
Elucidating the `Jekyll and Hyde' Nature of PXR: The Case for
Discovering Antagonists or Allosteric Antagonists

Arunima Biswas1, Sridhar Mani1, Matthew R. Redinbo2, Matthew D. Krasowski3, Hao Li1,
and Sean Ekins4,5,6,7
1Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
2Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290,
USA
3Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
4Collaborations in Chemistry, 601 Runnymede Avenue, Jenkintown, PA 19046, U.S.A.
5Collaborative Drug Discovery Inc, Inc. 1633 Bayshore Highway, Suite 342 Burlingame, CA 94010,
USA
6Department of Pharmaceutical Sciences, University of Maryland, MD 21201, U.S.A.
7Department of Pharmacology, University of Medicine & Dentistry of New Jersey (UMDNJ)-Robert
Wood Johnson Medical School, 675 Hoes lane, Piscataway, NJ 08854

Abstract
The pregnane X receptor belongs to the nuclear hormone receptor superfamily and is involved in the
transcriptional control of numerous genes. It was originally thought that it was a xenobiotic sensor
controlling detoxification pathways. Recent studies have shown an increasingly important role in
inflammation and cancer, supporting its function in abrogating tissue damage. PXR orthologs and
PXR-like pathways have been identified in several non-mammalian species which corroborate a
conserved role for PXR in cellular detoxification. In summary, PXR has a multiplicity of roles in
vivo and is being revealed as behaving like a “Jekyll and Hyde” nuclear hormone receptor. The
importance of this review is to elucidate the need for discovery of antagonists of PXR to further probe
its biology and therapeutic applications. Although several PXR agonists are already reported,
virtually nothing is known about PXR antagonists. Here, we propose the development of PXR
antagonists through chemical, genetic and molecular modeling approaches. Based on this review it
will be clear that antagonists of PXR and PXR-like pathways will have widespread utility in PXR
biology and therapeutics.
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PXR biology
The pregnane X receptor (PXR) or NR1I2 (1–5) belongs to the nuclear hormone receptor
(NHR) superfamily of transcription factors containing ligand- and DNA-binding domains.
PXR was initially described as a xenobiotic sensor critical for the transcriptional regulation of
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genes central to detoxification pathways [reviewed in (5,6)]. The first PXR targets to be
elucidated were transporters and drug- and steroid hormone-metabolizing enzymes (7). It is
now known that the physiological importance of PXR extends far beyond xenobiotic protection
(PXR and the related former orphan receptor, constitutive androstane receptor (CAR, NR1I3)
which have both been implicated in ameliorating cholestatic injury to the liver, inhibiting rodent
liver fibrogenesis, increasing cholesterol metabolism, enhancing bone homeostasis, improving
gut mucosal defense, and preventing osteoporosis (8–12). In long lived “little” mice, up-
regulation of genes involved in xenobiotic detoxification are largely through bile-acid mediated
activation of FXR and not through PXR and CAR activation (13). These data suggest that loss
of PXR function, at least in mice, does not play a role in curtailing longevity. More recently,
PXR has been shown to have a significant effect on ablating the inflammatory response
mediated by exogenous toxins (e.g., bacteria) and to have an important role in modulating
inflammatory diseases of the bowel (14–16). A list of commonly known important genes
targeted by PXR (as observed by qPCR, microarray analysis and other studies) can be found
in Supplementary Table 1. While there has been consequently less research into antagonists
of PXR, this may also have clinical implications as described later.

Ongoing research has revealed the biology of PXR is more complex and subtle than first
appreciated. Several investigators have demonstrated that PXR plays a central role in mediating
blood-brain barrier efflux of drugs through the modulation (upregulation) of efflux transporters
like P-glycoprotein (MDR1, ABCB1) and multidrug resistance-related protein 2 (MRP2,
ABCC2). PXR agonists can therefore decrease delivery and retention of central nervous system
directed drugs such as anti-epileptics and analgesics, thereby reducing therapeutic efficacy
(17–24).

