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abstractOBJECTIVE: To evaluate the effect of anaerobic antimicrobial therapy for necrotizing enterocolitis (NEC) on
clinical outcomes in very low birth weight (#1500 g) infants.

METHODS:We identified very low birth weight infants with NEC from 348 US NICUs from 1997 to 2012. Anaerobic
antimicrobial therapy was defined by antibiotic exposure on the first day of NEC. We matched (1:1) infants
exposed to anaerobic antimicrobial therapy with infants who were not exposed by using a propensity score
stratified by NEC severity (medical and surgical). The primary composite outcome was in-hospital death or
intestinal stricture. We assessed the relationship between anaerobic antimicrobial therapy and outcome by using
a conditional logistic regression on the matched cohort.

RESULTS: A total of 1390 infants exposed to anaerobic antimicrobial therapy were matched with 1390 infants
not exposed. Mean gestational age and birth weight were 27 weeks and 946 g, respectively, and were
similar in both groups. We found no significant difference in the combined outcome of death or strictures,
but strictures as a single outcome were more common in the anaerobic antimicrobial therapy group (odds
ratio 1.73; 95% confidence interval, 1.11–2.72). Among infants with surgical NEC, mortality was less
common with anaerobic antimicrobial therapy (odds ratio 0.71; 95% confidence interval, 0.52–0.95).

CONCLUSIONS: Anaerobic antimicrobial therapy was not associated with the composite outcome of death or
strictures but was associated with an increase in intestinal strictures. This higher incidence of intestinal
strictures may be explained by the fact that death is a competing outcome for intestinal strictures,
and mortality was slightly lower in the anaerobic cohort. Infants with surgical NEC who received
anaerobic antimicrobial therapy had lower mortality.

WHAT’S KNOWN ON THIS SUBJECT: Necrotizing
enterocolitis is associated with high mortality
and morbidity in premature infants. Anaerobic
antimicrobial therapy has been associated with
increased risk of intestinal strictures in a small
randomized trial. Optimal antimicrobial therapy
for necrotizing enterocolitis is unknown.

WHAT THIS STUDY ADDS: Anaerobic antimicrobial
therapy was associated with increased risk of
stricture formation. Infants with surgical necrotizing
enterocolitis treated with anaerobic antimicrobial
therapy had lower mortality. For infants with
medical necrotizing enterocolitis, there was no
added benefit associated with anaerobic
antimicrobial therapy.
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Necrotizing enterocolitis (NEC)
is a common and devastating
intestinal complication of
prematurity. Incidence of NEC ranges
from 3% in infants with birth weight
(BW) of 1251 to 1500 g to 11% for
infants born weighing ,750 g.1

Despite treatment, 15% of infants
who develop NEC die, and mortality
approaches 50% in infants with
surgical NEC.2,3 Survivors often
suffer from complications including
intestinal stricture, short
bowel syndrome, and poor
neurodevelopmental outcomes.4–6

The pathogenesis of NEC involves
a combination of factors, including
genetic predisposition, immaturity
of the intestinal tract, imbalance
in microvascular tone, abnormal
microbial intestinal colonization, and
infectious agents.7–10 Although no
single microorganism has been
identified, infection probably plays
a key role in the disease process,
as demonstrated by bacterial
overgrowth in the intestinal
mucosa and the occurrence of NEC
outbreaks.8,11,12 A wide range of
pathogens are associated with NEC,
including aerobic and anaerobic
bacteria.10,13–19 Therapy for NEC
includes broad-spectrum antibiotics
with coverage of bacteria from the
intestinal tract. In a small cohort
of infants with NEC, a randomized
controlled trial with 42 infants
observed no difference in mortality
or intestinal perforation in those
who received an antibiotic regimen
of ampicillin, gentamicin, and
clindamycin compared with those
who received only ampicillin and
gentamicin.20 However, there was
a higher rate of intestinal strictures
in the clindamycin group. Despite
this finding, clindamycin is often
used for NEC in the nursery, and the
safety and efficacy of other antibiotic
regimens for NEC have not been
established.20–22 The objective of the
current study was to assess the
association of anaerobic antimicrobial
therapy and subsequent clinical

outcomes in very low birth weight
(VLBW, #1500 g BW) infants.

