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Abstract

Purpose—To develop accurate in silico predictors of Plasma Protein Binding (PPB).

Methods—Experimental PPB data were compiled for over 1,200 compounds. Two endpoints 

have been considered: (1) fraction bound (%PPB); and (2) the logarithm of a pseudo binding 

constant (lnKa) derived from %PPB. The latter metric was employed because it reflects the PPB 

thermodynamics and the distribution of the transformed data is closer to normal. Quantitative 

Structure-Activity Relationship (QSAR) models were built with Dragon descriptors and three 

statistical methods.

Results—Five-fold external validation procedure resulted in models with the prediction accuracy 

(R2) of 0.67±0.04 and 0.66±0.04, respectively, and the mean absolute error (MAE) of 15.3±0.2% 

and 13.6±0.2%, respectively. Models were validated with two external datasets: 173 compounds 

from DrugBank, and 236 chemicals from the US EPA ToxCast project. Models built with lnKa 

were significantly more accurate (MAE of 6.2–10.7%) than those built with %PPB (MAE of 11.9–

17.6%) for highly bound compounds both for the training and the external sets.

Conclusion—The pseudo binding constant (lnKa) is more appropriate for characterizing PPB 

binding than conventional %PPB. Validated QSAR models developed herein can be applied as 

reliable tools in early drug development and in chemical risk assessment.
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INTRODUCTION

Many small molecules, such as drugs and drug-like compounds in blood circulation form 

complexes with plasma proteins. The affinity of drugs to plasma proteins varies 

tremendously directly affecting the free drug concentration and pharmacokinetics. (1) 

Typically, the drug - plasma protein complex serves as a drug reservoir while the drug is 

eliminated from the body. (2) Accurate assessment of small molecules’ binding to plasma 

proteins is necessary for all aspects of ADME-Tox (absorption, distribution, metabolism, 

excretion, toxicity) (3) in the context of both drug discovery and in chemical risk 

assessment. (4)

Human plasma proteins are made up of albumin and globulin among which the human 

serum albumin, alpha-1-acid glycoprotein, and lipoproteins are the most abundant. (5) 

Experimentally, rapid equilibrium dialysis (RED) is a conventional method to determine a 

drug bound to plasma proteins (6) in a simulated in vivo environment (e.g., protein 

composition and concentration, body temperature etc.). However, RED and other techniques 

can still be time-consuming and expensive if applied to every candidate compound in the 

early drug discovery stage.

As one of the most efficient computational tools, Quantitative Structure-Activity 

Relationships (QSAR) modeling is widely applied to find statistical relations between 

chemical structural features and a particular biological activity. There have been several 

attempts to correlate experimental plasma protein binding values with chemical structural 

features. Hall et al. (7) modeled the binding of 115 beta-lactams to human plasma proteins 

using multiple linear regression resulting in a model with mean absolute error (MAE) in ten-

fold cross-validation of 10.9%. Lobel et al.(8) reported models with R2 (coefficient of 

determination) of 0.68 and 0.51 for training (226 compounds) and test (94 compounds) sets, 

respectively. Yamazaki et el. (9) developed nonlinear regression models for a set of 300 

compounds using pH-dependent octanol-water partition coefficient (LogP) as 

physicochemical parameters, resulting in R2 of 0.83 for an external validation set of 20 

compounds. Votano et al. (10) compiled a diverse dataset of about 1,000 drugs and drug-like 

compounds with experimental plasma protein binding values. In their study, artificial neural 

network and support vector machine (SVM) modeling yielded the lowest MAE value of 

14.1% and the highest MAE value of 18.3%, respectively, for a validation set of 200 

compounds. (For a detailed review of those studies please see the report of Hall et al. (11)). 

Moreover, since the 3D crystal structure of human serum albumin (HSA) is available, 

structure-based modeling strategies have been employed as well. (12) However, mostly due 

to multiple possible binding sites on HSA, earlier studies were usually limited to small sets 

of specific chemicals (13) often lacking rigorous external validation. Furthermore, earlier 

studies lacked special emphasis on accurately predicting highly bound compounds 

(11,14,15), which is highly important because strong plasma protein binding (90~100%) is 

often a desirable property in pre-clinical drug screening. (14)

In this study, a set of 1,242 compounds with known %PPB was compiled and curated from 

public sources. To our knowledge, this is the largest human plasma protein binding dataset 

available publicly. Using this dataset, QSAR models were developed and externally 
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validated. In addition, a set of 173 compounds from DrugBank, and a set of 236 ToxCast 

chemicals with %PPB values measured using high-throughput screening bioassays were also 

used to validate our models.

