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Summary
Instrumental variable (IV) methods have been proposed as a potential approach to the common
problem of uncontrolled confounding in comparative studies of medical interventions, but IV
methods are unfamiliar to many researchers. The goal of this article is to provide a non-technical,
practical introduction to IV methods for comparative safety and effectiveness research. We outline
the principles and basic assumptions necessary for valid IV estimation, discuss how to interpret the
results of an IV study, provide a review of instruments that have been used in comparative
effectiveness research, and suggest some minimal reporting standards for an IV analysis. Finally, we
offer our perspective of the role of IV estimation vis-à-vis more traditional approaches based on
statistical modeling of the exposure or outcome. We anticipate that IV methods will be often
underpowered for drug safety studies of very rare outcomes, but may be potentially useful in studies
of intended effects where uncontrolled confounding may be substantial.
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Introduction
Non-randomized studies are necessary to assess the safety and effectiveness of medical
interventions as they are used in routine practice. One of the principal problems of such studies
is confounding—systematic differences between a group of patients exposed to the intervention
versus the chosen comparator group. To the extent that differences between the groups can be
measured, standard statistical approaches, such as multivariable outcome models and
propensity score methods, can be used to remove the confounding effects of these variables.
These approaches rely on statistical modeling of either the exposure or outcome, require that
all confounding factors are accurately measured, and that the statistical models are correctly
specified. Unfortunately, the data available for such studies are frequently missing detailed
information on the clinical indications and prognostic variables that guide treatment choices;
furthermore, there is often insufficient subject-matter knowledge available to guide the
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specification of the necessary statistical models. Thus, some residual bias due to uncontrolled
confounding is likely to be present in most comparative effectiveness research.

Instrumental variable (IV) analysis is one approach to address the problem of uncontrolled
confounding. In the past 10 years, there have been several reviews of IV methods in the
statistical and biomedical literature that are presented at varying levels of technical detail with
different substantive emphases.1–6 The present article aims to complement this work by
presenting a relatively non-technical introduction to IV methods for applied researchers
conducting comparative safety and effectiveness studies. We outline the principles and basic
assumptions necessary for valid IV estimation, discuss how to empirically explore the validity
of IVs, review a range of IVs that have been used in comparative effectiveness research, and
suggest some approaches for reporting results from an IV analysis. Finally, we offer our
perspective on the role of IV estimation as compared to more traditional approaches. In the
appendix, we discuss some additional issues of IV estimation and illustrate the use of Stata
software to conduct a simple IV analysis.

Instrumental Variable Assumptions, Informally
IV analysis begins with the identification of an IV, a factor that is assumed to be related to
treatment, but neither directly related to the study outcome nor indirectly related via pathways
through unmeasured variables. As such, an IV can be thought of as an observed variable that
generates (or is associated with) variation in the exposure akin to randomized assignment.

Although the exact requirements of an IV depend on the particular analytic framework that
one adopts, typically the following three assumptions are sufficient: (1) an IV should affect
treatment or be associated with treatment by sharing a common cause; (2) an IV should be a
factor that is as good as randomly assigned, so that it is unrelated to patient characteristics; and
(3) an IV should be related to the outcome only through its association with treatment. Thus,
an instrument should have no direct or indirect effect on the outcome (e.g., through a direct
effect or an association with other medical interventions that could influence the outcome).

Example 1: The Placebo-Controlled Randomized Trial with Non-Compliance
IV methods are often found in association with either a real experiment that involves a
randomized intervention or a ‘natural experiment’ that creates an allocation of exposure similar
to that of a randomized experiment.7

Indeed, the most familiar application of IV methods in medicine is in the analysis of a placebo-
controlled randomized controlled trial (RCT) with non-compliance. If the causes of non-
compliance are independent risk factors for the outcome, then the association between the
actual treatment taken by the patient and the outcome will be confounded. Here, IV methods
can be helpful to estimate or place bounds on the effect of treatment.

In an RCT with non-compliance, the treatment arm assignment serves as an IV. In this scenario,
the IV assumptions are straightforward and non-controversial. First, unless there is massive
non-compliance, the treatment arm assignment will be a strong predictor of the actual exposure.
Second, by nature of its random assignment, the IV will be theoretically unrelated to patient
characteristics. Finally, if the participants and investigators are blind to the assigned treatment,
then the assignment will have no independent effect on the outcome.

In many applications, the instrument may not be the result of an investigator-controlled
intervention and, therefore, may be associated with the outcome through pathways that do not
go through treatment; in those cases, the assumptions must be evaluated more carefully.

Brookhart et al. Page 2

Pharmacoepidemiol Drug Saf. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Example 2: The Hospital Formulary
Suppose that a new thrombolytic therapy is introduced for the treatment of acute myocardial
infarction (AMI). The new medication is thought to be more effective than existing therapies,
but it is expensive and evidence suggests that it may have adverse effect in some patients. The
new drug is added to the formulary in some hospitals; however, because of cost and concerns
about safety, it is not available in others.

If the side effects are uncommon, it may not be feasible to study the safety of this drug using
a conventional pharmacoepidemiologic cohort or case-control study. A study could be done
using hospital billing records or insurance claims data, but these data would provide little ability
to control for confounding by the severity of the underlying coronary artery disease. If the new
medication is used preferentially in patients with the poorest prognosis, confounding by
unmeasured indication may cause the new medication to be spuriously associated with poor
outcomes.

An IV approach based on the hospital formulary presents one possible approach to studying
the safety and effectiveness of the new medication using administrative data. A drug's
availability on the formulary is clearly related to whether a patient receives the new medication
(Assumption 1). Assumption 2 states that the instrument should be effectively randomized to
patients. Although patients are not randomly assigned to hospitals, it may be reasonable to
assume that formulary status is effectively randomized to patients in that patients go to hospitals
without knowledge of the hospitals' formularies. Assumption 3 states that the instrument should
affect the outcome only via treatment. This assumption would hold if formulary status were
not associated with other practices that might affect the outcomes under study, such as a
hospital's overall quality of care.

