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Abstract
Consider the problem of estimating a dose with a certain response rate. Many multistage dose-
finding designs for this problem were originally developed for oncology studies where the mean
dose-response is strictly increasing in dose. In non-oncology Phase II dose-finding studies the
dose-response curve often plateaus in the range of interest and there are several doses with the
mean response equal to the target. In this case it is usually of interest to find the lowest of these
doses since higher doses might have higher adverse event rates. It is often desirable to compare the
response rate at the estimated target dose with a placebo and/or active control. We investigate
which of the several known dose-finding methods developed for oncology Phase I trials is the
most suitable when the dose response curve plateaus. Some of the designs tend to spread the
allocation among the doses on the plateau. Others, like the continual reassessment method and the
t-statistic design, concentrate allocation at one of the doses with the t-statistic design selecting the
lowest dose on the plateau more frequently.
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1. INTRODUCTION
Estimating the doses of interest with high precision in non-oncology Phase II studies is vital
for the future development of a drug. The goal of a Phase II study is often to find the lowest
dose with a certain expected target response rate. Often it is also of interest to compare the
response or adverse event rates at the target dose to placebo or active control. Hall, Meier,
and Diener [1] described a proof-of-concept trial for the treatment of migraine headaches.
There were two goals in the study. The first goal was to find the lowest dose with the
response rate of 0.6, and the second goal was to compare the response rate at the estimated
dose with placebo. Two of the seven scenarios considered by Hall et al. [1],
(0.3,0.3,0.4,0.5,0.6,0.6,0.6) and (0.3,0.6,0.6,0.6,0.6,0.6,0.6), had several doses with the
target response rate of 0.6. It is not unlikely in a Phase II trial that the response rates will
plateau around the rate of interest. When there are several doses with the mean response
equal to the target, the investigators are interested in finding the lowest of these doses. One
of the reasons is because such a dose is likely to have a more favorable adverse event
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profile. To achieve the second goal of comparison to a placebo it is important to maximize
the number of patients at the estimated target dose.

If response can be observed relatively quickly compared to the accrual rate, adaptive designs
might be an attractive alternative to a single-stage design because they yield improved
quality of information for the same total sample size. By improved quality of information we
mean not only the higher power of comparison to placebo but also, for example, the ability
to study more doses. Both fully sequential designs [2,3,4,5,6] where adaptations are
performed after each cohort of patients and two-stage designs [7,8,9,10] can be considered.
Here we focus on fully sequential designs as these generally yield higher expected sample
size at the estimated target dose and therefore yield a higher power of comparison to placebo
than single and two-stage designs. When considering what design to choose for a trial, we
recommend investigating all design options including a single stage, two-stage and fully
sequential designs, while taking into consideration the trade-off between improved quality
of information and more complex logistics of the trial as the number of stages increases.
Time to observe the outcome compared to the rate of accrual should also be taken into
account as well. Most fully sequential dose-finding designs, except for the Normal Dynamic
Linear Model (NDLM) [6], have been developed for dose-finding in oncology where dose
has to be escalated gradually and an increasing dose-response relationship is assumed. The
NDLM method [6], on the other hand, does not make any monotonicity assumptions on the
dose-response curve. The NDLM has been compared with t-statistics type designs to
estimate ED90 when the dose-response curve plateaus [11]. The NDLM tended to spread
allocation across the dose range and was inferior to the t-statistic designs as far as estimation
of ED90 and the number of patients assigned to the estimated ED90. For strictly increasing
curves the CRM was compared with the t-statistic design in [5]. The CRM performs better
for smaller sample sizes (25 patients in a six-dose study) and both designs perform similarly
for larger sample sizes (48 patients in a six-dose study). In this paper we investigate the
performance of several fully sequential dose-finding designs where the dose-response curve
plateaus in the range of interest. The designs studied are group designs [2,3], the continual
reassessment method (CRM) [4], and the dose-finding design based on t-statistic [5]. We
study design performance via simulations. Additionally performance of group designs is
studied theoretically.

