple outcomes.

METHODS
Simulation setup

We simulated a causal structure consisting of one dichotomous treatment (T), two Poisson
distributed outcomes (Y1, Y2), six independent standard-normal measured covariates (X1,
X2, X3, X4, X5, X6), and two independent standard-normal unmeasured confounders (U1,
U2). Figure 1 provides a diagram of the described causal structure. In Figure 1, X1 is an IV
for both outcomes, X2 an IV for outcome Y1 and a confounder for outcome Y2, X3 a
confounder for outcome Y1 and an IV for outcome Y2, X4 a confounder for both outcomes,
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X5 a risk factor for outcome Y1, and X6 a risk factor for outcome Y2. Poisson outcomes
were chosen since modeling counts is common in epidemiologic research and estimating
rate ratios avoids issues with the non-collapsibility of the odds ratio.15,16 The functional
relations among the covariates are summarized in equations 1–3.

[1]

[2]

[3]

Parameter values and sensitivity analysis
We created a variety of scenarios where the strength and direction of the causal relations
among the confounders both increased and decreased the crude or unadjusted effect
estimate. The parameters and values used in the simulations are shown in Table 1. The
relations among the variables were first simulated using two basic sets of parameter values.
The first set (Scenario A) involved no unmeasured confounding while the second (Scenario
B) included unmeasured confounders for both outcomes, Y1 and Y2. Since unmeasured
confounding is a fundamental obstacle in pharmacoepidemiology and non-experimental
research in general, unmeasured confounders were included to assess their impact on the
precision and bias of effect estimates for each of the PS models (Table 1).

As with any simulation study, the generalizability of the results is limited to the specific
scenarios assessed. To make the results of this study more generally applicable, we
conducted multiple sensitivity analyses by varying selected parameter values over a range of
causal scenarios (alternative scenarios in Table 1). For outcome Y1, parameter values for the
effect of a confounder on treatment (α3), a confounder on outcome (β13), an IV on treatment
(α2), and a risk factor on outcome (β15) were varied one at time while holding all other
parameters constant at the Scenario A parameter values and again while holding all other
parameters constant at the Scenario B parameter values (Table 1). The selected parameters
for the alternative scenarios, or sensitivity analyses, were chosen to represent each type of
covariate-treatment or covariate-outcome relation in the simulated causal structure (i.e.
effects between a confounder on treatment, confounder on outcome, IV on treatment, and
risk factor on outcome). A similar process was repeated for outcome Y2.

The parameter values shown in Table 1 are not specific to any particular study and were
simply chosen to provide a general understanding of the issues being addressed and provide
a general representation of the strength of relations common to many epidemiologic settings.
We simulated 5,000 studies for each scenario with sample sizes of N=10,000 and 1,000 for
each simulated study. With 5,000 simulations, the Monte Carlo standard error (MCSE) was
less than 0.002 for each of the scenarios evaluated in this study. The sample sizes of 10,000
and 1,000 were chosen since automated databases, which often result in very large sample
sizes, are primarily used in pharmacoepidemiology and are increasingly used in other areas
of epidemiologic research.17

Propensity score estimation
We used a variety of logistic regression models to estimate the PS. Each model was
conditioned on a separate set of covariates.
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• Full PS model: Included all measured covariates X1 through X6.

• Outcome Y1 specific PS model: Included only measured covariates affecting
outcome Y1 (X3, X4, and X5). The outcome Y1 specific model was only
implemented when evaluating the treatment effect on outcome Y1.

• Outcome Y2 specific PS model: Included only measured covariates affecting
outcome Y2 (X2, X4, and X6). The outcome Y2 specific model was only
implemented when evaluating the treatment effect on outcome Y2.

• Generic-outcome PS model: Included all measured covariates affecting either
outcome Y1 or outcome Y2 (X2, X3, X4, X5, and X6).

• Treatment-specific PS model: Included all measured covariates affecting treatment
(X1, X2, X3, and X4).

Propensity score implementation and estimation of treatment effects
We implemented the estimated PSs with three commonly used techniques: matching,
stratification, and inverse probability treatment weighting (IPTW).18,19 Each of these
methods can potentially result in different effect estimates. With no treatment effect
heterogeneity, however, the treatment effect is constant across disparate populations and
each of these estimation methods (i.e. matching, stratification, and IPTW) should result in
the same treatment effect, albeit in different populations. In this study, we did not directly
compare the relative performance of one method with another, but instead included each of
these methods to provide insight into the performance of a variety of PS methods that are
used in practice.

For PS Matching we matched each observation receiving treatment 1:1 without replacement
with an untreated observation using a varying-width caliper matching algorithm (five to one
digit matching).20 From the matched set of observations, the treatment effect was then
estimated using Poisson regression.

We next implemented the PS using PS Stratification. We trimmed the non-overlapping
regions of the treated and untreated PS distributions. After dividing the sample into ten strata
using deciles of the estimated PSs, Poisson regression was used to estimate the rate ratio
while using indicator variables to control for the PS deciles.