The role of PXR in cholesterol metabolism is controversial. PXR activation was initially
thought to have a beneficial effect on cholesterol metabolism, based on a murine model
showing inhibition of the cholic-acid mediated decrease in plasma high-density lipoprotein
(HDL) levels (25). Furthermore, PXR regulates the expression of several key enzymes
controlling the bile acid synthesis pathway, lipid metabolism and glucose homeostasis (26–
28). These and other investigations indicated that activation of PXR was likely to be beneficial
in the treatment of atherogenesis. Earlier studies had also shown in rodents that PXR agonists
(e.g., clotrimazole analogs) increase hepatic apoA1 mRNA (apolipoprotein A1 or apoA1 being
a major protein component of HDL), and plasma HDL-C mRNA (29). More recent data,
however, point towards the complicated but deleterious atherogenic effects of PXR activation
in vivo. First, PXR agonism decreases plasma HDL levels in vivo in atherogenic prone ApoE3-
Leiden.CETP mice (30). Second, while the PXR agonist PCN (pregnenolone carbonitrile)
decreases plasma LDL-cholesterol by 66% in homozygous LDL receptor knock out mice (an
established mouse model of atherogenesis), and also in apolipoprotein E knock out mice, there
is a significant decrease in lipid lipolysis, an increase in VLDL-triglycerides and the
development of hepatic steatosis (marked by increased triglyceride and phospholipid levels in
liver) (31). In another study in mice, PXR mRNA is significantly elevated in non-alcoholic
steatohepatitis (NASH)-induced livers, implicating a role for PXR (32). Furthermore, in
humans, the PXR agonist rifampicin induces significant increases in blood cholesterol and
fasting triglycerides (33). Since HDL-cholesterol and triglycerides are independent
prognosticators of cardiovascular disease and mortality (34), PXR agonism in the context of
atherogenesis would appear detrimental based on the most recent studies. In a healthy
individual, the dual and opposite roles of PXR with respect to cholesterol metabolism
(decreasing LDL-cholesterol, but increasing triglycerides) may neutralise each other. But in
people with `metabolic syndrome' (high risk of cardiovascular disease and diabetes)
triglyceride accumulation may be extremely damaging. Thus, a PXR antagonist may help to
prevent accumulation of triglyceride and phospholipids in the liver (a hallmark of hepatic
steatosis and NASH), which may be especially effective in people with “metabolic syndrome”.
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In cancer growth and carcinogenesis, there is a preponderance of evidence to suggest that PXR
induces cell growth and is pro-carcinogenic (10,11,35–72) [Table 1,Supplementary Table 2],
thereby acting as a possible oncogene. Several mechanisms have been proposed and include
activation of the reactive oxygen species (ROS) system, down-regulation of pro-apoptotic
genes with up-regulation of inhibitors of apoptosis, and cytochrome P450 (CYP)-mediated
activation of pro-carcinogens (52,60), (61,68). One report provides contrary evidence that PXR
induces apoptosis in breast cancer cells through nitric oxide (NO)-dependent stabilization of
p53 and up-regulation of cell cycle regulatory and pro-apoptotic genes such as p21, PUMA
and BAX (73). However, other reports show that PXR can induce cell proliferation in breast
cancer through mechanisms involving the organic anion transporter 1A2 (OATP1A2) mediated
import of estrogen sulphate and/or by altering co-repressor (SMRT) binding to estrogen
receptor-α (ERα) (74). The effects of PXR on ERα-mediated transcription, is cancer cell type
specific and dependent on the estrogen response element. Indeed, estrogen binds and activates
human PXR, which could also contribute estrogenic effects in breast cancer (75). In this
context, there is an inverse correlation between PXR mRNA expression in breast tumors
compared with ERα (76,77). Together, these data suggest that estrogen could act through PXR
in ER-positive tumors, thereby, inducing growth. Notably, in an MMTVneu mouse model of
breast cancer, 4-nonyphenol (an environmental estrogen that also activates PXR and CYP
enzymes that produce estriol) induces a marked increase in estriol-induced mammary tumors.
All these data support the role for PXR in inducing breast tumors through multiple cancer
specific pathways (78).