METHODS

Study Design and Setting

We identified all VLBW infants with
medical or surgical NEC discharged
from 348 NICUs managed by the
Pediatrix Medical Group from 1997 to
2012. The Pediatrix Medical Group
maintains a data warehouse that is
populated from an electronic medical
record that prospectively captures
information from notes generated by
clinicians. Data on multiple aspects of
care are entered into the system to
generate admission notes, daily
progress notes, procedure notes, and
discharge summaries. Information is
collected on maternal history and
demographics, medications,
respiratory support, laboratory
results, culture results, procedures,
and diagnoses. The study was
approved by the Duke University
Institutional Review Board without
the need for written informed
consent because the data were
collected without identifiers.

Definitions

Antimicrobials were considered to
provide anaerobic coverage if they
were previously reported as having
in vitro activity against the major
obligate anaerobic bacilli from the
intestinal flora. These antimicrobial
agents included metronidazole,
clindamycin, cefoxitin, any carbapenem,
moxifloxacin, piperacillin–tazobactam,
ticarcillin–clavulanate,
ampicillin–sulbactam, and
amoxicillin–sulbactam. An infant
was defined as receiving anaerobic
antimicrobial therapy based on
antibiotics received on the first day
of NEC. The diagnosis and severity
of NEC were assigned at each site by
the attending neonatologist and
included either medical NEC or
surgical NEC. Surgical indication
included the need for a peritoneal
drain. The assessment of NEC severity
was not based on standardized

criteria and was assigned daily by the
treating physician. NEC severity
was defined on the first day of the
course of NEC regardless of change
in severity thereafter. Infants
were excluded if they received
antimicrobial agents for ,5
consecutive days from the start of
NEC, unless they died during this
5-day period. Mortality was defined
as in-hospital death from any
cause. Mortality status was defined
as missing for infants with
nonconvalescent transfers of care.
Presence of intestinal stricture was
defined as any diagnosis of
noncongenital intestinal obstruction
after the start of the NEC episode.
The diagnosis of intestinal
obstruction was assigned by the
treating physician in the electronic
medical record, and methods used to
assign this diagnosis were not
available. If an infant had .1 episode
of NEC, only the first episode was
considered in the analysis.

Demographic data included gender,
race, BW, gestational age (GA),
postnatal age, and Apgar score at 5
minutes. Surrogates for severity of
illness on the first day of NEC were
collected and included ventilator
support (yes or no), highest level of
fraction of inspired oxygen (FIO2), and
inotropic support (yes or no).

Statistical Methods

The primary outcome was in-hospital
death or development of an intestinal
stricture. Secondary outcomes
consisted of death or strictures
analyzed individually. An additional
secondary outcome was assessed
among the subgroup of infants with
medical NEC: the composite of
progression from medical to surgical
NEC or death within the first 7 days
of the NEC episode. Outcomes were
compared between infants exposed
and not exposed to anaerobic
antimicrobial therapy. Because
infants with more severe illness are
more likely to receive anaerobic
antimicrobial therapy, propensity
score (PS) 1:1 matching was used to