2. GROUP DESIGNS
Let D = {d1,..,dK} be the ordered set of doses selected for the study. A patient’s response at
dk is a Bernoulli random variable with parameter pk, where p1 ≤…≤ pK. The goal is to find
the lowest dose with the response rate Γ. Because we are interested in the situation where
there is a plateau at the target response rate, we will consider scenarios where p1 < p2 <…<
pj =…= pK = Γ. Note that if the plateau is considerably below or above the target, the
designs will perform as well as they perform for a strictly increasing curve because in that
case there is only one dose with the mean response closest to the target.

First we consider a group design, as this was selected by the investigators of the migraine
headache trial [1]. Patients are treated in cohorts of size s starting with the lowest dose. Let
X(dj) ~ Bin(s, pj) be the number of patients with response in the most recent cohort assigned
to dose dj. Let cL and cU be two integers such that 0 ≤ cL < cU ≤ s. Assume that the most
recent cohort of patients was assigned to dose level dj, j = 1,…, K. Then

1. If X(dj) ≤ cL, the next cohort of s patients is assigned to dose dj+1;

2. If cL < X(dj) < cU, the dose is repeated for the next cohort of s patients;

3. If X(dj) ≥ cU, the next cohort of s patients is assigned to dose dj−1.
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Appropriate adjustments are made at the lowest and highest doses. The process is continued
until the total sample size specified in advance is reached. This design is denoted as UD(s,
cL, cU), where s is the cohort size, cL is the lower cut-off and cU is the upper cut-off.

Hall et al. [1] used UD(4,2,3) in the headache trial, where the dose is increased if 2 or less
responses were observed, and the dose is reduced if 3 or more responses were observed.
When the dose-response curve is strictly increasing, p1 < … < pK, the assignments in a
group design will cluster around the dose with response rate Γ* [12], where Γ* is the
solution of

(1)

For UD(4,2,3), Γ* = 0.6143. Therefore, it was appropriate to use UD(4,2,3) to target the
response rate of Γ = 0.6. See Ivanova et al. [12] for guidelines on how to choose design
parameters s, cL, cU to target desired quantile Γ. The investigators of the trial justified using
UD(4,2,3) for Γ = 0.6 via simulations. The question is how well this group design behaves if
the condition p1 < … < pK is violated. The theorem below states that for a dose-response
curve with p1 < p2 < … < pj = … = pK = Γ*, for large total sample sizes the assignments
will be equally spread over doses dj,…,dK rather than concentrating on one of these doses.

THEOREM
If the true response rates are p1 < p2 < … < pj = … = pK = Γ* and the solution of equation
(1) for a group design UD(s, cL, cU) is equal to Γ*, the mode of the stationary distribution
for the assignments of UD(s, cL, cU) spans doses dj,…,dK. The proof of the theorem is in the
Appendix.

For example, if response rates at the doses are (0.3, Γ*, Γ*, Γ*, Γ*, Γ*, Γ*,) with Γ* =
0.6143, and the total sample size in the trial is relatively large, the proportions of patients
allocated to the seven doses by UD(4,2,3) in the limit is (π1,π,π,π,π,π,π) with π1 = 0.082
and π = 0.153 . The more doses that are on the plateau, the smaller the proportion of patients
allocated to each of the doses on the plateau and the smaller the power of comparison with
placebo.

3. DOSE FINDING BASED ON t-STATISTIC
The t-statistic design was proposed by Ivanova and Kim [5]. It can be used with binary as
well as continuous outcome. Let n(t = (n1(t),…,nK(t)) be the number of patients at each of
the K doses right after patient t, t ≤ N, has been assigned, that is, n1(t)+…+nK(t) = t. Let Yji
be the observation from the ith patient assigned to dose dj, i = 1,..,nj(t). Let

 be the current estimate of response rate at dose dj, computed from all
patients assigned to dj so far. Define Tj(nj(t)), nj(t) ≥ 2, to be the t-statistic

If , Tj(nj(t)) is equal to +∞ or −∞ depending on the sign of . Patients are
assigned in cohorts. Suppose the most recent patient t was assigned to dose dj. The next
cohort of patient is assigned as follows:

i. if Tj(nj(t)) ≤ −Δ, the next patient is assigned to dose dj+1;
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ii. if Tj(nj(t)) ≥ Δ, the next patient is assigned to dose dj−1;

iii. if −Δ < Tj(nj(t)) < Δ, the next patient is assigned to dose dj.