In 60 human breast carcinoma specimens, PXR was detected in carcinoma tissues but not in
non-neoplastic and stromal cells of breast tumors. A significant positive correlation was
detected between PXR and both the histologic grade and the lymph node status of the carcinoma
cases. In the same report, in ER-positive cases, PXR expression was also positively correlated
with expression of the cell proliferation marker Ki-67. The overall implications of these data
are that PXR may play a significant anti-apoptotic role in breast cancer (79). Indeed, these
results support PXR's role as a protector against tissue damage, a role that may be patho-
physiologic in neoplastic cells. In addition, perhaps more widely known is that PXR has been
shown to induce cancer drug resistance by regulating expression of enzymes and transporters
that can affect chemotherapy metabolism and efflux (36,69–72,80).

PXR agonist and antagonist pharmacology
There have been many studies that characterize endogenous and exogenous agonists that
activate PXR (81,82). Subsequently we now know that PXR has the broadest ligand specificity
of the NHR superfamily, with a structurally diverse array of compounds able to activate PXR
(83–87). PXR agonists include prescription medications (anticonvulsants, HIV protease
inhibitors, rifampicin), herbal drugs (St. John's wort), steroid hormones, bile salts, and fat-
soluble vitamins. Multiple crystal structures of human PXR, unliganded and bound to different
agonists, revealed a large, spherical, and flexible ligand-binding pocket (LBP) (88–92). These
properties of the human PXR LBP make computational prediction of PXR-ligand interactions
difficult, for example docking a small molecule into a large binding site.

PXR activation has been implicated in a number of clinically significant adverse drug-drug
interactions. In many of these cases, PXR activation by a drug such as rifampicin or the St.
John's wort component, hyperforin leads to the up-regulation of drug-metabolizing enzymes
such as the CYP3A isoforms that can metabolize concomitant medications. Hyperforin, is a
potent PXR agonist (EC50 of 23 nM) and significantly affects serum concentrations of the
chemotherapeutic agent irinotecan (CPT-11). Co-administration of irinotecan and St. John's
wort reduces the gastrointestinal toxicity of irinotecan but also its anti-neoplastic efficacy. In
this context, activation of PXR is a double edge sword (89,93–98). Hence, development of oral
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PXR antagonists with rapid absorption within the stomach [so that intestinal PXR antagonism
is spared in all cases, as PXR protects the intestine against inflammatory bowel disease (14)]
and high hepatic extraction may control such drug interactions. PXR activation may also affect
the metabolism of steroid hormones and fat-soluble vitamins. Chronic administration of a PXR
activator can lead to therapeutic failure of estrogen-containing oral contraceptives by
metabolism of ethinyl estradiol or osteomalacia by increased clearance of 1,25-
dihydroxyvitamin D3. Antagonism of hepatic PXR may therefore be beneficial in preventing
undesirable side effects in patients who must chronically take medications that are PXR
activators. Another example where the antagonism of hepatic PXR would be clinically
beneficial is acetaminophen hepatotoxicity, where PXR activation increases the conversion of
acetaminophen to a hepatotoxic metabolite. As such, there would appear to be a market for
successful PXR antagonists (58,99,100) (Table 1).

