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Abstract
Purpose—Oral bioavailability (%F) is a key factor that determines the fate of a new drug in
clinical trials. Traditionally, %F is measured using costly and time -consuming experimental tests.
Developing computational models to evaluate the %F of new drugs before they are synthesized
would be beneficial in the drug discovery process.

Methods—We employed Combinatorial Quantitative Structure-Activity Relationship approach
to develop several computational %F models. We compiled a %F dataset of 995 drugs from public
sources. After generating chemical descriptors for each compound, we used random forest,
support vector machine, k nearest neighbor, and CASE Ultra to develop the relevant QSAR
models. The resulting models were validated using five-fold cross-validation.

Results—The external predictivity of %F values was poor (R2=0.28, n=995, MAE=24), but was
improved (R2=0.40, n=362, MAE=21) by filtering unreliable predictions that had a high
probability of interacting with MDR1 and MRP2 transporters. Furthermore, classifying the
compounds according to the %F values (%F<50% as “low”, %F≥50% as ‘high”) and developing
category QSAR models resulted in an external accuracy of 76%.

Conclusions—In this study, we developed predictive %F QSAR models that could be used to
evaluate new drug compounds, and integrating drug-transporter interactions data greatly benefits
the resulting models.
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INTRODUCTION
Drug oral bioavailability is the fractional extent of the drug dosage that finally reaches the
therapeutic site of action and is quantitatively symbolized as %F (1). In many cases, most of
the orally administered drug is metabolized and eliminated before reaching systemic blood
circulation (1). Therefore, poor bioavailability may cause a new drug to fail clinical trials,
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even if it has high efficacy in previous in vitro and/or in vivo tests. The traditional process
for measuring the %F of a drug is expensive, costly, and time-consuming. Using
computational methods as an alternative to calculating the %F of new drug candidates, even
before synthesizing the compound, would be advantageous by saving resources and provides
a promising alternative to traditional experimental protocols.

To date there are many computational oral bioavailability models that are available (2–11).
Some are based on Quantitative Structure-Activity Relationship (QSAR) models that predict
the oral bioavailability of new compounds directly from the molecular structure. Table I lists
several major QSAR studies on oral bioavailability. In 2000, Andrews et al. developed a
computational oral bioavailability model using linear regression. This model was able to
predict highly bioavailable compounds accurately, but had poor performance for low
bioavailable compounds (2). Moda et al. developed hologram QSAR oral bioavailability
models that predicted %F using fragment descriptors. However, poorly soluble and non-oral
bioavailable drugs were excluded intentionally from the modeling set (3). Ma et al. used a
Combinatorial QSAR (Combi-QSAR) approach to develop an oral bioavailability
classification model. Although the unbalanced accuracy for a five-fold cross-validation of
their modeling set was 80%, the specificity (correct predictive rate for inactive compounds)
was only 20% due to the high imbalance between actives and inactives (4). More recently,
Tian et al. attempted to create multiple linear regression human oral bioavailability models
by combining molecular properties and structural fingerprints with genetic function
approximation. The predictivity of the reported model was acceptable (R2

ext=0.50), but the
structural fingerprints used to generate the training set does not apply to all drug classes.
This limits the applicability of the model for predicting new classes of compounds (5).

In addition to the QSAR models mentioned above, previous research suggests that the rule-
based models, such as the rule-of-five (6), are not sufficient enough for evaluating the oral
bioavailability of drugs (7–9). Nevertheless such empirical rules are useful for qualitative
assessment and we list in Supplemental Table I several rules previously developed for
assessing drug oral bioavailability and absorption. In 2002, Veber et al. studied the
molecular properties and in vivo/in vitro pharmacokinetic parameters that affect oral
bioavailability (7). The authors concluded that the molecular properties of the drug, target
receptor, cell membrane, and transporter proteins should all be studied during drug
development. Ignoring one factor can result in poor bioavailability (7). More recently,
property-based rules for bioavailability (5) and parameters needed for optimal oral
bioavailability classification (10) were evaluated. There are certain physical properties that
contribute to oral bioavailability, but these parameters are better at predicting intestinal
absorption (5,7,10). Recently, Paixão used in vitro test results as parameters to develop an
oral bioavailability model (11). Incorporating in vitro data helped improve the prediction
accuracy of the resulting models.