e118 AUTMIZGUINE et al



ensure comparison of similar
infants.23 We used baseline
demographics and surrogates for
severity of illness that might predict
both anaerobic antimicrobial therapy
and primary outcome to build the
PS model by using a multivariable
logistic regression.24 The PS model
was stratified by NEC severity and
derived from the following covariates:
postnatal age, ventilator support, FIO2
requirement, inotropic support on
day 1 of NEC, GA, small-for-GA
status, gender, race, Apgar score at
5 minutes, discharge year, and site.
Because site was analyzed as a fixed
effect in the PS model, no PS could
be estimated for infants belonging
to a site with an insufficient number
of observations or a site where every
infant had the same anaerobic
coverage status. We included the
discharge year as a categorical
variable in the PS model to adjust for
changes in care over the study period.
We assessed covariate balance across
treatment groups by comparing
covariate means. Histograms and
kernel density plots of PS across
groups were also examined. We
performed 1:1 matching by using the
nearest neighbor without
replacement, and it was allowed only
if the difference in PS between case
and control was ,0.01. On the
PS-matched cohort, we assessed the
effect of anaerobic antimicrobial
therapy on clinical outcomes by using
a logistic regression conditioned on
the matched pair.23

Because of previous literature linking
clindamycin with intestinal strictures,
we investigated the effects of
clindamycin specifically, as a secondary
analysis. We built a separate PS model
estimating the conditional probability
of receiving clindamycin among infants
who were exposed to clindamycin and
those who were not exposed to
anaerobic antimicrobial therapy, by
using the same covariates as in the
primary analysis. We then compared
outcomes by using a conditional
logistic regression after 1:1 matching
based on PS.

Finally, we performed a multivariable
logistic regression without matching
to compare outcomes between infants
exposed and not exposed to any
anaerobic antimicrobial therapy,
adjusting for the same covariates
used in the PS of the primary analysis.

Demographic and baseline
characteristics were summarized and
compared between 2 groups: infants
exposed and not exposed to
anaerobic antimicrobial therapy on
the first day of NEC. A x2 test for
categorical variables and a Wilcoxon
rank-sum test or a t test for
continuous variables were used to
assess differences between groups.
We performed statistical analyses by
using Stata 12 (Stata Corp, College
Station, TX). All statistical tests were
2-sided, with significance defined as
P , .05.

RESULTS

We identified 6737 infants meeting
the inclusion criteria, of whom 3358
(50%) were exposed to anaerobic
antimicrobial therapy and 3379
(50%) were not. Overall, 4958 (74%)
had medical NEC, and 1779 (26%)
had surgical NEC. The mean GA was
27 weeks (5th, 95th percentile:
23, 31) and 27 weeks (5th, 95th

percentile: 24, 31) in the anaerobic
antimicrobial therapy and control
groups, respectively. The mean BW
was 936 g (5th, 95th percentile: 530,
1417) and 952 g (5th, 95th
percentile: 540, 1420) in infants
exposed to anaerobic antimicrobial
therapy and those who were not,
respectively. Infants who were
exposed to anaerobic antimicrobial
therapy were more likely to be on
ventilation (2152 [64%] vs 1467
[45%], P , .001) and vasopressor
therapy (839 [25%] vs 283 [8%],
P , .001) and had a higher median
FIO2 (30% vs 25%, P , .001)
compared with infants not exposed to
anaerobic antimicrobial therapy.

After nearest-neighbor PS matching,
1390 infants exposed to anaerobic
antimicrobial therapy were matched
to infants who were not exposed to
anaerobic antimicrobial therapy to
yield a final cohort of 2780 infants
(41% of the initial cohort) (Fig 1).
PS matching provided a well-balanced
cohort based on baseline
characteristics (Table 1), and PS was
equally distributed in both treatment
groups (Supplemental Fig 3). The
mean GA and BW of the cohort were
27 weeks (23, 32) and 946 g (540,
1421), respectively. In the matched
cohort, 75% (n = 2074) of infants had

FIGURE 1
Study population flowchart.
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medical NEC, and 706 (25%) had
surgical NEC. Among infants with
anaerobic antimicrobial therapy,
clindamycin was the most frequently
used anaerobic antibiotic (56%),
followed by metronidazole (29%)
and piperacillin–tazobactam (9%).
However, clindamycin use decreased
and metronidazole use increased
during the study period (Fig 2).