Ivanova and Kim [5] recommended to set design parameter Δ = 1. The performance of the t-
statistic design where there is a plateau in the range of interest is assessed by simulations in
Section 5.

4. CONTINUAL REASSESSMENT METHOD (CRM)
The CRM is a dose-finding method proposed by O’Quigley et al. [4]. It uses a working

model for dose-response relationship, for example, where , where (b1,…,bK) is a set of
constants and θ is a parameter to be estimated. The CRM has been shown to converge to the
target dose if used in continuous dose space [13]. If used with discrete doses, given a
working model, the CRM converges to the dose with the true response rate closest to the
target or to doses with response rates within a so called indifference interval from the target
[14]. The argument from [14] could be extended to the case where a dose-response curve
plateaus in the region of interest to show that the CRM converges to one of the doses on a
plateau or a dose within indifference interval. The CRM yields an increased sample size at
one of the doses on the plateau or a nearby dose with response close to Γ, although this dose
might not be the lowest dose on the plateau. In the simulation study we used the model from
[4] with (b1,…,b7) = (0.1,0.2,0.3,0.4,0.5,0.6,0.7) and exponential prior with mean 1 for
parameter θ. In simulations with 3 and 4 doses (b1,b2,b3) and (b1,b2,b3,b4) were used
correspondingly. A number of modifications of the CRM have been proposed [15,16]. In the
simulations study we used the modification where skipping untried doses is not allowed if
the dose is escalated.

5. SIMULATION STUDY
In addition to the two scenarios from Hall et al. [1], one more scenario with 7 doses of the
drug, two scenarios with 4 doses and two scenarios with 3 doses were used to compare the
different designs in our simulation study. Table I displays mean efficacy rates and mean
adverse event rates for the drug. Placebo efficacy rate is 0.3 and placebo adverse event rate
is 0.1. The target treatment response rate is Γ = 0.6. Results for each design/scenario
combination are based on 5000 simulation runs. We investigated the performance of the
group design UD(4,2,3) used in Hall et al. [1], the CRM, the t-statistic design[5] and a
single-stage design with equal allocation to all doses. The maximum total sample size was
fixed at 120 patients with 40 patients assigned to a placebo and 80 to various doses of the
drug. This sample size was chosen because 40 patients per group yields 80% power if
treatments with true rates of 0.3 and 0.6 are compared using a one-sided 0.05 level test.
Patients were assigned in cohorts of 6 with 2 patients assigned to placebo and 4 to a dose of
the drug. At the end of the trial, response rates for all designs except the CRM were
estimated using isotonic regression [17] and then the dose with the estimated response rate
closest to the target was declared the estimated target dose. If there were two or more such
doses, the highest dose with the estimated value below Γ was chosen. If all the estimated
values at these doses were higher than Γ, the lowest of these doses was chosen. For the
CRM, the estimated target dose was defined as the dose that would have been recommended
for the next patient [4].

The ability to stop for futility is one of the most important features of an adaptive dose-
finding trial. One interim analysis was performed as soon as 28 patients were assigned to the
highest dose, at which point the response rate at the highest dose was compared to the
response rate of placebo. The trial was stopped for futility if the one-sided p-value based on
Fisher’s exact test was higher than 0.2. The futility rule was chosen in such a way that the

Ivanova and Xiao Page 4

Pharm Stat. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



probability of stopping the trial with at least one good dose for the t-statistic design is at
most 0.01. If the trial was stopped for futility at the interim analysis, no dose was selected as
the estimated target dose.