In this study, we developed several novel models of human oral bioavailability of
pharmaceutical drugs. After compiling over one thousand drugs and their experimental %F
values, we corrected the data entry errors using both automatic tools and manual curation
steps. We utilized the Combi-QSAR approach to develop several computational oral
bioavailability models. A series of individual category (CTG) and continuous (CNT) models
were developed and validated using a five-fold cross-validation. To improve the predictivity
of the resulting QSAR models, we tried to integrate Human Intestinal Transporter (HIT)
interactions into the final predictions. This hybrid approach was able to exclude compounds
with considerable prediction errors from the final predictions. Our predictive Combi-QSAR
oral bioavailability models can be used to assess and evaluate new drug candidates.
Furthermore, similar approaches could be developed and utilized to model other complex
biological activities for drug and drug like molecules.
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METHODS
Human Oral Bioavailability Dataset

The human oral bioavailability dataset was compiled from various public and private
sources (3,5,8,12–17). Originally it contained over 1,300 entries. Several tools (CASE Ultra,
Chem Axon Standardizer, Chem Axon Structure Checker) were used for chemical structure
curation and standardization. For duplicate entries, one was removed. For stereoisomers, the
structure of the compound with the highest activity was kept. For salts, the chemical
structure was neutralized. Mixtures were separated and the largest component was kept. All
metals, metaloorganics, and inorganic entries were removed.

We also carefully evaluated the experimental %F values in our dataset. It was common to
find different %F values for the same compound among different sources. We selected the
%F values reported in, Goodman & Gilman's The Pharmacological Basis of Therapeutics,
over the %F values reported from other sources, because the bioavailability data in this book
was curated and harmonized by experienced medicinal chemists (12). In other cases, the
values were harmonized if the range of the %F values were less than 10 for the same
compound. If the %F value for the salt and neutral forms were different, the %F value for
the neutral form was kept. For compounds with disparate %F values, the experimental
studies that reported the values were carefully evaluated. After comparing sources, the %F
from the study that clearly defined the method for determining the %F value was selected. A
total of 995 unique compounds remained for the following modeling process after the
curation.

After harmonizing the %F values, the compounds were classified as low bioavailable
(%F<50, n=455) and high bioavailable (%F≥50, n=540). There is no universal criterion to
define high and/or low bioavailable compounds. We used %F=50% as an arbitrary
classification threshold in this study since it could also balance the ratio of two
classifications in the dataset. Non-oral drugs (%F=0), e.g. compounds commonly
administered by intramuscular or intravenous injection, were included in the low
bioavailable group. Also, using sigmoid function, we transformed the %F values to
logK(%F), a pseudo-equilibrium constant, as it has more balanced distribution of values and
could afford improved models.

(1)

The distribution of all 995 compounds based on the %F values is displayed in Figure 1.
Supplemental Table II lists all 995 compounds, the oral bioavailability values, and the
corresponding references.

Chemical Descriptors
Chemical descriptors for each compound were generated using 2-D chemical descriptors
from Dragon ver. 6.0 (Talete SRL, Milano, Italy) and Molecular Operating Environment
(MOE) ver. 2011.10. Dragon descriptors included constitutional indices, ring descriptors,
topological indices, walk and path counts, connectivity indices, matrix-based descriptors,
autocorrelations, Burden eigenvalues, edge adjacency indices, functional group counts,
atom-centered fragments, atom-type, E-state indices, atom pairs, molecular properties, and
drug-like indices. MOE descriptors included physical properties, structural keys, E-state
indices, topological polar surface area, and topological indices. Initially, the Dragon and
MOE software generated 3,753 and 186 descriptors, respectively. Since many Dragon
descriptors in this dataset were redundant, the number of Dragon descriptors was reduced by
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removing low variance (standard deviation <0.01 or missing values) and highly correlated (r
>0.95) descriptors. The remaining 1,597 Dragon and 186 MOE descriptors were range-
scaled to [0,1] and used in the modeling process except for CASE Ultra, which has its own
built-in fragment descriptors.

Modeling Approaches
In this study, the implementation of the Random Forest (RF) (18) and Support Vector
Machine (SVM) (19–22) algorithms available in R.2.15.1 (23) were used. The k Nearest
Neighbor (kNN) models (24) were built using Chembench (chembench.mml.unc.edu).