Reduced Form or Intention-to-Treat Estimators
Given a plausible IV, one often reports the association between the instrument and outcomes.
In the IV literature, this is termed the reduced form estimate. In the RCT example, this is also
known as an intention-to-treat (ITT) estimator, as it is a measure of association between the
treatment arm assignment (i.e., the treatment intention) and the outcome. For example, one
might report the difference in mean outcomes between treatment arms (a risk difference for
dichotomous outcomes)

(1)

where Y is the outcome and Z the IV In the RCT example, Z = 1 if the patient is assigned to
receive active treatment. In the hospital formulary example, if the new medication is available
at the admitting hospital, then Z = 1. E[Y∣Z = z] is the average value of Y for all subjects with
Z = z.

In a placebo-controlled RCT with non-compliance, the reduced form estimate will be a biased
estimate of the effect of treatment received, but if treatment effects are the same among the
compliers and non-compliers, the bias will be toward the null and will, therefore, represent a
conservative bias in a superiority trial. The degree of bias will depend on the amount of non-
compliance, with more non-compliance creating greater bias. An ITT estimate that is non-zero
is evidence that treatment is affecting the outcome in some patients.

In Example 2, one could look for evidence of beneficial or harmful drug effects by examining
the association between hospital formulary status and various outcomes among patients with
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AMI. An association between formulary status and reduced mortality risk would suggest that
the new medication is reducing mortality risk among AMI patients whose treatment status
depends on the hospital's formulary—i.e., those patients who would receive the new medication
if it were available. Similarly, one could assess safety in these same patients by exploring the
association between formulary status and the risk of adverse outcomes.

The Wald Estimator
The reduced form or ITT estimator can yield evidence about the presence of a treatment effect,
but it does not provide an estimate of the effect of treatment. IV approaches can provide such
an estimate under certain assumptions.

In the case of a dichotomous instrument and exposure, the classic IV estimator, also called the
Wald estimator, is given by

(2)

where Y is the outcome, X is the treatment, Z is the instrument, and β is a measure of the effect
of X on Y. The numerator of this estimator is the ITT estimate—i.e., the effect of the instrument
on the outcome measured as a risk difference. The denominator is the difference in treatment
rates between levels of the instruments (e.g., treatment arms of the RCT), and is a measure of
compliance. In the case where the instrument perfectly predicts the treatment (e.g., perfect
compliance in the RCT example), then E[X∣Z = 1]− E[X∣Z = 0] = 1 and the IV estimator will
be identical to the ITT estimator. As the non-compliance increases, the denominator shrinks
and the IV estimator increases relative to the ITT estimator. In the case of non-differential
compliance, this removes the bias to the null caused by non-compliance.

This simple estimator can be motivated from a variety of different theoretical frameworks.
Here, we focus on the connection to linear structural equations models.

Linear structural equation models/two-stage least-squares
The standard approach to IV estimation in economics is based on linear structural equation
modeling where the equations specify causal links between variables rather than associations.
8 In the setting of epidemiology or medicine, one would specify a model for the treatment
assignment process that depends on the instrument and potential confounding variables. This
is similar to a propensity score except that it includes an IV, a factor that should not be included
in a propensity score model.9 Finally, one specifies a model for the outcome that includes the
exposure and the additional covariates that are included in Y The resulting system of equations
is given by

(3)

(4)

where C denotes a vector of covariates, α2 is a vector of parameters, and ε1 and ε2 are errors
that represent both random error and the effects of unmeasured variables. An ordinary least-
squares (OLS) estimate of the treatment effect β requires that exposure is uncorrelated with
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ε2. The more strongly X is correlated with ε2, the greater the bias will be in a standard least-
squares estimate of β. In the setting of the structural equation models, correlation between X
and ε2 is caused by correlation between ε1 and ε2. This would occur if there were an unmeasured
variable that was a component of both ε1 and ε2—e.g., an unrecorded indication or measure of
illness severity.

IV approaches can be used to estimate β consistently even if ε1 and ε2 are correlated. In the
setting of the structural equation models, an IV estimate of β involves the simultaneous solution
of the two equations. For linear structural equation models, this can be accomplished by two-
stage least-squares (2SLS) estimation. In the first stage, one estimates the parameters in (2) by
least squares. In the second stage, one estimates the parameters in (3) by least squares after
replacing the confounded exposure with its predicted value from the first stage. If no covariates
are included in the first- and second-stage models, then 2SLS estimation of β yields the Wald
estimator (1). A 2SLS estimator will be consistent if Z is uncorrelated with ε2 given C. The
additional covariates C that are optionally included in the model should be potential
confounders for the instrument-outcome relation. In other words, one would include a covariate
if it were expected that the covariate would be related to the outcome and potentially correlated
with the IV. In Example 2, if one is worried about correlation of the instrument and the outcome
because of hospital quality, C could include measures of quality.

Weak Instruments
An instrument is weak if it is not a strong predictor of the exposure. Weak instruments present
several problems. First, standard IV estimators possess a finite sample bias which is inversely
proportional to the F statistic that tests whether the included instruments make a significant
contribution to the first-stage model.10,11 Therefore, adding weak instruments to the first stage
can increase bias. Second, weak instruments magnify any residual bias resulting from a
confounded instrument. Small violations of IV assumptions can lead to tremendous
inconsistency in the IV estimator when the IV is weak.12 Finally, weak instruments also yield
highly variable estimates of exposure effects and so may result in studies underpowered to
detect small effects, even in very large studies.

Heterogeneous Treatment Effects and the Interpretation of the Estimator
Most medical interventions do not affect all patients in a population the same way. In the
structural models above, the effect of treatment is assumed to be constant. When treatment
effects are heterogeneous—e.g., sicker patients may benefit more from treatment than healthier
patients—the linear structural equations may no longer be a good model for the data. In such
settings, various statistical approaches are available that can be used to place bounds on the
average effect of treatment in the population.13–18 However, unless the instrument is very
strong, these bounds do not provide much information about treatment effects.