MATERIALS AND METHODS

Modeling Dataset

A set of 1,242 unique compounds with known %PPB (see Supplementary Material Table 

S4) was compiled and curated from two major sources: the work of Votano et al. (10) and 

the database for pharmacokinetic properties. (16) According to the activity histogram (see 

Supplementary Material Fig. S1), the distribution of original %PPB values is heavily 

skewed toward highly bound range. We have transformed %PPB into a pseudo-equilibrium 

constant parameter (lnKa) and observed that the distribution of transformed values became 

normal-like (see Supplementary Material Fig.S1). The transformation equation (Eq. 1) (for 

derivation, see Supplementary Material Equations SE. 1–7) is given below:

Eq. 1

Where fb is %PPB × 0.01, and C is a constant set to 0.5. Note that similar transformations 

have been utilized in previous studies (2,8,11), but the ensuing advantages were not fully 

explored or discussed.

DrugBank Dataset

A set of drugs or drug-like compounds was curated from DrugBank v3.0 (http://

www.drugbank.ca/) that contains plasma protein binding data in a textual form, often as a 

range of values or a qualitative description. After transforming these into numerical %PPB 

values, we obtained a set of 173 unique compounds not present in the modeling dataset (see 

Supplementary Material Table S5).

ToxCast Dataset

A set of 236 unique chemicals with %PPB values measured in a high-throughput screening 

assay by Wetmore et al. (17)(18) was obtained from the US EPA ToxCast Phase I project. 

The ToxCast chemicals are mainly pesticides and were not present in our modeling dataset 

(see Supplementary Material Table S6).

Chemical Structure Curation

Chemical structures of all employed compounds were curated according to our standard 

procedure described elsewhere. (19) Briefly, canonical SMILES code for all compounds was 

generated by ChemAxon Standardizer (v.5.3, ChemAxon, Budapest, Hungary) to normalize 

chemotypes (neutralization, tautomerization, aromatization, 2D structure cleaning, counter-

ions removal) and to remove duplicate structures.
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Molecular Descriptors

A set of chemical descriptors annotated as “two-dimensional” was calculated using Dragon 

(v.5.5, Talete SRL, Milan, Italy). It comprises constitutional and topological descriptors, 

walk and path counts, connectivity indices, 2D autocorrelations, edge adjacency indices, 

Burden eigenvalues, topological charge indices, eigenvalue-based indices, functional group 

counts, atom-centered fragments, molecular properties, and 2D fingerprints. All descriptors 

were range-scaled to [0, 1] interval. We then removed descriptors with low variance 

(standard deviation < 0.001) or with high redundancy (if pairwise R2 > 0.90, one of the pair 

was randomly removed). A final set of 880 Dragon descriptors was used for QSAR 

modeling and for the estimation of structural diversity. The modeling dataset, with average 

pairwise Tanimoto similarity coefficient of 0.58 (see Supplementary Material Fig. S2), is 

chemically diverse and should have substantial coverage of the chemical space.

k Nearest Neighbors (kNN)

This method employs the k nearest neighbors’ prediction principle with a variable selection 

procedure. (20) In this study, a genetic algorithm was used to drive the variable selection 

(with a population consisting of 500 solutions, each ranging from 5 to 40 descriptors). The 

models were evaluated by internal leave-group-out cross-validation (LGO-CV) where a 

fraction of compounds (~ 20%) is removed from the modeling set and their biological 

activity was predicted as the weighted average of k nearest molecular (k was varied from 1 

to 6). Individual models were considered acceptable if their LGO-CV R2 was greater than 

0.60.

Random Forest (RF)

Random Forest is an ensemble of unpruned classification or regression trees created on 

bootstrap samples of the training data and random subsets of descriptors (mtry) for tree 

induction. (21) In this study, we used regression RF with the default parameters (number of 

trees = 500 and one-third of the total number of descriptors for mtry). (22)

Support Vector Machine (SVM)

The SVM regression approach finds in the descriptor-activity space the narrowest band 

containing most of the data points. In this study, we used LIBSVM with RBF kernel and the 

grid-search to optimize its cost and gamma parameters. (23)

Applicability Domain (AD)

To avoid over-extrapolation of activity prediction, a global AD is introduced (Eq. 2) to 

control the distance between a predicted compound and its closest neighbor in the training 

set (should be less than DT)

(2)

Here, ȳ and σ characterize the training set and are, respectively, the average and standard 

deviation of the Euclidean distances between each compound and its nearest neighbor. Z is a 

user-controlled threshold, which in this study was varied from to 0.5 to 3.0. (24,25)
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Model Robustness

Y-randomization is carried out to establish model’s robustness. (26) The process consists of 

randomly shuffling activity values of the modeling set multiple times and rederiving models 

with these shuffled values; the “random” model performance is then evaluated using both 

training and test sets. This procedure was repeated five times and the one-tailed t-test p-

value was calculated, which is the probability to obtain random models with R2
ext as high as 

models built with real activities. If the “p-value < 0.05” condition is not satisfied, models 

built with the real data are deemed unreliable.