CASE Ultra
CASE Ultra is a QSAR expert system and can automatically generate a predictive model
from a training set of non-congeneric compounds with associated biological activity data.
The training set usually contains examples of both active and inactive chemicals and the
algorithm identifies positive and deactivating alerts (structural fragments statistically related
to activity and inactivity) after processing them. These alerts form a CASE Ultra model that
can be used to predict activity of a test chemical (25,26).

Combinatorial QSAR Modeling Workflow
The entire Combinatorial QSAR modeling workflow is shown in Figure 2. Individual
models were developed using Dragon (denoted by the prefix “D”) or MOE descriptors and
either RF, SVM, or kNN modeling methods. CASE Ultra was used to develop a single CTG
model. This resulted in seven different CTG, four different CNT-%F, and four different
CNT-logK(%F) models. The individual CTG models were D-RF, D-SVM, D-kNN, MOE-
RF, MOE-SVM, MOE-kNN, and CASE Ultra. The individual CNT-%F and CNT-logK(%F)
models were D-RF, D-SVM, MOE-RF, and MOE-SVM. The results for each CTG model
and CNT model were averaged to generate the corresponding consensus CTG, CNT-%F,
and CNT-logK(%F) predictions, which will be further referred to as consensus models
(Figure 2).

All models were validated using five-fold external cross-validation. Briefly, the oral
bioavailability dataset was randomly divided into five equal subsets. One subset was used as
the validation set (20%) and the other four subsets (80%) were used as the training set. The
training set was used to develop the models and the models were validated by the left-out
validation set. The procedure was repeated five times so that each compound was in a
validation set. Additional details about the modeling approaches can be found elsewhere
(27,28).

Universal Statistical Figures of Merit for All Models
Since various modeling approaches and different descriptors were used in the modeling
process, universal statistical metrics were needed to evaluate the performance of the models
developed individually. The results were harmonized by 1) using sensitivity (percentage of
high oral bioavailable drugs predicted correctly), specificity (percentage of low oral
bioavailable drugs predicted correctly), and CCR (correct classification rate or balanced
accuracy) for CTG models; and 2) Pearson’s multiple linear correlation coefficient (R ) and
mean absolute error (MAE) for CNT models. These parameters are defined as followed:

(2)
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(3)

(4)

(5)

(6)

Integrating Human Intestinal Transporters Interactions of Compounds into Oral
Bioavailability Predictions

We recently reported a QSAR study for predicting interactions for different HITs (29).
These HIT models were used to generate the transporter interaction scores for the drugs in
our oral bioavailability dataset. Interactions between molecules and HITs depend on the
size, shape, charge, and the chemical properties of the molecule (30). Most of the
compounds in our dataset have aromatic rings, bulky groups, and are ionizable. Compounds
with these features are commonly removed from the enterocytes by the efflux transporters
Multidrug Resistance Protein 1 (MDR1) and Multidrug Resistance-Associated Protein 2
(MRP2), which could decrease their oral bioavailability (30). Therefore, we used the
interaction parameters of MDR1 and MRP2 to filter predictions of compounds from our
models.

RESULTS
Overview of Dataset

We did a comprehensive analysis on the chemical structures and relevant bioavailability
data from the public databases used in this study. This comparison revealed that only 80% of
the entries in current oral bioavailability databases are accurate. There were discrepancies
between reports from different sources, affecting both molecular structures and %F values.
For some compounds, the substituent groups were placed at incorrect positions.
Supplemental Table III lists several examples of incorrect chemical structures that were
identified from the original sources and corrected.

Furthermore, Buxton et al. indicated that it would be normal for different sources to report
different %F values for the same compound (1). However, the compounds with disparate
%F values needed to be harmonized for modeling purpose. Furthermore, we found that
errors from the reported %F values occurred when a source incorrectly used the neutral
names and salt forms of a molecule interchangeably. All of the errors were carefully
examined and corrected.

The structural similarities between the compounds in the dataset can be analyzed by
performing a principal component analysis on the chemical descriptors. After generating the
principal components using the 186 MOE descriptors for all of the compounds in the
database, we selected the top three most important components to create a three-dimensional
plot (Figure 3) for all 995 compounds. These three principal components capture around
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50% of the variance in our database. This plot could be viewed as the chemical structure
space covered by all the compounds in our oral bioavailability dataset. More detailed plots
of the chemical structure space can be found in Supplemental Figures 1–3. According to this
analysis, there are about 10 structural outliers that are dissimilar to the majority of the
compounds. Most of these compounds represent non-bioavailable or low bioavailable drugs,
including antibiotics, neuronal drugs, and intravenous drugs. Some previous studies showed
that removing structural outliers before the modeling process was beneficial to the results of
the QSAR models (3,5). In this study, we kept these outliers since they are only a small
portion (∼0.1%) of the whole dataset. Furthermore, removing the outliers did not improve
the resulting models (data not shown).