There have been relatively few attempts to understand or develop in silico models of
antagonism of PXR (85). One computational approach focused on the ligand binding domain
(LBD) using the crystal structure of PXR bound to T-0901317 (92), but this proved difficult
(101). The list of PXR antagonists is however steadily growing and even includes some
compounds first characterized as weak PXR agonists (Table 2). For example, the azole
antagonists ketoconazole (102), fluconazole and enilconazole (103) have all been shown to
inhibit the activation of PXR in the presence of paclitaxel, while behaving as weak agonists
on their own. The azole anti-fungals should more appropriately be called non-competitive
allosteric antagonists as they do not directly bind to the LBD. Competitive antagonists
reversibly bind to receptors at the same binding site (active site) as the endogenous ligand or
agonist, but without activating the receptor, and block agonist binding. Agonists and
competitive antagonists “compete” for the same binding site on the receptor. The level of
activity of the receptor will be determined by the relative affinity of each molecule for the site
and their relative concentrations. The effects of a competitive antagonist may be overcome by
increasing the concentration of agonist. But, non-competitive or allosteric antagonists bind to
a distinctly separate binding site from the agonist, exerting their action at that receptor via
another binding site. Thus, they do not compete with the agonist for binding. The bound
allosteric antagonists may result in a decreased affinity of an agonist for that receptor, or
alternatively may prevent conformational changes in the receptor required for receptor
activation after the agonist binds. No amount of agonist can completely overcome the inhibition
once it has been established and thus allosteric non-competitive antagonists can be potentially
more effective than competitive antagonists. Ketoconazole does not bind to the LBD of PXR,
but it was shown to inhibit the interaction of PXR with the co-activator SRC-1 (steroid receptor
coactivator-1) suggesting binding to the AF-2 (Activation Function 2) site (102). This
hypothesis was further confirmed with site-directed mutagenesis data (103), indicating
ketoconazole behaved like the histidine residue of SRC-1 (103). Pharmacophore modeling of
the three azole antagonists and docking with human PXR additionally confirmed these
molecules were likely interacting outside the LBD (86) as allosteric antagonists. Ketoconazole
was docked into the exterior site, and the piperazine ring was predicted as solvent exposed.
The pharmacophore model also indicated the minimum requirements of these azoles,
suggesting the complimentary nature of different computer-aided antagonist design methods
(86). These computational approaches have also been used to search databases of commercially
available and FDA approved molecules for novel non-azole PXR antagonists followed by in
vitro testing. Several new PXR antagonists were discovered in this way (Table 2) which we
suggest may also be binding similarly as allosteric antagonists.

PXR in non-mammalian species
So far, this review has focused primarily on PXRs of humans and rodents. With only a few
exceptions, the physiologic functions of PXRs of non-mammalian species are not well-
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understood. Studies of zebrafish PXR have suggested a role in regulating organogenesis during
stressful environments and xenobiotic detoxification (104–106), The ligand specificities of
non-mammalian PXRs differ significantly from that of human and other mammalian PXRs,
leading to speculation that cross-species differences in exogenous and/or endogenous toxic
compounds provide evolutionary selective pressure for PXR ligand diversity (84,107).
Pharmacophore analysis performed on 16 agonists for mammalian (human, mouse, rat),
chicken, frog and zebrafish PXRs highlighted the effect of evolution on ligand specificity
(108), with mammals possessing similar pharmacophores while the other species were very
different. Non-mammalian PXRs generally have narrower selectivity for ligands, with
homology models of frog and zebrafish PXRs, predicting ligand binding pockets substantially
smaller than that for human PXR (108). Pharmaceutical compounds or environmental
contaminants that are activators of non-mammalian PXRs could therefore have deleterious
effects on wildlife and the ecosystem.