The primary goal of our study was to estimate the target dose. Table II shows the selection
probability of each dose as the estimated target dose under each design. All designs
performed well in selecting a dose with the target response rate, not necessarily the lowest,
with the CRM performing the best in scenarios 2 and 3 where at least a part of the dose-
response curve is gradually increasing. The results for the lowest dose on the plateau are in
bold. The t-statistic design selects the lowest dose on the plateau more frequently than others
in 5 out of 7 scenarios. The last column of Table II shows proportion of trials that were
stopped earlier for futility. About 30% of the trails were stopping early for futility in
scenario 4 and 75% in the null scenario 5 (scenarios not shown in Table 2).

The average sample size at each dose is shown in Table III, with the results for the lowest
dose on the plateau shown in bold. The planned total number of patients in the trial
including placebo was 120. Addition of early futility stopping yielded 112 total patients on
average in scenario 4 and 98 patients on average in the null scenario 5. We choose to use a
conservative stopping rule that yields the probability of less than 0.01 of stopping a trial if
there is at least one dose with efficacy rate higher than the placebo rate by at least 0.3. If a
less conservative rule is chosen, a trial with ineffective drug will stopped with higher
probability resulting in lower average total sample size.

One of the goals of the trial was to compare the response rate at the estimated target dose
with placebo. That is why our goal was to maximize the sample size at the estimated target
dose. The distribution of the sample size at the estimated target dose is displayed in Table
IV. The CRM and the t-statistic design have larger average sample size at the estimated
target dose compared to the group design and equal allocation. The larger sample size
translates into a higher power when the estimated target dose is compared to placebo with
respect to efficacy (results are available from the authors). The CRM and the t-statistic
design yield a very similar power of this comparison. The group design yields power 0.1 to
0.2 less than the other two designs with even less power for equal allocation. Efficacy was
compared using one-sided 0.05 level Fisher’s exact test.

The lowest dose on the plateau is often of interest because it is likely to have a better
adverse event profile than higher doses. We constructed plausible adverse event rate
scenarios (Table I), and compared the estimated dose with placebo based on both efficacy
and adverse event rates. The adverse event rate at the estimated dose was compared with the
rate of placebo using one-sided 0.05 level test with the null hypothesis that the adverse event
rate of the drug is higher than placebo rate plus 0.2. Table V displays the proportion of trials
where the estimated target dose is shown to have an efficacy rate significantly better than the
placebo rate and an adverse event rate significantly lower than the placebo rate plus 0.2. As
far as power for joint comparison, the t-statistic design is significantly better than the CRM
in scenarios 1, 6, 7, and 8 and the CRM performs slightly better or similarly in scenarios 2,
3, and 9, where at least one part of the curve has a gradual increase. This is because both
designs yield a large sample size at the estimated target dose, on average, with the t-statistic
design selecting the lowest dose on the plateau more often than the CRM. The power for the
group design and equal allocation is not as good as for the CRM or the t-statistic designs.

6. CONCLUSION
It is not uncommon in a Phase II non-oncology study for a dose-response curve to plateau,
yielding several doses with the same mean response. We investigated the performance of
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several oncology Phase I dose-finding designs developed for strictly increasing curves in the
case where a dose-response curve plateaus in the range of interest. We have demonstrated
theoretically and by simulations that a group design is not a good choice when a dose-
response curve plateaus near the response rate of interest. Based on our simulations study we
conclude that the t-statistic design performs better than the group design and the CRM as it
assigns many patients to the estimated target dose and selects the lowest dose on the plateau
more often than the other two designs.