Overall, 26% (n = 725) of matched
cohort infants died before discharge
or developed intestinal strictures;
23% of infants (n = 645) died, and
3% (n = 84) developed strictures
(4 infants had strictures before
death). Fewer infants experienced
the composite outcome of death
or strictures in the anaerobic
antimicrobial therapy group, but the
risk was not significantly different

(odds ratio [OR] 0.96; 95%
confidence interval [CI], 0.80–1.14;
Table 2). We observed similar results
for the individual outcome of death
(OR 0.87; 95% CI, 0.72–1.05).
Conversely, more infants developed
strictures in the anaerobic
antimicrobial therapy group
compared with the control group (OR
1.73; 95% CI, 1.11–2.72).

Among infants with medical NEC
(n = 2074), all covariates used in the
PS model were well balanced after
matching (Supplemental Table 4).
In this subgroup, we observed
a nonsignificant increase in death or
strictures in infants treated with
anaerobic antimicrobial therapy (OR
1.09; 95% CI, 0.87–1.37; Table 2).
Death rates were similar in both
treatment groups (OR 0.99; 95% CI,

0.78–1.26). Strictures were more
common in infants exposed to
anaerobic antimicrobial therapy
(OR 1.60; 95% CI, 0.97–2.64),
although this result was not
statistically significant. The number
of infants with medical NEC who
progressed to surgical NEC or died
within the first 7 days of the episode
was similar in both treatment groups,
with 121 (12%) and 126 (12%)
infants in the nonanaerobic and
anaerobic antimicrobial treatment
groups, respectively (OR 1.05; 95%
CI, 0.80–1.37).

Among infants with surgical NEC
(n = 706), baseline clinical
characteristics were well balanced
across treatment groups after PS
matching (Supplemental Table 4).
In this subgroup, fewer infants either
died or developed strictures in the
anaerobic antimicrobial therapy
group, although this result was not
statistically significant (OR 0.77; 95%
CI, 0.57–1.03; Table 2). Death was
significantly less common in infants
exposed to anaerobic antimicrobial
therapy (OR 0.70; 95% CI,
0.52–0.95), whereas we observed
a nonsignificant increase in strictures
in exposed infants (OR 2.40; 95% CI,
0.85–6.81).

When we restrict the anaerobic
cohort to the infants who received
only clindamycin, the matched cohort
included 1922 infants, of whom 961
(50%) were exposed to clindamycin
and 961 (50%) were not exposed to
any anaerobic antimicrobial therapy.
Baseline characteristics used in the
PS were well balanced in both
treatment groups (Supplemental
Table 5). The composite outcome of
death or stricture was similar in the
clindamycin and control groups, as
were the outcomes of death alone and
stricture alone (Table 3).

In addition to our primary analysis,
the multivariable logistic regression
model developed in the full,
prematched cohort (N = 6737)
yielded similar results to those
obtained under matching but with

TABLE 1 Demographics and Clinical Characteristics of the Matched Cohort

Anaerobic Antimicrobial
Therapy

P

No, n = 1390 Yes, n = 1390

GA, wk .96
,25 228 (16) 233 (17)
25–28 737 (53) 736 (53)
.28 425 (31) 421 (30)

BW, g .39
,750 428 (31) 406 (29)
751–1000 414 (30) 391 (28)
1001–1250 302 (22) 330 (24)
1251–1500 246 (18) 263 (19)

Small for GA 275 (20) 270 (19) .81
Male 736 (53) 742 (53) .82
Day of lifea .49
#7 124 (9) 107 (8)
8–30 832 (60) 849 (61)
$31 434 (31) 434 (31)

Race or ethnicity .91
White 574 (41) 569 (41)
African American 425 (31) 415 (30)
Hispanic 329 (24) 345 (25)
Other 62 (5) 61 (4)

5-min Apgar score .83
,3 70 (5) 68 (5)
4–6 293 (21) 306 (22)
7–10 1027 (74) 1016 (73)

NEC stagea ..99
Medical 1037 (75) 1037 (75)
Surgical 353 (25) 353 (25)