Category Models
We developed seven individual and one consensus model by using two bioavailability
categories (“low”, %F<50% and “high”, %F ≥ 50%; see Methods). The five-fold external
cross-validation results for all CTG models are shown in Figure 4. The sensitivity,
specificity, and CCR for the individual models ranged from 59–72%, 61–70%, and 62–70%,
respectively. The D-SVM model had the lowest predictivity (CCR=62%). The MOE-RF
model had the highest specificity and CCR of 70%. The MOE-kNN model had the highest
sensitivity of 72%. Compared to the best individual model, the consensus model showed
similar statistics, with sensitivity, specificity, and CCR as 72%, 69%, and 70%, respectively.
The model obtained from our commercial modeling software, CASE Ultra, had intermediate
results with sensitivity, specificity, and CCR all as 65%.

Furthermore, we implemented Consensus Prediction Thresholds (CPT), as mentioned in one
of our previous studies (31), to the prediction results by using different low bioavailable and
high bioavailable thresholds. The prediction results from each individual model had
continuous scores that ranged from 0 to 1. The 0.5 mark was initially used as the single
threshold to distinguish compounds predicted as low bioavailable (CPT<0.5) and high
bioavailable (CPT≥0.5). Using stricter thresholds, the compounds that were predicted
around 0.5 should be considered as “inconclusive.” We removed these inconclusive
predictions by using different CPTs to define low bioavailable and high bioavailable
compounds. Two CPTs were defined: 1) <0.4 as low bioavailable and >0.6 as high
bioavailable (CPT-1 scheme); 2) <0.3 as low bioavailable and >0.7 as high bioavailable
(CPT-2 scheme).

Implementing CPT-1 and CPT-2 schemes enhanced the predictivity of the individual and
consensus CTG models. For the individual CTG models with CPT-1 and CPT-2, the
sensitivity, specificity, and CCR ranges were between 61–87%, 50–82%, and 59–83%,
respectively (results not shown here). In the consensus CTG model, the sensitivity,
specificity, and CCR were 78%, 74%, 76%, respectively for CPT-1 and 82%, 77%, 79%,
respectively for CPT-2 (Figure 5). As the tradeoff for excluding compounds with
inconclusive predictions, using CPT-1 and CPT-2 decreased the consensus model coverage
to 71% and 46%, respectively.

Continuous Models
We also developed four individual and one consensus model for the CNT-%F and CNT-
logK(%F) bioavailability datasets. The results for both types of models are shown in Table
II. The statistics for the four individual CNT-%F models were relatively poor (R2=0.13–0.30
and MAE=∼24–53). Using Applicability Domain (AD) to remove unreliable predictions of
structurally dissimilar compounds, as described previously (24), did not give significant
improvement to our models (results not shown). We therefore did not use AD for the
analysis in this study. Compared to the individual models, the consensus CNT-%F model
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was also close to the upper boundary (R2=0.28 and MAE=∼24). To verify the statistical
significance of all the models (in comparison to random chance performance), a two-way
ANOVA test with a confidence level of 95% was performed for each model (32). The
obtained p values were lower than 0.05.

The statistics for the four individual CNT-logK(%F) models were similar (R2=0.11–0.30
and MAE=∼23–28). The consensus CNT-logK(%F) model was also close to the upper
boundary (R2=0.25 and MAE=24). The obtained p values were lower than 0.05.
Nevertheless, the distribution of errors was very different for the CNT-logK(%F) model
compared to %F scale (Figure 6). Compounds with very low and very high %F values were
predicted more accurately by the CNT-logK(%F) model.