Modeling and Validation

QSAR models were developed following our standard modeling workflow (27) using %PPB 

and lnKa as target endpoints (Fig. 1). Briefly, according to the five-fold external cross-

validation (5FCV) procedure, the modeling dataset was randomly split into five subsets of 

nearly equal size. Four of these were used for developing models and the remaining one - for 

the external validation of the models. This procedure was repeated five times till each of the 

five subsets served as a validation set once. The above procedure results in five sets of 

models (one for each fold) that are then used collectively for screening additional external 

sets; both the DrugBank and ToxCast chemicals were used to validate the external predictive 

power of our models. The prediction results of the lnKa models were converted back to 

fraction bound to facilitate the comparison between two endpoint representations.

RESULTS AND DISCUSSION

QSAR models based on both modeling target endpoints (i.e., %PPB and lnKa) were 

developed using three modeling approaches (kNN, RF, and SVM). All the prediction results 

were converted into fraction bound (%PPB) for proper comparison. We investigated the 

effect of varying the threshold value of the AD (Z-parameter from 0.5 to 3, Eq.2) on the 

chemical space coverage and prediction accuracy of our models. We found that different AD 

thresholds yield result with nearly the same prediction accuracy, while the coverage drops 

significantly (see Supplementary Material Table S1). Thus, all the statistical results listed 

were based on the largest AD (Z=3). Five-fold external cross-validation prediction 

performance for the modeling dataset of 1,242 curated compounds is summarized in Table I. 

Our five-fold external cross-validation yielded MAEs of 15.8–16.3% for %PPB models (i.e., 

those developed using %PPB as the modeling endpoint) and MAEs of 14.2–14.5% for lnKa 

models (Table I). All models developed with real data were found to have significantly 

better statistical characteristics (cf. Table I) than Y-randomized models (MAE=35.1–36.9, 

R2=0.001–0.002, n=5). Consensus prediction was calculated as the average prediction of the 

models built using RF, kNN, and SVM methods. It was slightly better (MAE for lnKa 

models is 13.6±0.8%) than individual models. These statistical results are comparable or 

better than those reported previously (11), while based on a larger database size.

Additional Validation of Models

Two datasets (DrugBank and ToxCast chemicals) were used for additional external 

validation to verify the predictability of our models (see Fig. 1). Since the protein binding of 

some DrugBank compounds is reported as a range or even as a qualitative description, we 
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represented those compounds in accordance with their original descriptions (e.g., intervals) 

when comparing with predicted values (Fig. 3). The prediction error for the set of 236 

ToxCast chemicals compounds is higher than that of the DrugBank compounds (Table I). 

This difference in validation performance might be due to different measuring method 

employed. The protein binding values for the set of 173 DrugBank drug or drug-like 

compounds were measured using the same conventional methods as the data in the modeling 

dataset. In contrast, the fraction bound of ToxCast chemicals was measured using high-

throughput screening technique (28), which is different from the conventional methods such 

as equilibrium dialysis. The experimental variance of conventional methods were estimated 

to be 0.01~10.3% for various compounds (6), which can be used as the estimation of the 

lowest prediction error we can ever expect from modeling such data. However, the 

experimental variance for the ToxCast chemicals is not available.

Comparison between Two Representations of the Plasma Protein Binding Values

As shown in Table I, lnKa models outperform %PPB models on the modeling data and on 

two external validation sets. To analyze the distribution of prediction errors further, we 

plotted MAE values as a function of experimental PPB% values (represented by 10 activity 

bins) for each of the three datasets (Fig. 2). For the modeling dataset (1,242 compounds), the 

lnKa models outperform the %PPB models for the low (%PPB < 30%) and relatively high 

(%PPB > 80%) protein binding (~700 compounds in both), while the %PPB models 

outperform the lnKa models for the medium binding range (%PPB=30–80%; ~400 

compounds) (Fig. 2A). The prediction errors for the DrugBank (Fig. 2B) and ToxCast (Fig. 