We considered the case where a dose-response curve is assumed to be non-decreasing. The
methods we have studied are not appropriate when there might be a down-turn in a dose-
response curve at higher doses or the goal is to find the maximum of a utility function that
quantifies efficacy-tolerability trade-offs. Methods such as [6,10,18] can be used with such
umbrella shaped curves.
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APPENDIX A

Proof of Theorem
Let αj, βj, γj denote the probabilities to decrease the dose from dj to dj−1 to repeat the dose dj,
or increase the dose from dj to dj+1 in UD(s,cL,cU). Here αj + βj + γj = 1 for j∈{1,…,K} are
the elements of jth row of transition matrix P, with βj being a diagonal element, and αj, and
γj being to the left and to the right of βj. These probabilities can be computed as follows

where j∈{2,…,K−1}. The stationary distribution π = (π1,…,πK can be obtained by solving
the balance equations , π j = πj−1 γj−1 + πj βj + πj+1 αj+1, j∈{1, …, K} (here for convenience
γ0= αK+1 = 0). The solution is

where j∈{2,…,K}. Gezmu and Flournoy (2006) showed that γj decreases with j while αj
increases with j, so similarly to Durham and Flournoy (1994), the stationary distribution is
log-concave, also the mode spans dk−1 and dk if λk = 1. Since p1 < p2 <…<pj =…=pK = Γ*
and Γ* is a solution of equation (1), γ = αi = γ for all i = j,…,K. Hence λi = γi−1 / αi = γ / γ =
1 for i = j+1 ,…,K, and the mode spans doses d(j+1)−1 ,…, dK.
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Table I

Mean efficacy scenarios with corresponding adverse event rates (drug only). Placebo efficacy is 0.30 and the
rate of adverse events on placebo is 0.1. Adverse event scenarios are used to illustrate which design selects the
lowest dose on plateau.

Scenario Mean response curve Adverse event rate

1 (0.30,0.60,0.60,0.60,0.60,0.60,0.60) (0.1,0.1,0.2,0.3,0.4,0.5,0.6)

2 (0.30,0.30,0.40,0.50,0.60,0.60,0.60) (0.1,0.1,0.1,0.1,0.1,0.2,0.3)

3 (0.30,0.40,0.50,0.60,0.70,0.80,0.90) (0.1,0.1,0.1,0.1,0.2,0.3,0.4)

4 (0.30,0.30,0.33,0.36,0.39,0.42,0.45) (0.1,0.1,0.1,0.1,0.1,0.1,0.1)

5 (0.30,0.60,0.60,0.60,0.60,0.60,0.60) (0.1,0.1,0.1,0.1,0.1,0.1,0.1)

6 (0.50,0.60,0.60,0.60) (0.1,0.1,0.2,0.3)

7 (0.40,0.50,0.60,0.60) (0.1,0.1,0.1,0.2)

8 (0.50,0.60,0.60) (0.1,0.1,0.2)

9 (0.50,0.60,0.70) (0.1,0.1,0.3)
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Table II

Proportion of trials in which a dose was selected as the estimated target dose and proportion of trials stopped
earlier for futility. Only scenarios with at least one active dose are included.