Imbens and Angrist and Angrist et al. showed that under a ‘monotonicity’* assumption the
Wald estimator (1) yields the average effect of treatment among the ‘compliers’ even if
treatment effects are heterogeneous. The compliers (often termed ‘marginal patients’) are those
whose treatment status can be affected by the IV.19,20 In the RCT example, the compliers
would be the patients who would always take their assigned treatment—they would take
placebo if assigned placebo or would take the active therapy if assigned it.

*The monotonicity assumption necessary for this interpretation requires that the instrument affects treatment deterministically in one
direction, i.e., if the value of the instrument increases for an individual patient, the patient may be induced to start treatment, but never
to opt out of treatment (or vice versa). In the RCT example, this requires that there are no ‘defiers’—patients who would always do the
opposite of what they are assigned. The monotonicity assumption is reasonable in most RCT settings, but it may be questionable in other
examples in medicine and epidemiology.
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In the hospital formulary example, the marginal patients would be those treated with the
thrombolytic therapy if admitted to a hospital where the new drug was available, but who would
be untreated at other hospitals. If the treatment tends to be given to patients with a poor
prognosis, then standard IV methods would estimate the effect of treatment in high-risk
patients.

In some cases, the concept of a ‘marginal patient’ may be problematic as individual patients
may be marginal to varying degrees. For example, there may be patients who would be treated
with the new medication at some but not all hospitals where it is available. For such cases, the
standard IV estimator can also be interpreted as a weighted average of subgroup-specific
treatment effects where the weights are related to the strength of the instrument within each
sub-group.21 If the instrument is strong within a particular subgroup that subgroup effect is
weighted up. If an instrument is not predictive of treatment within a subgroup, the treatment
effect in that subgroup has a zero weight and is not reflected in the IV estimator. Finally, if the
effect of the IV on treatment is reversed (e.g., the IV predicts not receiving treatment in a
subgroup), then the subgroup effect is negatively weighted. This could have the peculiar effect
of making a medication appear to prevent a side effect that it causes. Brookhart and
Schneeweiss discuss how this could arise in the case of contraindications and misuse of medical
procedures.21

For detailed theoretical discussions of treatment effect heterogeneity, see Imbens and Angrist,
19 Angrist et al.,20 Wooldridge,22 Heckman et al.,23 Hernan and Robins,5 and Basu et al.24

Examples of Instrumental Variables in Healthcare Research
The use of IV methods in comparative effectiveness research is limited by the availability of
valid and strong instruments. To help researchers identify potential IVs, we review various
instruments that have been applied in comparative effectiveness research. For each example,
we discuss potential threats to the validity and consider issues related to interpretation of the
estimator.

Distance to specialty care provider
In a classic paper, McClellan et al. proposed an IV that was an indicator of whether the nearest
hospital managed AMI admissions with cardiac catheterizations.25 Distance has been used as
an IV in a variety of other applications, including a study of the effect of dialysis center profit
status on survival26 and two studies of the effect of treatment in specialized trauma centers.
27,28

Using distance as an IV depends on an assumption that distance is associated with receiving
care. This is certainly reasonable in McClellan et al.'s example as patients who are experiencing
an AMI are likely to be taken to the nearest hospital because of the urgency of the condition.
Distance must also not be related to patient characteristics. An IV estimator based on distance
would tend to reflect the effect of treatment in patients whose treatment status depends more
on distance. In McClellan et al.'s example, this would be patients who would be catheterized
if taken to hospitals that performed catheterizations.

Preference-based IVs
A variety of papers have applied IVs, defined at the level of the geographic region,29–32

hospital,33–35 dialysis center,36 or individual physician.37–40 We have termed such IVs
‘preference-based instruments’ since they are derived from the assumption that different
providers or groups of providers have different preferences or treatment algorithms dictating
how medications or medical procedures are used.21 These approaches exploit naturally
occurring variation in medical practice patterns to estimate treatment effects. Variation in
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formularies, hospital capacity, and prescription drug benefit plan structure can also lead to
region-, hospital-, or physician-level differences in medical practice.41

In order for preference to be a valid instrument, it must predict treatment—so there must be
variations in treatment preference across the providers or aggregations of providers being
studied. It also must be independent of the characteristics of the patients, so there cannot be
differences in case-mix across levels of the instrument. Preference must only affect the outcome
through its influence on the treatment under study. Thus, providers who preferentially use one
treatment must not also preferentially use other treatments that may affect the outcome.

A previous paper considered how treatment effect heterogeneity could bias a preference-based
IV estimator relative to the average effect of treatment in the population.21 It discussed how
commonly available subject matter knowledge, such as whether medications or medical
procedures tend to be overused or underused, could be used to help anticipate the direction of
the bias relative to the average effect of treatment in a population. For example, in effectiveness
studies, underuse of a therapy results in the IV up-weighting the treatment effects in high-risk
patients and, thus, could cause the IV estimator to be biased high for the beneficial effects at
the population level (to the extent that treatment is more beneficial in high-risk patients).
Conversely, overuse up-weights treatment effects low-risk patients and, thus, may cause an IV
estimator to understate the beneficial effects at the population level (to the extent that treatment
is less beneficial in low-risk patients). Hennessey et al. and Rassen et al. explore the practical
issue of how to estimate preference given a time series of treatment decisions.42,43

Day of the week of hospital admission as an instrument for waiting time for surgery
Ho et al. sought to determine the effect of waiting time to surgery on length of stay and inpatient
mortality among patients admitted to hospital with a hip fracture.44 They used the day of the
week of the index hospital admission as an instrument for wait time for surgery under the
assumption that many surgeons operate only on weekdays and, therefore, patients admitted on
the weekend may have to wait longer for surgical treatment. The IV could be confounded if
patients admitted on the weekend were different from those admitted on the weekday. The
instrument could be independently related to the outcome if other aspects of hospital care that
could affect the outcome were different over the weekend.