For inverse probability treatment weighting (IPTW), we defined weights as the inverse
probability of receiving the treatment actually received.21–24 Stabilized weights were used
by multiplying the previously defined weights by the marginal probability of receiving the
treatment actually received. The weights were then used to create a pseudo-population in
which the unconfounded treatment effect could be estimated using Poisson regression.22–24

We also estimated the treatment effects using the crude and true outcome models. The true
outcome model contained all confounders and risk factors specific to each outcome in a
Poisson regression model, while the crude model did not control for any covariates. The
crude and true outcome models did not implement any PS analysis and were, therefore, not
of primary interest, but serve for comparison with the performance of the PS methods.

Measures of performance
We estimated the bias, standard error, and mean squared error (MSE) for each of the effect
estimates. The bias, defined as the expected value of the difference between the effect
estimate and the true effect, was calculated by taking the mean of this difference over all
5,000 simulation runs. To evaluate the precision of effect estimates, we estimated the
standard error using the square root of the sample variance of the treatment effect estimates

Wyss et al. Page 4

Pharmacoepidemiol Drug Saf. Author manuscript; available in PMC 2014 January 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



across all 5,000 simulation runs. The MSE was calculated by taking the mean of the squared
errors over all the simulation runs.

RESULTS
The patterns among the results were very similar between outcome Y1 and outcome Y2 for
all of the estimated measures. Therefore, we only present results for outcome Y1 as the
conclusions drawn regarding the relative performance of the PS models were similar for
outcome Y2. Further, the patterns among the results were also very similar for each of the
scenarios where the incidence of the outcomes and prevalence of treatment were varied. We
do not present the results for these scenarios as the overall conclusions did not change.
Finally, for the sensitivity analysis (alternative scenarios) we only present results when using
IPTW to estimate treatment effects as the patterns and conclusions did not change when
using matching or stratification.

Basic scenarios
We present results for the bias, standard error, and mean squared error (MSE) of the
estimated treatment effects for the basic scenarios (Scenario A and Scenario B) in Table 2.
Similar patterns were found for each of these scenarios with respect to the precision of effect
estimates. When evaluating the effect of the treatment on outcome Y1, the outcome Y1
specific model resulted in effect estimates with the greatest precision followed by the
generic-outcome model, the full model and finally the treatment-specific model (Table 2).

In the absence of unmeasured confounding (Scenario A), each of the PS models (i.e. full,
treatment-specific, outcome Y1 or Y2 specific, and generic-outcome) reduced confounding
bias of the estimated treatment effects to approximately zero (results for outcome Y1 are
presented in Table 2). It should be noted, however, that Cochran25 showed that effect
estimates based on stratification methods are not asymptotically unbiased. This explains
why there remains a small degree of residual confounding bias when estimating the
treatment effect using stratification on PS deciles.

In the presence of unmeasured confounding (Basic Scenario B), the full and treatment-
specific PS models resulted in effect estimates with the largest bias (Table 2). The full and
treatment-specific models were followed by the generic-outcome model while the outcome
Y1 specific model resulted in effect estimates with the smallest degree of bias (Table 2).
Similar patterns and findings for both the precision and bias were found when evaluating the
effect of treatment on outcome Y2 (results not shown).

Sensitivity analysis
We present the standard error of the effect estimates for each of the sensitivity analyses
(alternative scenarios) with no unmeasured confounding in Figure 2 and with unmeasured
confounding in Figure 3. Similar patterns for the precision of effect estimates were observed
for each of the PS models and parameter settings evaluated in the sensitivity analyses. For
settings with and without unmeasured confounding, the precision of the effect estimates was
greatest for the correctly specified outcome Y1 or outcome Y2 specific PS models (results
for outcome Y2 not shown), followed by the generic-outcome model, the full PS model, and
finally, the treatment-specific model (Figures 2 and 3). When the sample size was decreased
from 10,000 to 1,000, similar patterns were observed, although the standard error and bias of
the effect estimates did increase for all PS models (results not shown).

With respect to the bias of the estimated treatment effect, the bias was reduced to
approximately zero for scenarios involving no unmeasured confounding (results not shown).
Figure 4 shows the mean bias of the effect estimates in the presence of unmeasured
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confounding. Figure 4 illustrates that when unmeasured confounding was present, the full
and treatment PS models resulted in effect estimates with larger bias than the generic-
outcome PS model and outcome Y1 specific PS model. These patterns were observed for all
parameter values (Figure 4). Again, similar patterns and findings were found when
estimating the effect of treatment on outcome Y2 (results not shown).

Relative performance of PS models
The correctly specified outcome Y1 specific model performed best in terms of precision and,
in the presence of unmeasured confounding, bias of effect estimates. The generic-outcome
model performed best among the PS models that simultaneously controlled measured
confounding for both outcomes (i.e. full, generic-outcome, and treatment-specific PS
models). When comparing the generic-outcome model with the separate outcome Y1
specific PS model, the generic-outcome model performed well with the increase in standard
error being less than 15% for all scenarios except those involving a very strong IV-treatment
association (approximately 40% increase in standard error when α2 = 1.609 or −1.609 and
20% increase when α2 = 1.1 or −1.1).