2C) chemicals show a similar trend.

Although there is no unanimous quantitative definition of the highly bound fraction, here we 

used “%PPB> 90%” as such, which is the same as FDA’s definition in its draft guideline on 

hepatic impairment. (29) Consequently, 469 out of 1,242 curated compounds in the 

modeling dataset were defined as highly bound and their cross validated MAEs were 12.9% 

and 7.6% for %PPB models and lnKa models, respectively. Likewise, the MAEs of 74 

highly bound DrugBank chemicals were 11.9% and 6.2% for %PPB and lnKa models and 

the MAEs of 156 highly bound ToxCast chemicals were 17.6% and 10.7% for %PPB and 

lnKa models. That is, for the five-fold external cross-validation and two additional 

validation cases, the prediction error for highly bound compounds was significantly lower (p 

< 0.01 by permutation test; n=10,000) for lnKa models.

This performance difference for the two representations of the target endpoints can be 

further emphasized by classifying compounds into three categories and then by examining 

the prediction accuracy for each category. We defined “weakly bound” category as %PPB < 

32%, “bound” category as %PPB from 32% to 90%, and compounds with fraction bound ≥ 

90% as “highly bound”. Our scheme is a modified version of the scheme by Saiakhov et al. 

(30), where %PPB >32% was defined as “bound”, %PPB<19% as “non-bound”, and in-

between values as “intermediate”. The Classification accuracy for each category and overall 

correct classification rate (CCR) for both %PPB models and lnKa models are shown in 

Table II (see also Supplementary Material Table S2). The prediction accuracy of the lnKa 

models for the highly bound categories exceeds that of %PPB models by 20–40% and for 
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weakly bound – by 10–27%, while for the medium category %PPB models have higher 

accuracy by about 20%. When lnKa is used instead of %PPB as the modeling endpoint, the 

overall CCR increases by 7.5%, 8.8%, and 11.6% for the DrugBank, ToxCast, and modeling 

sets respectively.

Superior prediction accuracy of lnKa models for highly-bound compounds has important 

practical implications, because many of the prescribed drugs fall into that group. (31) Small 

changes in fraction bound for those drugs may cause large changes in their free 

concentration in vivo. (15) Furthermore, in an in vivo system, a compound with high fraction 

bound will have a low plasma concentration which leads to its slower clearance and longer 

half-life time. (31) Therefore, prediction errors for highly bound drugs will have larger 

impact on the subsequent estimation of their in vivo pharmacokinetic parameters. Our results 

indicate that the lnKa models reported in this study are more suitable for practical ADMET 

calculations than previously reported models. (7,10,30)

Interpretation of QSAR Models

Interpretation of QSAR models in terms of the important chemical features can be useful for 

designing new drug candidates with desired properties. We ranked descriptors by their 

importance in our lnKa kNN and RF models. For ranking, in case of kNN, we used 

descriptor frequency of occurrence in the individual models of the kNN ensemble. (32,33) In 

case of RF, we used the mean decrease in accuracy after random permutations of 

descriptor’s values, which can affect multiple decision trees of the forest. (22) Ranked top 

10 descriptors for each of the kNN-lnKa and RF-lnKa models are shown in Supplementary 

Material Table S3 and six out of them (ALOGP, ALOGP2, MLOGP, BLTA96, Ui and 

nBM) are actually present in both lists. Lipophilicity is considered a major determinant of 

nonspecific protein binding (10,34), and indeed our results demonstrate that values of 

descriptors representing octanol-water partition coefficient (i.e., ALOGP, ALOGP2, and 

MLOGP) are higher for strong binders than for weak binders (see Supplementary Material 

Fig. S3). Furthermore, the same trend is observed for descriptors representing unsaturated 

bonds (i.e., Ui and nBM) and, by extension, hydrophobicity (see Supplementary Material 

Fig. S3).

Compounds Mispredicted by Individual Models

In effort to understand limitations of the models it is helpful to analyze compounds with 

large prediction errors. There were 76 compounds with prediction errors large than 40 

%PPB (Fig. 4 and Supplementary Material Table S7). However, the average MAE of their 

corresponding nearest neighbors is only 14.3%. Table III shows five examples from that list. 