Treatment effect heterogeneity would alter the interpretation of the IV estimator if surgeons
were more willing to come in on the weekend to operate on severely injured patients. In this
case, the IV estimator would tend to yield the effect of treatment in patients who are in better
health.

Randomized encouragement studies
IVs can also be created when patients or providers are randomized to receive programs
encouraging the use of a particular treatment. These studies are often called ‘randomized
encouragement designs’.45 The randomization inherent in such studies guarantees that there
is no systematic association between patient and provider characteristics and the IV. Treatment
effect heterogeneity may be an issue, as there is evidence that there may exist ‘physician
defiers’ who would always do the opposite of what is encouraged.46

Drug co-payment amount
Studying the effect of adherence to a preventive therapy is challenging because it is likely to
be confounded by other health-related behaviors.47,48 Cole et al. used drug co-payment amount
as an instrument to study the effect of β-blocker adherence on clinical outcomes and health
care expenditures after a hospitalization for heart failure.41 They assumed that co-payment
would affect β-blocker adherence, but would be otherwise unrelated to the outcomes being
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studied. The results from this study would generalize to those patients whose adherence is
likely to be affected by co-payment change.

Calendar time
IV can also arise from secular trends in medication use. Variation in medication use across
time could result from changes in guidelines, changes in formularies or reimbursement policies,
changes in physician preference (e.g., due to marketing activities by drug makers), release of
new effectiveness or safety information (e.g., resulting from new studies, ‘Dear Doctor’ letters,
FDA ‘black box’ advisories), or the arrival of new agents to the market.

Many studies have explored associations between secular trends in medication use and
outcomes, although these are often not done in a formal IV framework.49,50 Calendar time has
been used in a formal IV analysis in a study of β-blocker therapy on outcomes among patients
hospitalized with heart failure,51 in a study of antivirals in HIV patients,52 and in a study of
hormone replacement therapy on myocardial infarction risk.53

An IV based on calendar time can be confounded by the things that change in time such as the
characteristics of patients who enter the cohort, other medical practices (such as the changing
use of medications), or medical coding systems. Since these are likely in many examples, IVs
based on calendar time are most reasonable in situations where a dramatic change in practice
occurs over a relatively short period of time.

Reporting Results
An IV analysis depends on many assumptions and can result in biased and imprecise estimates
if these assumptions do not hold. Here, we suggest a few reporting standards that may help
readers properly interpret and evaluate the validity of an IV analysis.

Justify need for and role of IV in the study
IV methods are inefficient and should not be used as a primary analysis unless unmeasured
confounding is thought to be strong. Researchers should discuss why substantial unmeasured
confounding is expected. In many cases, this will be an appeal to confounding by unmeasured
indications or disease severity. If unmeasured confounding is possible, but not expected to be
severe, IV may be more appropriately used as a secondary analysis.

Describe theoretical basis for the choice of IV
A good IV should have a theoretical motivation, i.e., why it is expected to influence treatment,
but be otherwise unrelated to patient characteristics and outcome. This could be an appeal to
a real or natural experiment.7 For example, in the hospital formulary example, one could assert
that patients chose hospitals without knowledge of their formulary and, therefore, formulary
status may be effectively randomly assigned.

Report strength of instrument and results from first-stage model
An IV should be strongly related to treatment. The authors should report the Wald statistic or,
if using a multivariable-adjusted IV estimator, the entire first-stage model. This permits the
reader to assess IV strength and simultaneously to understand the treatment assignment
mechanism and the confounding potential of various observed covariates. The first-stage F
statistic and the partial r2 attributable to the inclusion of the IVs can be reported as a means of
assessing whether the instruments are sufficiently strong.10 As discussed in the appendix, the
finite sample bias in 2SLS estimator is proportional to the inverse of the F statistic. As a rule
of thumb, F statistics less than 10 are thought to be potentially problematic when using 2SLS
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estimator and multiple instruments.11 The partial r2 can be interpreted as the proportion of the
variance explained by the addition of the IV to the model.54

Report distribution of patient risk factors across levels of the IV and exposure
Ideally, an IV should be unrelated to the characteristics of the patient as it would be if it were
randomly assigned. To evaluate this assumption, one should report the means and frequencies
of the observed variables across levels of the instrument. It may also be helpful to report
standardized differences, i.e., the difference in means divided by the standard error of the
difference. Reporting p-values is probably not helpful as they are more a reflection of sample
size than covariate balance. It can also be helpful to report the means and frequencies of patient
variables across levels of the treatment. This allows the reader to assess the potential for
confounding in the IV relative to the confounding in the exposure. In the appendix, we provide
an example of such a table (Table A1).

Explore concomitant treatments
The instrument should only influence the outcome through its influence on the treatment under
study. For many clinical problems, there may be a variety of other interventions that could be
used alongside the intervention under study. For example, statins (cholesterol lowering
medications) may be prescribed to patients after AMI along with ACE inhibitors, β-blockers,
and aspirin. If an instrument for statin prescribing also affects the prescribing of the other
medications, the IV approach may be biased for the effect of statin exposure. Exploring the
association between the instrument and concomitant treatments can help determine whether
the resulting effect is attributable solely to the intervention being studied or is likely to be
affected by co-interventions.

Evaluate sensitivity of IV estimator to modeling assumptions
If using a multivariable IV approach, we suggest reporting an unadjusted IV estimate and
exploring the sensitivity of the results to the inclusion/exclusion of covariates, particularly if
there is not a strong theoretical reason to believe that they confound the instrument-outcome
association. Results that are highly sensitive to the included covariates may reveal a validity
problem with the IV—e.g., a possible association between the instrument and the unmeasured
covariates.