Integrating Human Intestinal Transporter Parameters into the CNT-%F Bioavailability
Model

HITs are an important factor in intestinal absorption, which greatly affects oral
bioavailability and other pharmacokinetic properties of their substrate (33). Figure 7 depicts
the transportation of drug molecules by MDR1, MRP2, and by passive diffusion in an
enterocyte. It is known that both MDR1 and MRP2 are responsible for the active efflux of
drug molecules from the enterocyte to the lumen (30). For this reason, a drug with low
passive diffusion, but high substrate affinity to MDR1 and/or MRP2 is not likely to be
highly bioavailable. We have also considered Breast Cancer Resistant Protein, another major
efflux transporter, but its imputed interactions did not enhance our results (data not shown)
and we excluded it from further analysis. We used four MDR1 and MRP2 model prediction
results (29) to calculate the probability of interaction (POI) for the compounds in our
dataset. Then, the mean probability of interaction (MPOI) for MDR1-s, MDR1-i, MRP2-s,
and MRP2-i for drugs in various bioavailability ranges were calculated (Figure 8), where s
and i represent substrates and inhibitors, respectively.

We established a rule that the drugs with a POI value greater than the MPOI value of orally
non-bioavailable drugs in each transporter models should not have a predicted %F value
greater than 10. Table III lists examples of drugs, with large %F prediction errors, and their
HIT classifications. To simplify the discussion, the HIT predictions for each compound were
classified as 0 (POI<MPOI) or 1 (POI>MPOI) using the rule we created. For example, all
the HIT predictions and the predicted %F for Tirofiban were 1 and 54%, respectively.
Therefore, Tirofiban was considered an outlier and was subsequently removed from the final
model. On the other hand, Procaine had a high prediction error and could not be removed,
because all the HIT predictions were classified as 0. In this case, the low bioavailability of
this drug may be due to other HITs, metabolism, or other reasons. Table III lists examples of
compounds with high prediction errors that were successfully removed (No. 1–3), and
missed (No. 4–6) by our rule. The predictivity of compounds, that are substrates of the two
transporters, could not be improved by this rule. These type of compounds with large
prediction errors (e.g. compounds 4 and 5) may be due to other factors, such as metabolic
stability. For example, Procaine (%F=0, Pred. %F=66) was predicted as a false positive and
is metabolized by an esterase in the liver (34). The bioavailability model will be expected to
be further improved by integrating metabolism-related parameters, such as CYPs
interactions The compound Lymecycline (%F=99, Pred. %F=3), in Table III is a specific
case. It was predicted to be the substrate of the two transporters, but it is actually a high
bioavailable drug. Lymecycline is water-soluble at physiological pH and is readily absorbed
through the gastrointestinal tract (35).

By using the HIT interaction rule described above to remove unreliable predictions, we were
able to improve the prediction accuracy of the current CNT-%F models, especially the
consensus model. We did not incorporate HIT interactions into the CNT-logK(%F) models.
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Since the overall results for the two types of models were similar, doing so would have been
redundant. The results for integrating various HIT parameters into the consensus CNT-%F
model are listed in Table IV. It is noticeable that the use of four HIT parameters affects the
predictions differently. However, the best results were obtained from combining all four
transporters parameters. The R2 coefficient enhanced from 0.28 to 0.40 and the MAE
reduced from 24 to 21. Subsequently, using HIT parameters reduced the prediction coverage
to 30%. A two-way ANOVA (α=95%) (32) and Bootstrap Non-Parametric Permutation
(N=10,000; α=95%) (36,37) analysis revealed that the observed improvements are
statistically significant. We therefore conclude that integrating HIT information with the oral
bioavailability models was a valid approach. We noticed that the relationship between %F
and drug interactions with MDR1 and/or MRP2 is non-monotonic. Some HIT combinations
were better than others and incremental improvements were not always achieved when
integrating another HIT parameter. This is understandable as there is overlap in substrate
specificity between different efflux transporters (29).

DISCUSSION
Although the results for the CNT-%F and CNT-logK(%F) models are relatively low, each
model has their advantages. We determined the MAE for the various %F ranges for both of
the models (Figure 6). For predicting compounds with extreme %F values (%F≤20% and
%F≥90%), the CNT-logK(%F) models performed better. For the mid %F ranges (%F=20–
90%), the CNT-%F model yielded more accurate results. Both types of models can be used
to predict oral bioavailability. Using the CNT-logK(%F) model can be advantageous if
higher accuracy is needed for very low or very high bioavailability ranges. However,
combining the results of the CNT-%F and CNT-logK(%F) models did not result in better
statistics (data not shown).