It should be noted, however, that the implications for the therapeutic alteration of xenobiotic
signaling and drug resistance is far more important in non-mammals. Interestingly, PXR-like
pathways appear to exist in invertebrate species. In the fruit fly Drosophila, the ortholog of
PXR, DHR96, induces decreased sensitivity to the pesticide DDT (109,110). DHR96 controls
metabolic and stress-response genes, thus acting as a xenosensor for toxin resistance and could
therefore decrease sensitivity of flies to pesticides. In the Chordate Ciona intestinalis, there is
a vitamin D receptor (VDR)/PXR ortholog that has a low sequence identity to vertebrate PXR
and VDR which is activated by a small set of planar molecules (104,111). There are also other
PXR-like pathways which may not be orthologous to PXR. For example, in yeast cells, there
is a pathway regulating multidrug resistance in which the receptor, Pdr1p, (functionally similar
to PXR) reveals an unexpected analogy between fungal and metazoan regulators of multidrug
resistance. Activation of Pdr1p induces the MDR phenotype in S. cerevisiae and C. glabrata
(112). In the worm C. elegans, a PXR-like receptor, daf12 (or nhr8, nhr48) also induces toxin
resistance. In favorable environments, Daf12 induces reproductive growth and inhibits the
dauer diapause [which also affects developmental age, adult longevity (113) and is directly
implicated in cell survival in the mid-larval stage]. In unfavorable environments, it has the
opposite effect, inhibiting reproductive growth and initiating the dauer diapause. Daf12
antagonists could therefore reverse this process in both environments (113,114). A final
example of a PXR-like pathway is the steroid hormone ecdysone, acting through the orphan
nuclear receptor DHR78, which is required for growth and viability during Drosophila larval
stages (115). Thus, from the above discussion it seems that a broad range of non-mammalian
species have PXR-like pathways that regulate toxin/drug resistance. Thus an antagonist (or
allosteric antagonist) to PXR in these species may help in developing effective anti-fungal or
anti-nematode agents.

Summary and future directions
How might we find new molecules that could interfere with PXR and enable a more complete
understanding of its functional role in different species? We have already described some early
success using pharmacophores for allosteric antagonists and this work followed their earlier
use in identification of PXR agonists alongside other computational methods (116–118).
Different PXR agonist pharmacophores built with unique datasets (86) have also been used
with in vitro data to predict antibiotics that activate PXR and induce CYP3A4 (119). Machine
learning (support vector machines, K-nearest neighbors, recursive partitioning and random
forest) methods for predicting PXR agonists have been used most recently (117,120,121) with
large sets of binary data. Their results with increasingly larger external test sets of molecules
indicate that the support vector machine (SVM) method performs well and generally
outperforms docking methods (120,121) with test set accuracies between 72 and 81% (121).
Studies evaluating different molecular descriptors, algorithms and larger quantitative datasets
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will be the likely trend in the future. Docking and protein-based modeling methods have been
less widely used, although a recent study has compared the splice variant PXR.2 with PXR.1,
using a homology model lacking the 37 amino acids that make up helix 2, to suggest why
agonists do not appear to activate it (122). One could imagine homology models of various
site directed mutants to narrow the ligand binding domain or the antagonist site and engineer
specific interactions between ligand and protein. The search for further PXR antagonists (or
allosteric antagonists) could be dramatically expanded to search many more diverse libraries
than the few analyzed to date (86). In addition, one could also try developing tissue-selective
PXR antagonists. These could be used to selectively target neoplastic cells or disrupt
undesirable PXR-mediated up-regulation of drug metabolism in the liver or elsewhere. It may
also be possible to search for additional antagonist or allosteric sites on PXR that could
modulate activity, and then apply computational approaches to find molecules that could fit
into these sites selectively. For some purposes, having more than one antagonist might be
preferable. As the literature continues to grow around PXR we will increasingly require systems
biology analysis software to track the complex interactions that have already been used to
visualize PXR and downstream genes (119,123).