Discuss issues related to interpretation of the estimator
Because IV approaches do not always yield the average effect of treatment in a population,
researchers should consider the patients to whom the treatment effect generalizes. Typically,
these would be patients whose treatment status depends strongly on the instrument. As
described earlier, the Wald estimator can be interpreted as a weighted average of subgroup-
specific treatment effects in which the weights are related to the strength of the IV within the
subgroups. When clinically important subgroups can be created using observed data, we
suggest reporting the strength of the IV across these different subgroups. If the IV is
considerably stronger or weaker in a particular subgroup, then the treatment effect in that
subgroup will be weighted up or down, respectively. Such an analysis can help to identify the
‘marginal patients’. In the appendix, we provide an example of such a table (Table A2).

Conclusions
IVs methods represent a potential approach to control confounding in studies of the safety and
effectiveness of medical interventions. In this paper, we have provided an overview of the
assumptions and methods necessary to conduct a simple IV analysis. Also, we have suggested
some approaches for reporting the results of such an analysis.
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It is important to realize that even if a valid IV is available, IV methods will not always be
helpful. If the instrument is weak, an IV study will be underpowered to detect anything less
than a very strong effect, even with large samples. Furthermore, if only a small amount of
unmeasured confounding is expected, there may be no reason to use an IV—the larger variance
of the IV estimator may result in a much larger mean-squared error relative to the only slightly
biased conventional estimator. Here, one might consider using the IV in a secondary or
sensitivity analysis. Because of their inefficiency, IV methods may be poorly suited for studies
of very rare safety outcomes, as they are likely to be underpowered even with a reasonably
strong instrument and a large study.

KEY POINTS

• Instrumental variable methods can reduce confounding bias in comparative
effectiveness research.

• These methods are closely connected to natural experiments and depend on
identifying an occurrence that leads to a random or pseudorandom assignment of
exposure to some patients.

• We review the assumptions necessary for valid IV estimation and provide guidance
on reporting an IV analysis.

In our view, IV methods have the most potential for studies of intended effects. Here,
substantial uncontrolled confounding is likely due to confounding by indication or confounding
by disease severity.55 For such problems, conventional approaches may often be substantially
biased and, thus, IV methods may deserve status as a primary analysis—provided a valid IV
is available.

The primary barrier to the use of IV methods is the need to have a plausible IV. Unfortunately,
such variables have been difficult to find in epidemiology and medicine. Further work in this
area may help to identify new instruments or reveal ways to improve existing instruments,
thereby expanding the potential applications of these methods.
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Appendix

Additional issues
Finite sample bias in small samples

IV estimators based on 2SLS possess substantial finite sample bias. The bias results from some
over-fitting in the first-stage regression that leads to a correlation between the true error term
(that includes the unmeasured confounders) and the predicted value of treatment.10 The bias
is toward the OLS estimate and decreases with sample size but increases with the number of
instruments included in the first-stage model. To see this, imagine including a very large
number of random numbers as instruments in the first stage (an experiment that was done in
Bound et al.10). Although the random numbers are theoretically unrelated to the error term,
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they will have some chance associations with the unmeasured variables, thus, some
confounding will get transferred to the predicted value of treatment. Various approaches have
been proposed to deal with this bias, such as limited information maximum likelihood (LIML)
as well as approaches based on jackknife and split-sample methods.56,57 Finite sample bias
is likely to be more of a problem in the presence of many weak instruments and can persist
even in very large samples.

Dichotomous outcomes and relative measures of effect
The simple Wald estimator and the linear structural equation models can be used with
dichotomous outcomes. The linear structural models require the use of appropriate software
to conduct inference,58 correctly specified models, and the predicted values of exposure in the
0–1 range.5

However, in medicine and epidemiology interest often focuses on ratio measures such as
relative risks or rates. IV approaches based on the Wald estimator or linear structural equation
models yield estimates of an absolute measure of effect (e.g., a risk difference). A variety of
IV approaches can be used to estimate relative measures of effect, and each imposes somewhat
different assumptions. Sommer and Zeger propose an IV estimator of a risk ratio appropriate
for an RCTwith a specific kind of non-compliance.59 Cuziak et al. propose a more general IV
estimator of the risk ratio.60 Greenland offers some discussion on these approaches.2

In the general framework of the structural nested mean model of Robins,61 Hernan and Robins
provide an estimator of the causal relative risk.

IV probit models are often used in economics for dichotomous outcomes and have been used
in health research (e.g., Pracht and Tepas 28 and Bhattacharya et al. 62). These models use
probit link functions to constrain probabilities of exposure and treatment in the range of 0–1
and can be fit using the ivprobit function in Stata (Stata Corp., College Station, Texas), although
this procedure may not be appropriate for dichotomous exposures. Although parameters in
probit models are not readily interpretable to epidemiologists, they can be converted to
approximate odds ratios by multiplying by 1.6 and marginalized to estimate various parameters
of interest. Parameters in generalized linear models can also be estimated using IVs by
constructing moment-based estimators that are based on the assumption that the instrument
should be orthogonal to the regression error.51,58,63

Grouped-treatment approaches
Several recent papers have implemented ‘grouped treatment’ approaches that implicitly use a
two-stage estimation approach, but are not based on linear models. For example, Johnston used
average treatment rate within a hospital as a predictor in a logistic regression model of
individual outcomes that also included patient-level covariates.33 Schmoor et al. used the
average treatment rate within a clinic in a Cox proportional hazards model of patient-level
mortality.35 To our knowledge, these approaches are not motivated by a theoretical model and,
thus, may not yield parameters that are causally interpretable. However, such approaches, like
reduced form IV estimates, can be used to assess the presence and direction of an average
treatment effect among those whose treatment is influenced by the instrument. In a simulation
study, two-stage logit models have been found to yield parameters that, in the presence of
strong residual confounding, are closer to the true parameter than logistic regression.64 Also,
in several practical data analysis examples, two-stage logit approaches have been found to yield
estimates that are substantively indistinguishable from estimates yielded from theoretically-
motivated IV methods.65
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Continuously valued treatments
When the treatment or exposure under study takes on continuous values, for example, if one
is studying the effect of the dose of a medication, then one needs to adopt appropriate statistical
approaches for these data. For example, one could assume a structural equation model that
assumes a linear effect of dose. However, this is clearly a strong modeling assumption. Angrist
and Imbens discuss a more general approach to IV estimation of exposures with variable
intensities (such as doses).66

It is natural to consider dichotomizing a continuous exposure in order to take advantage of IV
methods for dichotomous exposures. However, this can lead to bias if the IV is associated with
the actual dose within a dose category.66 To see how this could be, suppose that one is using
a clinic as the basis of an IV to study the dosing of a medication that is dichotomized into a
‘high’ and ‘low’ dose. It could be that certain clinics that aggressively use a medication tend
to have higher ‘high’ doses than clinics that use a medication more conservatively. Thus, an
IV estimate of the effect of a high dose may be exaggerated. This could be empirically explored
by examining whether the IV predicts dose level within a dose category.