Scenario d 1 d 2 d 3 d 4 d 5 d 6 d 7 Futility

Scenario 1

Group design 0.00 0.32 0.15 0.13 0.11 0.12 0.15 0.01

CRM 0.01 0.27 0.25 0.23 0.16 0.07 0.01 0.00

t-statistic design 0.00 0.66 0.20 0.09 0.03 0.01 0.01 0.00

Equal allocation 0.01 0.30 0.14 0.11 0.11 0.12 0.21 -

Scenario 2

Group design 0.00 0.00 0.01 0.18 0.30 0.21 0.27 0.02

CRM 0.00 0.00 0.00 0.19 0.48 0.26 0.06 0.01

t-statistic design 0.00 0.00 0.02 0.30 0.45 0.16 0.07 0.00

Equal allocation 0.00 0.00 0.03 0.16 0.30 0.21 0.30 -

Scenario 3

Group design 0.00 0.01 0.24 0.55 0.19 0.01 0.00 0.00

CRM 0.00 0.00 0.16 0.63 0.20 0.00 0.00 0.00

t-statistic design 0.00 0.01 0.27 0.57 0.14 0.00 0.00 0.00

Equal allocation 0.00 0.04 0.28 0.51 0.17 0.01 0.00 -

Scenario 6

Group design 0.13 0.32 0.21 0.28 0.06

CRM 0.11 0.37 0.24 0.23 0.06

t-statistic design 0.22 0.49 0.18 0.10 0.01

Equal allocation 0.13 0.30 0.22 0.35 -

Scenario 7

Group design 0.01 0.19 0.40 0.35 0.00

CRM 0.00 0.14 0.39 0.38 0.00

t-statistic design 0.01 0.25 0.48 0.22 0.00

Equal allocation 0.01 0.15 0.40 0.44 -

Scenario 8

Group design 0.15 0.41 0.34 0.00

CRM 0.12 0.37 0.40 0.00

t-statistic design 0.21 0.50 0.25 0.00

Equal allocation 0.16 0.41 0.43 -

Scenario 9

Group design 0.19 0.64 0.16 0.00

CRM 0.15 0.63 0.19 0.00

t-statistic design 0.21 0.65 0.14 0.00

Equal allocation 0.23 0.62 0.16 -
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Table III

Average number of patients at each dose of the drug. Only scenarios with at least one active dose are included.

Scenario d 1 d 2 d 3 d 4 d 5 d 6 d 7

Scenario 1

Group Design 14 19 15 11 8 7 6

CRM 7 22 20 17 11 3 0

t-statistic design 14 45 13 5 1 0 0

Equal allocation 15 15 15 15 15 15 15

Scenario 2

Group Design 5 6 11 16 16 13 12

CRM 4 4 6 18 28 15 3

t-statistic design 7 7 12 25 21 6 2

Scenario 3

Group Design 7 12 19 22 14 6 1

CRM 5 6 16 34 17 2 0

t-statistic design 7 13 27 26 7 1 0

Scenario 6

Group Design 20 22 19 19

CRM 17 26 18 17

t-statistic design 33 32 10 4

Equal allocation 24 24 24 24

Scenario 7

Group Design 12 20 23 23

CRM 7 16 26 28

t-statistic design 13 28 27 11

Scenario 8

Group Design 23 27 27

CRM 17 26 26

t-statistic design 32 32 14

Equal allocation 30 30 30

Scenario 9

Group Design 26 31 23

CRM 19 37 22

t-statistic design 32 37 10
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Table IV

The distribution of the number of patients assigned to the estimated target. Only scenarios with at least one
active dose are included.

Min 1st Median 3th Max

Scenario 1

Group Design 4 16 24 28 44

CRM 4 36 52 60 76

t-statistic design 4 40 56 68 76

Scenario 2

Group Design 4 16 20 28 52

CRM 4 32 48 56 68

t-statistic design 4 24 36 48 72

Scenario 3

Group Design 4 20 24 28 40

CRM 4 32 44 56 72

t-statistic design 4 28 40 52 76

Scenario 6

Group Design 4 24 28 32 64

CRM 4 40 56 64 80

t-statistic design 4 36 52 68 80

Scenario 7

Group Design 4 24 28 32 64

CRM 4 40 56 68 80

t-statistic design 4 32 44 60 80

Scenario 8

Group Design 12 28 32 36 60

CRM 4 44 60 72 80

t-statistic design 4 40 52 68 80

Scenario 9

Group Design 8 32 32 36 60

CRM 4 36 52 64 80

t-statistic design 4 36 52 68 80

Pharm Stat. Author manuscript; available in PMC 2014 September 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ivanova and Xiao Page 12

Table V

Proportion of trials where the estimated target dose is showr to have an efficacy rate significantly better than
placebo rate and adverse event rate significantly lower than placebo rate plus 0.2.

Scenario Group design CRM
t-statistic

design
Equal

allocation

Scenario 1 0.29 0.30 0.61 0.09

Scenario 2 0.37 0.53 0.55 0.10

Scenario 3 0.54 0.61 0.60 0.12

Scenario 4 0.27 0.25 0.25 0.05

Scenario 5 0.03 0.03 0.03 0.01

Scenario 6 0.39 0.44 0.57 0.25

Scenario 7 0.50 0.50 0.58 0.30

Scenario 8 0.51 0.49 0.60 0.40

Scenario 9 0.58 0.57 0.61 0.45
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