Interpretation of QSAR models
There are many factors that affect oral bioavailability. Some examples are intestinal
absorption, water solubility, and lipophilicity (1). These parameters can be modified to
increase or decrease oral bioavailability by slightly changing certain chemical features on a
compound. We evaluated chemical structures potentially related to oral bioavailability by
analyzing Dragon descriptors. Dragon descriptors contain more diverse structural
descriptors compared to MOE, so they more are practical for the model interpretations. We
calculated the average values of the most important structural Dragon descriptors for both
the 100 least bioavailable drugs (%F=0– 10) and 100 most bioavailable drugs (%F=90–99)
(Figure 9). There were more descriptors related to low bioavailable drugs than high
bioavailable drugs. For example, compounds with high %F normally have aromatic groups
(descriptor ARR). Compounds with multiple aromatic rings like, Anthracene and
Naphthalene, can readily pass through biological membranes, which facilitate their
absorption and increase their bioavailability (38). Compared to aromatic rings, drugs with
aliphatic carbon chains (descriptors nCsp3 and C-009) were likely to have lower %F since
these kinds of drugs are poorly soluble in water, which greatly lowers their bioavailability
(39). An example of this type of drug is Docosanol (%F=0%). There are several descriptors
that refer to the Lipinski rule of five (6). According to the Lipinski rule of five, the existence
of over five hydrogen bond donors and/or acceptors may cause the decrease of the drug
bioavailability (6). The descriptor nO refers to the number of oxygen atoms (oxygen is a
potential hydrogen bond acceptor or donor), and the descriptor nHDon refers to the number
of hydrogen donor groups. Our modeling results support this hypothesis since there are
greater descriptor values for low bioavailable drugs than high bioavailable drugs. On the
other hand, the presence of aromatic halogens (descriptor nARX) was prevalent in highly
bioavailable drugs. It was reported that the existence of an appropriate number of aromatic
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halogens can enhance the lipophilicity and aqueous solubility of a drug, two properties
critical for absorption and bioavailability (40). Descriptors nArNR2 and N-071 represent
tertiary aromatic amines and aromatic amines, respectively. Drugs with aromatic amines can
be readily absorbed through the gastrointestinal tract (41,42). Beta-Lactams (descriptor
nBeta-Lactams) tend to have low %F due to their low lipophilicity which makes it difficult
to passively diffuse across the intestinal membrane. Beta-lactams that have high %F are
typically transported by intestinal influx transporters like Peptide Transporter 1 (43), which
increases %F.

Some features, which are considered to be important for bioavailability, represent complex
mechanisms. For example, N-alkylation (refer to the descriptor nN+) is a common
procedure used to increase the aqueous solubility of drug molecules which have low
bioavailability, such as Bupivacaine (%F=0%) (44). However, this also reduced lipophilicity
and the net effect on the oral bioavailability is hard to measure. In our dataset this descriptor
was considered to be relevant to low bioavailability since this feature was found mostly in
low bioavailable compounds. The arylsulfonamide moiety (represented by the descriptor
nSO2N) was associated with high oral bioavailability. A similar fragment descriptor was
also identified by CASE Ultra as the top biophore. There were 23 drugs in our dataset that
contained this structural feature and their average %F was 77%. Examples of these drugs are
shown in Table V. Methods for improving the oral bioavailability of sulfonamides have
been studied for many decades. Previous studies found that the nitrogen atom of this
fragment (as shown in Table V) plays an important role in binding to the receptor and is
critical to membrane permeability and bioavailability (45,46). However, the potential
mechanisms that are relevant to the bioavailability of sulfonamides are still not well
understood.

Cytochrome P450 (CYP) enzymes have a crucial impact on the metabolic stability of a drug
(47). Some descriptors in Figure 9, such as the number of hydrogens (nH), hydrogens
attached to sp3 carbon atoms (H-052), and number of sp3 carbon atoms (nCsp3), were found
to be correlated with low bioavailability. It was reported that CYP enzymes hydroxylate the
C-H bond on sp3 carbon atoms (47). Thus, these three descriptors may represent the
structural features with low metabolic stability. Interestingly, halogenated hydrocarbons are
also susceptible to oxidative dehalogenation by CYP enzymes (47). However, our descriptor
analysis shows that aromatic halogens are related to high bioavailability (likely via
enhancing membrane permeability). This relationship could be further explored in the
future.