Multiple instruments
Many applications of IV methods in economics involve settings in which many instruments
are available. As mentioned earlier, a large number of weak instruments can increase finite
sample bias in an IV estimator. Therefore, when using many instruments, the researcher should
pay close attention to the F statistic to ensure that the instruments are making an important
contribution to the first-stage model. Also, in theory, each instrument can identify a slightly
different treatment effect by weighting each stratum-specific estimate differently. If different
IV approaches yield substantively different results, the researcher should consider whether this
is due to sampling variability, invalidity of one of the instruments, or differences in treatment
effects identified by each instrument.

Testing for the need of IV methods
There is a large literature in economics on testing for whether an IV is necessary. These tests
assume that one has a valid IV and the test then attempts to determine whether there is a
sufficiently large difference between the conventional estimate and the IV estimate to conclude
that the conventional estimate is biased. If the conventional appears to be unbiased, then it
would be preferred given its smaller variance. Tests of this sort have been proposed by Durbin,
67 Hausman,68 and Wu.69 One limitation of these tests is that they assume homogeneous
treatment effects. Therefore, if such a test rejects the hypothesis that the IV is unnecessary, one
cannot be sure whether it is because of treatment effect heterogeneity or confounding. Despite
this ambiguity, these tests may be useful in certain situations and can be implemented in
Stata add-on modules (see Appendix).

Longitudinal studies
Our discussion so far has assumed that exposure is determined at baseline and is invariant
during the follow-up period. However, many exposures, particularly those involved with
medications, are time varying. Conventional IV methods do not have a facility for handling
time-varying exposures.5 Robins has proposed general IV approaches based on nested
structural models that can use both time-varying confounders and instruments to estimate the
effects of time-varying exposures.61 These methods have been relatively understudied and
represent an important area for future research and application.
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IV as a secondary analysis
Because IV methods rely on assumptions that are entirely different from conventional methods,
IV analysis may be useful as a confirmatory or secondary analysis. The use of IV methods as
a sensitivity analysis has been suggested by Greenland2 and has been applied in various
substantive projects.30,39,40,70,71 To the extent that such approaches disagree, one must
carefully evaluate the assumptions underlying each approach and consider the possibility that
treatment effect heterogeneity may be leading to divergent results.72

Suggested tables for IV analysis
Table A1

Balance of patient characteristics across treatment groups and levels of the instrument

Patient characteristics Treatment status IV status

Drug A Drug B Std. Dif. Predicted A Predicted B Std. Dif.

Mean (SD) or Freq (%) Mean (SD) or Freq (%)

C1

C2

C3

…

Ck

Table A2

Instrument strength overall and within subgroups

Instrument definition and subgroups RD (Wald denominator) 95%CI F statistic Partial r2

Subgroup 1

Subgroup 1

…

Subgroup k

Overall

IV estimation using Stata
The following section illustrates a 2SLS IVanalysis using Stata (StataCorp. 2009. Stata
Statistical Software: Release 9. College Station, TX: StataCorp LP). We use the built-in ivreg
command and the extension ivreg2. ivreg2 is available for download from the Statistical
Software Components archive via the Stata command ssc install ivreg2.

ivreg and ivreg2 will yield equal point estimates and standard errors, but ivreg2 offers much
more in terms of diagnostic output and analysis options.

Below, let outcome be the outcome, exp be the exposure, iv be the instrument, age be a
continuous age variable, sex be an indicator for male sex (1 = male, 0 = female), and c1, c2,
and c3 be three dichotomous confounders.
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We begin with simple crude and adjusted models using OLS estimation

. reg outcome exp

Source SS df MS Number of obs = 7 8731

F(1, 78729) = 165.66

Model 3.17645234 1 3.17645234 Prob >F = 0.0000

Residual 1509.58325 78729 .019174424 R-squared = 0.0021

Adj R-squared = 0.0021

Total 1512.7597 78730 .019214527 Root MSE = .13847

outcome Coef. Std. Err. t P>|t| [95% Conf. Interval]

exp -.0158182 .001229 -12.87 0.000 -.018227 -.0134094

_cons .0227949 .0005525 41.26 0.000 .0217121 .0238778

. reg outcome exp age sex c1 c2 c3

Source SS df MS Number of obs = 78730

F(6, 78723) = 218.16

Model 24.7418045 6 4.12363408 Prob >F = 0.0000

Residual 1488.01751 78723 .018901941 R-squared = 0.0164

Adj R-squared = 0.0163

Total 1512.75932 78729 .019214766 Root MSE = .13748

outcome Coef. Std. Err. t P>|t| [95% Conf. Interval]

exp -.0206018 .0012311 -16.73 0.000 -.0230147 -.0181889

age .0012435 .0000408 30.49 0.000 .0011635 .0013234

sex -.0047138 .0010838 -4.35 0.000 -.0068381 -.0025896

c1 -.0126105 .0012686 -9.94 0.000 -.015097 -.010124

c2 .003701 .0022383 1.65 0.098 -.000686 .008088

c3 -.0030277 .0011144 -2.72 0.007 -.0052119 -.0008434

_cons -.0455348 .0029075 -15.66 0.000 -.0512335 -.0398362

The bold lines show a crude risk difference of −1.58 per 100 and an adjusted risk difference
of −2.06 per 100. Turning to IVs, we run a simple ivreg of exposure, instrument, and outcome