Similar patterns were found in settings with unmeasured confounding. The increase in
standard error of the generic-outcome model compared to the outcome Y1 specific model
was less than 12% for all scenarios except those involving a very strong IV-treatment
association (approximately 30% increase in standard error when α2 = 1.609 or −1.609 and
17% increase when α2 = 1.1 or −1.1). For scenarios with unmeasured confounding, the
increase in bias when using a single generic-outcome PS model compared to the outcome Y1
specific PS model was also small (< 8%) for almost all scenarios except those involving a
very strong IV-treatment association (approximately 29% increase in bias when α2 = 1.609
or −1.609 and 18% increase when α2 = 1.1 or −1.1). Similar results and conclusions were
observed for both bias and precision when evaluating the treatment effect on outcome Y2
(results not shown).

DISCUSSION
Results for the parameter scenarios and causal structure assessed in this study demonstrate
that separate outcome-specific models perform best in terms of bias and precision of effect
estimates. Among the PS models that simultaneously control for measured confounding for
both outcomes in a single PS model (full, generic-outcome, and treatment-specific PS
models), the generic-outcome PS model produced effect estimates with the greatest
precision and, in the presence of unmeasured confounding, least bias. These results indicate
that, when using a single PS model to control for confounding in settings with more than one
outcome, a generic-outcome PS model is preferred in terms of precision and bias of the
effect estimates while the treatment-specific PS model is the least preferred. These generic-
outcome models include all covariates affecting any of the outcomes, while excluding
covariates that only affect treatment.

When comparing the performance of the generic-outcome model with the performance of
the outcome Y1 or Y2 specific models, the generic-outcome PS model performed well in
terms of precision and bias of effect estimates except for situations where a variable acting
as an instrument for one outcome, but a confounder for the other had a strong effect on
treatment (e.g. X2 acts as an instrument for Y1 but a confounder for Y2). However, when the
effect of these variables on treatment was moderate or weak, the generic-outcome model
performed well compared to the correctly specified outcome Y1 or Y2 specific models.
Therefore, either in the presence or absence of unmeasured confounding, estimation of
treatment effects using a single generic-outcome PS model across multiple outcomes may be
practical for many applications.
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The results of this study are consistent with both theory and previous studies that have
shown that controlling for IVs can negatively impact treatment effects.3–5 Although the
findings of this study show that controlling for IVs increases the variability and can increase
the bias of effect estimates, the increase in variation and bias amplification was relatively
small in most of the parameter settings assessed. These findings are consistent with the study
conducted by Myers, et al.10 Based on their results, Myers, et al. assert that, “estimating an
exposure effect conditional on a perfect instrument can increase the bias and standard error
of the exposure effect estimate, but these increases were generally small.”

CONCLUSION
Results from this study provide a basis to determine when cohorts balanced using an already
estimated PS could be used to assess additional outcomes which were not pre-specified. If
the estimated PS is conditioned on all the known risk factors for the additional outcomes,
while not conditioning on strong predictors of treatment which do not affect the additional
outcomes, cohorts balanced based on this existing PS will likely be close to optimal.
Recognizing when an already estimated PS will perform well in subsequent studies has the
benefit of avoiding the process of re-estimating multiple PSs for each study outcome.

Simulation studies are limited to the scenarios assessed. Our simulations do not address the
trade-off between including an IV and excluding a confounder. Further, we assume IVs as
well as risk factors can be identified based on prior knowledge. The specification of
outcome PS models, including the generic-outcome model, requires a strong understanding
of the causal relations among the covariates. Therefore, it is important to emphasize the use
of study design and subject matter expertise to obtain an understanding of the underlying
causal structure when estimating the PS.26

Our results provide insight into the relative loss in efficiency when using a single PS model
to control for measured covariates for multiple outcomes instead of separate outcome-
specific models. Such a setting is likely to arise in studies assessing drug safety such as the
FDA sentinel initiative. We conclude that while separate outcome-specific PS models result
in the most precise effect estimates, a single generic-outcome PS model that can be used for
multiple outcomes performs well in many practical settings.
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KEY POINTS

• Results from this study provide insight into situations where it is appropriate to
use a single PS model to control for the measured confounding for multiple
outcomes.

• When using a single PS model in settings with multiple outcomes, models that
only include covariates affecting any of the outcomes of interest perform best in
terms of the precision of effect estimates.

• A single, or generic, PS model that simultaneously controls for measured
covariates for multiple outcomes performs well compared to separate outcome-
specific models in many practical settings.
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Figure 1.
Simulated causal structure consisting of six standard-normal measured covariates (X1–X6),
two standard-normal unmeasured covariates (U1, U2), two Poisson distributed outcomes
(Y1, Y2) and one dichotomous treatment (T).
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Figure 2.
Standard error of treatment effect estimates in settings with no unmeasured confounding and
using IPTW to estimate treatment effects.
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Figure 3.
Standard error of treatment effect estimates in settings with unmeasured confounding and
using IPTW to estimate treatment effects.
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Figure 4.
Bias of treatment effect estimates in settings with unmeasured confounding and using IPTW
to estimate treatment effects.
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