The predicted %PPB values for azatadine, tilidine, sisomicin, cilazapril, and fluconazole are 

different from their corresponding experimental values, but close to the experimental and 

predicted %PPB of their individual nearest neighbors (cyclobenzaprine, methadone, 

netilmicin, quinapril, and voriconazole, respectively). The pairs of similar compounds with 

large difference in activity (so-called “activity cliffs”) present challenges for QSAR model 

development (35); they can also point to data errors, when structures or activity values are 

wrong. During the dataset curation, we found compounds with contradictory %PPB values 

reported in different literature sources. For example, the fraction bound of biotin was 

Zhu et al. Page 7

Pharm Res. Author manuscript; available in PMC 2015 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reported as 80% in one publication (10), but 20% in another. (36) When we checked the 

original experimental work, we found that “approximately 12% of total biotin in plasma is 

covalently bound, 7% is reversibly bound, and 81% is free”. (36) It is obvious that free 

biotin fraction was mistaken as bound in the first source. On the other side, there are also 

some compounds that are likely to be true activity outliers. For example, the experimental 

%PPB value for fluconazole was reported as 21.2%, 21.8%, and 11% by three different 

measuring methods. (6) However its predicted %PPB is 66.1%, which is close to that of its 

nearest neighbor of voriconazole (Table III, (37,38)). This discrepancy could be due to 

specific interactions of fluconazole that are missed by our models; hence, additional data on 

similar compounds may be needed to update the models.

CONCLUSION

In this study, we curated the largest publicly available plasma protein binding dataset and 

developed predictive QSAR models that were rigorously validated on diverse external sets 

containing both, drugs and industrial chemicals. We compared the results of modeling 

plasma protein binding using two modeling target endpoints: fraction bound (i.e., %PPB) 

and lnKa (“binding constant”-like parameter). We found that lnKa models achieve higher 

prediction accuracy for highly bound compounds: The MAEs were 7.6%, 6.2% and 10.7% 

for the highly bound compounds in the modeling dataset, DrugBank, and ToxCast, 

respectively. The computational models developed in this study can accurately predict 

plasma protein binding of new chemicals, especially so for suspected strong binders, which 

is crucial for practical ADMET applications. Therefore, models developed herein can serve 

as useful virtual screening tools in human health risk assessment (for example, for 

toxicokinetic adjustment of estimated levels of exposure) and in early drug development. All 

models developed in this study are available for open access at our Chembench web-server 

(http://chembench.mml.unc.edu).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

%PPB Percent plasma protein binding

5FCV 5-fold external cross-validation

AD Applicability domain

ADMET Absorption, distribution, metabolism, excretion, and toxicity
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CCR Correct classification rate (balanced classification accuracy)

HSA Human serum albumin

kNN k nearest neighbors

lnKa Natural logarithm of the pseudo binding constant imputed from %PPB

LogP Octanol-water partition coefficient

LOO-CV Leave-one-out cross validation

MAE Mean absolute error

QSAR Qualitative structure-activity relationship

R2 Coefficient of determination

RED Rapid equilibrium dialysis

RF Random forest

RMSE Root mean square error

SVM Support vector machine

Tc Tanimoto similarity coefficient
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Fig. 1. 
Plasma protein binding modeling workflow based on five-fold external cross-validation and 

additional validation on DrugBank and ToxCast chemicals; %PPB and lnKa models are 

QSAR models of %PPB and lnKa endpoints, respectively
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Fig. 2. 
Distribution of mean absolute errors (MAE) of %PPB models (black bars) and lnKa models 

(red bars) predictions for 1,242 modeling set compounds (A), 173 DrugBank compounds 

(B), and 236 ToxCast chemicals (C). Predictions for each endpoint are based on the 

consensus of respective kNN, RF, and SVM models
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Fig. 3. 
Prediction results for 173 DrugBank compounds based on the overall consensus of %PPB 

and lnKa models. Data points with experimental %PPB reported as a range are shown as 

blue bars and circles; unfilled black circles - %PPB reported as exact values; filled black 

circles – qualitative reports; down- and upward pointing red triangles – %PPB reported as 

“less than x” or “greater than x” values, respectively. Gray diagonal corresponds to y=x 

correlation line (R2=0.67). Blue diagonals are 30% off-sets from experimental %PPB values
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Fig. 4. 
QSAR modeling results for the 5 fold cross-validation dataset of 1,242 compounds based on 

consensus prediction of lnKa models (RF, kNN, and SVM). Gray diagonal corresponds to 

y=x correlation line (R2=0.65). Red diagonals are 40% off-sets (red lines) from experimental 

%PPB values, Red dots represent 76 compounds with large prediction errors (MAE > 40%), 

their corresponding nearest neighbors (green diamonds) have average MAE of 14.3%
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