. ivreg outcome (exp = iv)

Instrumental variables (2SLS) regression

Source SS df MS Number of obs = 63053

F(1, 63051) = 12.32

Model 1.9715631 1 1.9715631 Prob > F = 0.0004

Residual 1241.48864 63051 .019690229 R-squared = 0.0016

Adj R-squared = 0.0016

Total 1243.4602 63052 .019721186 Root MSE = .14032
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outcome Coef. Std. Err. t P>|t| [95% Conf. Interval]

exp -.0122035 .0034773 -3.51 0.000 -.019019 -.005388

_cons .0220232 .0007775 28.32 0.000 .0204993 .0235472

Instrumented: exp

Instruments: iv

The bold line shows the desired point estimates: an absolute risk difference of −1.2 per 100
people, with a 95% confidence interval of −0.5 to −1.9 per 100. Adding the IV has moved the
point estimate toward the null, but increased the standard error by a factor of three.

Since this is an IV analysis, it may not be necessary to include covariates, but we run another
simple model with age, sex, and three major covariates adjusted for

. ivreg outcome (exp = iv) age sex c1 c2 c3

Instrumental variables (2SLS) regression

Source SS df MS Number of obs = 63052

F(6, 63045) = 154.85

Model 20.9205856 6 3.48676426 Prob >F = 0.0000

Residual 1222.53921 63045 .019391533 R-squared = 0.0168

Adj R-squared = 0.0167

Total 1243.4598 63051 .019721492 Root MSE = .13925

outcome Coef. Std. Err. t P>|t| [95% Conf. Interval]

exp -.0154683 .0034772 -4.45 0.000 -.0222835 -.0086531

age .0012849 .0000469 27.42 0.000 .0011931 .0013768

sex -.0053853 .0012283 -4.38 0.000 -.0077928 -.0029779

c1 -.0123998 .0014531 -8.53 0.000 -.0152479 -.0095518

c2 .002082 .0025857 0.81 0.421 -.002986 .00715

c3 -.0041958 .0012639 -3.32 0.001 -.006673 -.0017187

_cons -.0478727 .0032737 -14.62 0.000 -.0542892 -.0414561

Instrumented: exp

Instruments: age sex c1 c2 c3 iv

In this case, adjusting for covariates made little difference: the point estimate changed from
−1.2 per 100 to −1.5 per 100.

However, this simple output offers little in the way of diagnostic information. In particular, we
are interested in the first-stage regression fit statistics, in order to know how well the instrument
predicted treatment. The ivreg2 command offers more output, and adding the first and ffirst
options yields extensive information about the first-stage.

Again, the simple regression with no covariates
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. ivreg2 outcome (exp = iv), first ffirst

First-stage regressions

First-stage regression of exp:

OLS estimation

Estimates efficient for homoskedasticity only

Statistics consistent for homoskedasticity only

Number of obs = 63053

F(1, 63051) = 15438.69

Prob > F = 0.0000

Total (centered) SS = 8278.904255 Centered R2 = 0.1967

Total (uncentered) SS = 9803 Uncentered R2 = 0.3216

Residual SS = 6650.467981 Root MSE = .3248

exp Coef. Std. Err. t P>|t| [95% Conf. Interval]

iv .5487822 .0044167 124.25 0.000 .5401255 .5574389

_cons .1034863 .0013594 76.13 0.000 .100822 .1061507

Included instruments: iv

Partial R-squared of excluded instruments: 0.1967

Test of excluded instruments:

 F(1, 63051) = 15438.69

 Prob > F = 0.0000

Summary results for first-stage regressions

Variable / Shea Partial R2 / Partial R2 / F(1, 63051) P-value

exp / R2 0.1967 / 0.1967 / 15438.69 0.0000

Underidentification tests

Ho: matrix of reduced form coefficients has rank=K1-1 (underidentified)

Ha: matrix has rank=K1 (identified)

Anderson canon. corr. N*CCEV LM statistic Chi-sq(1)=12402.34 P-val=0.0000

Cragg-Donald N*CDEV Wald statistic Chi-sq(1)=15439.18 P-val=0.0000

Weak identification test

Ho: equation is weakly identified

Cragg-Donald Wald F-statistic 15438.69

See main output for Cragg-Donald weak id test critical values

Weak-instrument-robust inference

Tests of joint significance of endogenous regressors B1 in main equation

Ho: B1=0 and overidentifying restrictions are valid

Anderson-Rubin Wald test F(1, 63051)=12.30 P-val=0.0005

Anderson-Rubin Wald test Chi-sq(1)=12.30 P-val=0.0005

Stock-Wright LM S statistic Chi-sq(1)=12.30 P-val=0.0005

Number of observations N = 63053
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Number of regressors K = 2

Number of instruments L = 2

Number of excluded instruments L1 = 1

IV (2SLS) estimation

Estimates efficient for homoskedasticity only

Statistics consistent for homoskedasticity only

Number of obs = 63053

F(1, 63051) = 12.32

Prob > F = 0.0004

Total (centered) SS = 1243.4602 Centered R2 = 0.0016

Total (uncentered) SS = 1269 Uncentered R2 = 0.0217

Residual SS = 1241.488637 Root MSE = .1403

outcome Coef. Std. Err. z P>|z| [95% Conf. Interval]

exp -.0122035 .0034772 -3.51 0.000 -.0190187 -.0053882

_cons .0220232 .0007775 28.33 0.000 .0204993 .0235471

Underidentification test (Anderson canon. corr. LM statistic): 1.2e+04

Chi-sq(1) P-val = 0.0000

Weak identification test (Cragg-Donald Wald F statistic): 1.5e+04

Stock-Yogo weak ID test critical values: 10% maximal IV size 16.38

15% maximal IV size 8.96

20% maximal IV size 6.66

25% maximal IV size 5.53

Source: Stock-Yogo (2005). Reproduced by permission.