Where might we look for additional important roles for PXR in the future? NHRs seem to have
a developing role in resisting infection from mycobacteria such as tuberculosis (124–126).
VDR gene variants have been suggested to regulate the cytotoxic T-cell response via 1,25(OH)
2D3 mediated suppression of granzyme A (a serine protease that induces apoptosis) expression
in tuberculosis infection (126). FXR regulates the tryptophan-aspartate containing coat protein
(TACO) which plays a key role in the entry/survival of tuberculosis. To date we are not aware
of similar roles for PXR. But, it may be worth looking into whether rifampicin (127) and other
antibiotics (119) binding to PXR can make this a drug target that could be exploited with
downstream signaling effects that impact on infection in macrophages. It would be interesting
to observe the effect of antagonists or allosteric antagonists in this scenario. They could
improve the drug-drug interactions that occur upon treatment with HIV therapies
concomitantly, impacting therapeutic response. Alternatively, there could be distant PXR
orthologs or PXR-like pathways in bacteria or parasites that could be targeted by antibiotics.
To our mind this deserves further study especially as the search for new therapies for
tuberculosis and other pandemic diseases is urgently needed (128) and recent reviews have
pointed to the severe shortage of compounds in the pipeline for infectious diseases overall
(129).

In summary, PXR has a multiplicity of roles in vivo and behaves like a “Jekyll and Hyde”
NHR. Some of these roles are conserved (e.g., regulation of xenobiotic metabolism) but others
are divergent and tissue dependent (e.g., cell proliferation, differentiation, etc). In some tissues
and conditions, PXR activation may seem beneficial while in other cases it may be deleterious,
making a significant argument in favor of the continued development of PXR-directed
antagonists and allosteric antagonists (Figure 1). These compounds could have wide-reaching
implications from human patho-physiology to the development of antimicrobials (e.g., anti-
fungal, anti-bacterial and anti-parasitic drugs) and anticancer compounds. PXR antagonists or
allosteric antagonists do not appear to be currently actively pursued by biotechnology or
pharmaceutical companies, perhaps because of the complexity of the biology and the lack of
understanding of its role. However, development of potent PXR allosteric antagonists suitable
for animal studies could provide key proof-of-concept for human drug design.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
PXR roles in different species.
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Table 1

Possible therapeutic applications of PXR antagonists or allosteric antagonists.

Therapeutic application Effects of PXR antagonist

Cancer Decrease cell proliferation anti-apoptotic role in breast cancer (79), Interfere with
cancer drug resistance / induction of enzymes and transporters affecting
chemotherapy(36,69–72,80)

Drug-Drug Interactions Prevent failure of ethinyl estradiol

Osteomalacia Prevent increased clearance of 1,25-dihydroxyvitamin D3

Acetaminophen hepatotoxicity Prevent the conversion of acetaminophen to a hepatotoxic metabolite

Immunology Does PXR have a role?

Blood Brain Barrier (BBB) Could antagonists of PXR be used to make the BBB more permeable by block
increased expression of transporters that normally efflux compounds and maintain
a tight BBB?

Intestine Could antagonists of PXR be used to turn off expression of enzymes and
transporters in the gut to increase bioavailability?
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Table 2

PXR antagonists or allosteric antagonists identified in vitro.

Compound Antagonist data Reference

ET-743 IC50 2 nM, (130)

Polychlorinated biphenyls Ki 0.6–24.5 μM (131)

Ketoconazole* IC50 ~20 μM (102)

Fluconazole IC50 ~20 μM (103)

Enilconazole IC50 ~20 μM (103)

Sulforaphane# IC50 12 μM (132)

Coumestrol IC50 12 μM (133)

HIV protease inhibitor A-792611 IC50 ~2 μM (134)

SPB03255 IC50 6.3 μM (86)

SPB00574 IC50 24.8 μM (86)

Leflunamide IC50 6.8 μM (86)

Itraconazole IC50 8.96 μM (86)

SPB3256 IC50 6.21 μM (86)

SPB6061 IC50 5.22 μM (86)

SPB06257 IC50 16.42 μM (86)

SPB02372 IC50 5.82 μM (86)

*
(+)-2R,4S-Ketoconazole 16.4 μM, (−)-2S,4R-Ketoconazole 16.6 μM (86)

#
(S)-Sulforaphane 5.64 μM, (R)-Sulforaphane 5.58 μM (86)
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