CONCLUSION
In this study, we first compiled a database containing 995 unique human oral bioavailable
drugs. The diverse drugs in this data set include molecules with both low and high
bioavailability. We harmonized the %F values and evaluated all chemical structures to
ensure that the data in our database is accurate.

The bioavailability database was used to develop both CTG and CNT models by using
various modeling approaches. The consensus predictions show better performance than
individual models for both CTG and CNT models. Although the results of CNT models are
relatively poor, we were able to use HIT parameters to improve the model prediction
accuracy. Correctly using HIT parameters based on the transport direction allowed us to
remove some compounds with high predictions errors. Efflux transporters that transport
drugs out of the enterocytes can limit the oral bioavailability of their drug-substrates. In this
study we found that the two efflux transporters, MDR1 and MRP2, were important for
enhancing the oral bioavailability predictions in our models.
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All of the models developed in this study can be used to evaluate the bioavailability of new
drug candidates. The analysis of the important descriptors in the resulting models showed
the relationships between several types of chemical structures and drug oral bioavailability.
This type of knowledge could be useful for designing new drug molecules with suitable oral
bioavailability. The use of HIT parameters was beneficial to the model predictions. We have
confirmed that HITs need to be a component in future bioavailability models. Future
directions of in silico oral bioavailability modeling should also take into consideration
interactions with the CYP enzymes. Similar methods could be developed and employed to
model other complex bioactivities of drugs and drug-like molecules.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

%F Oral bioavailability

AD Applicability domain

ANOVA Analysis of variance

CCR Correct classification rate (balanced accuracy)

CNT Continuous activity scale

CPT Consensus prediction threshold

Combi-QSAR Combinatorial quantitative structure-activity relationship

CTG Category activity scale

CYP Cytochrome P450

D Dragon descriptors

HIT Human intestinal transporter

kNN k nearest neighbor

MAE Mean absolute error

MDR1 Multidrug resistance protein 1 (P-gp, ABCB1)

MOE Molecular Operating Environment

MPOI Mean probability of interaction

MRP2 Multidrug resistance-associated protein 2 (ABCC2)

POI Probability of interaction

QSAR Quantitative structure-activity relationship

R2 Coefficient of determination
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RF Random forest

SVM Support vector machine
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Figure 1.
Distribution of compounds by various %F ranges
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Figure 2.
Combinatorial QSAR modeling workflow
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Figure 3.
Chemical space of human %F database (n=955) using top 3 principal components of MOE
descriptors
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Figure 4.
Performance of CTG QSAR models using five-fold cross-validation
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Figure 5.
Predictivity of consensus CTG model with different consensus prediction thresholds (CPT)
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Figure 6.
Distribution of prediction errors (as MAE) relative to experimental %F. Red and blue bars
represent consensus CNT-%F and CNT-logK(%F) models respectively.
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Figure 7.
Drug efflux by intestinal transporters MDR1 and MRP2 in an enterocyte; a) drug passively
diffusing through the intestinal membrane; b) drug and metabolite transported out of the
enterocyte.
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Figure 8.
Mean probability of interaction (MPOI) for compounds in specified %F ranges
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Figure 9.
Chemical structure analysis for the 100 least and 100 most bioavailable compounds
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Table I

Brief description of previous QSAR oral bioavailability models

Source Description Performance Train/Test Set
Sizes

3 Hologram QSAR, CNT,
modeling %F q2 =0.35–0.70/Rext

2 =0.85

250/52
(mostly highly
bioavailable

drugs)

5 Combinatorial QSAR, CNT,
modeling %F

R2
ext=0.50 (after removing

outliers)
916/80(?)

2 Stepwise Regression; CNT:
modeling %F R2

ext=0.58 473/118

4
Combinatorial QSAR, CTG,
modeling: positive (%F≥20),
negative (%F<20)

CCRTrain (5-fold CV) =62%/
CCRTest= 59–71%

690/76
(mostly highly
bioavailable

drugs)

q2 - Cross validated correlation coefficient; R2 - Coefficient of determination;
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Table V

Examples of compounds with the arylsulfonamide structural feature found using the CASE Ultra model

Arylsulfonamide
sub-structure
Avg. %F=77

Sulfamethoxazole
%F=99

Diazoxide
%F=90

Saccharin
%F=84

Chlorothiazide
%F=13
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