Sargan statistic (overidentification test of all instruments): 0.000

(equation exactly identified)

Instrumented: exp

Excluded instruments: iv

In the bold section, one can see that the estimates and confidence intervals are equal in both
ivreg and ivreg2. However, looking at the italicized section, one sees additional information
about the first-stage regression, in particular the partial r2 value and the first-stage F statistic,
both indicators of instrument strength. (They are labeled ‘partial’ as they examine the
instrument independent of other specified covariates, which are nil in this case.) In this case,
the partial r2 value is 0.1967, indicating that the instrument adds significantly to the prediction
of the exposure. The first-stage partial F statistic is 15 348 with a negligible p-value, both
indicating a very strong instrument.

Note that the output is customized for a common situation in econometrics, where multiple
IVs are used simultaneously. As such, many of the reported values are the same, where in the
case of multiple IVs, they would not be. The partial r2 and Shea partial r2 are examples.

Adding covariates to the model
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. ivreg2 outcome (exp = iv) age sex c1 c2 c3, first ffirst

First-stage regressions

First-stage regression of exp:

OLS estimation

Estimates efficient for homoskedasticity only

Statistics consistent for homoskedasticity only

Number of obs = 63052

F(6, 63045) = 2732.49

Prob > F = 0.0000

Total (centered) SS = 8278.880083 Centered R2 = 0.2064

Total (uncentered) SS = 9803 Uncentered R2 = 0.3298

Residual SS = 6570.270997 Root MSE = .3228

exp Coef. Std. Err. t P>|t| [95% Conf. Interval]

age .0024803 .0001063 23.34 0.000 .002272 .0026885

sex -.017055 .0028439 -6.00 0.000 -.0226292 -.0114809

c1 -.0025468 .0033684 -0.76 0.450 -.0091488 .0040552

c2 .0089066 .0059953 1.49 0.137 -.0028442 .0206573

c3 .0235374 .0029224 8.05 0.000 .0178095 .0292654

iv .5450276 .0043934 124.06 0.000 .5364165 .5536387

_cons -.0547891 .0075906 -7.22 0.000 -.0696666 -.0399116

Included instruments: age sex c1 c2 c3 iv

Partial R-squared of excluded instruments: 0.1962

Test of excluded instruments:

 F(1, 63045) = 15389.75

 Prob > F = 0.0000

Summary results for first-stage regressions

Variable / Shea Partial R2 / Partial R2 / F(1,63045) P-value

exp / 0.1962 / 0.1962 / 15389.75 0.0000

Underidentification tests

Ho: matrix of reduced form coefficients has rank=K1-1 (underidentified)

Ha: matrix has rank=K1 (identified)

Anderson canon. corr. N*CCEV LM statistic Chi-sq(1)=12371.49 P-val=0.0000

Cragg-Donald N*CDEV Wald statistic Chi-sq(1)=15391.46 P-val=0.0000

Weak identification test

Ho: equation is weakly identified

Cragg-Donald Wald F-statistic 15389.75

See main output for Cragg-Donald weak id test critical values

Weak-instrument-robust inference

Tests of joint significance of endogenous regressors B1 in main equation

Brookhart et al. Page 18

Pharmacoepidemiol Drug Saf. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Ho: B1=0 and overidentifying restrictions are valid

Anderson-Rubin Wald test F(1,63045)=19.74 P-val=0.0000

Anderson-Rubin Wald test Chi-sq(1)=19.74 P-val=0.0000

Stock-Wright LM S statistic Chi-sq(1)=19.74 P-val=0.0000

Number of observations N = 63052

Number of regressors K = 7

Number of instruments L = 7

Number of excluded instruments L1 = 1

IV (2SLS) estimation

Estimates efficient for homoskedasticity only

Statistics consistent for homoskedasticity only

Number of obs = 63052

F(6,63045) = 154.85

Prob >F = 0.0000

Total (centered) SS = 1243.459795 Centered R2 = 0.0168

Total (uncentered) SS = 1269 Uncentered R2 = 0.0366

Residual SS = 1222.53921 Root MSE = .1392

outcome Coef. Std. Err. z P>|z| [95% Conf. Interval]

exp -.0154683 .003477 -4.45 0.000 -.022283 -.0086536

age .0012849 .0000469 27.42 0.000 .0011931 .0013768

sex -.0053853 .0012282 -4.38 0.000 -.0077927 -.002978

c1 -.0123998 .001453 -8.53 0.000 -.0152477 -.009552

c2 .002082 .0025856 0.81 0.421 -.0029856 .0071497

c3 -.0041958 .0012638 -3.32 0.001 -.0066728 -.0017188

_cons -.0478727 .0032736 -14.62 0.000 -.0542887 -.0414566

Underidentification test (Anderson canon. corr. LM statistic): 1.2e+04

Chi-sq(1) P-val = 0.0000

Weak identification test (Cragg-Donald Wald F statistic): 1.5e+04

Stock-Yogo weak ID test critical values: 10% maximal IV size 16.38

15% maximal IV size 8.96

20% maximal IV size 6.66

25% maximal IV size 5.53

Source: Stock-Yogo (2005). Reproduced by permission.

Sargan statistic (overidentification test of all instruments): 0.000

(equation exactly identified)

Instrumented: exp

Included instruments: age sex c1 c2 c3

Excluded instruments: iv
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Again, the final results are equivalent to that of ivreg. With the addition of covariates, the partial
F statistic and partial r2 values remain the same, but the F statistic for the first-stage regression
(reported in the first block of output) decreases. Nonetheless, it is the partial values that are of
interest.

ivreg2 offers many other analytic and diagnostic options, all of which are described in the
procedure's documentation. Notably, it offers generalized method of moments (GMM) and
LIML estimation, as well as various tests of endogeneity.
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