Mechanical ventilationa 747 (54) 743 (53) .88
Inotropic supporta 185 (13) 193 (14) .66
Highest fraction of supplemental oxygen,a

median (5th, 95th percentile)
27 (21, 100) 26 (21, 100) .81

Data presented as frequency (%) unless specified otherwise.
a On the first day of the NEC episode.
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a statistically significant difference
in death and strictures between
treatment groups (OR of death or
strictures 0.90; 95% CI, 0.76–1.07;
OR of death 0.80; 95% CI, 0.67–0.97;
OR of strictures 1.67; 95% CI,
1.16–2.39).

DISCUSSION

We found no significant difference in
the risk of the composite outcome of
death or strictures in all infants with
NEC exposed or not exposed to
anaerobic antimicrobial therapy. We
did observe lower mortality in infants
with surgical NEC treated with
anaerobic antimicrobial therapy and

higher risk of strictures among
all infants with NEC who received
anaerobic antimicrobial therapy.

The overall mortality we observed
(26%) is consistent with previous
data from cohorts combining infants
with medical and surgical NEC
(15%–25%),20,21,25 but the incidence
of intestinal strictures is in the lower
range reported in the literature
(3% vs 4%–30%).4,20,21,26–30 The
wide range of stricture incidence
reported is probably a result of
inconsistent definitions leading to
ascertainment bias; some studies might
report all strictures as diagnosed
with radiologic tests, whereas others

might report only symptomatic
strictures. The diagnosis of stricture
in our data is limited to those
reported by the treating physician in
the electronic medical record. The
methods used to assign the stricture
diagnosis were not standardized and
may have varied between infants.

For adults and older children,
evidence strongly supports the
recommendation of anaerobic
antimicrobial therapy as part of the
empirical regimen for complicated
intra-abdominal infections.31 On the
other hand, optimal antimicrobial
therapy for NEC is unknown,
including whether to use empirical
anaerobic antimicrobial therapy. One
trial randomly assigned 42 infants
with NEC receiving ampicillin and
gentamicin to clindamycin or no
additional therapy.20 Clindamycin
did not affect mortality, intestinal
perforation, or gangrene but was
associated with significantly more
intestinal strictures (6/15 survivors
[40%] vs 1/18 [5%] in the control
group; P = .02). Of note, infants in this
previous trial were excluded if
intestinal perforation occurred
,12 hours after randomization and
therefore are most comparable to
our subgroup of infants with medical
NEC. For infants with medical NEC,
our findings are consistent with
previous results demonstrating
no added benefit of anaerobic
antimicrobial therapy on mortality,
but we observed only a slight
nonsignificant increased risk of
stricture.20 In addition, anaerobic
antimicrobial therapy did not prevent
progression to surgical NEC or
mortality within 7 days of the NEC
episode. In contrast, anaerobic
antimicrobial therapy was associated
with lower mortality in infants with
surgical NEC.

Post-NEC stricture is an intestinal
obstruction resulting from wound
healing, most prominently in the
intestinal submucosa.26 Stricture is
probably a marker of severity of NEC,
and it is possible that the lower rate

FIGURE 2
Distribution of therapy among infants receiving anaerobic antimicrobial therapy on the first day
of NEC. Cohort after PS matching. Others = moxifloxacin, ticarcillin–clavulanate, cefoxitin, and
ampicillin–sulbactam.

TABLE 2 Anaerobic Antimicrobial Therapy and Clinical Outcomes

Outcomes Anaerobic Antimicrobial
Therapy

OR (95% CI) P

No, n (%) Yes, n (%)

Overall, N = 2780a

Death or strictures 368 (26) 357 (26) 0.96 (0.80–1.14) .62
Death 338 (24) 307 (22) 0.87 (0.72–1.05) .14
Strictures 31 (2) 53 (4) 1.73 (1.11–2.72) .02

Medical NEC, N = 2074
Death or strictures 186 (18) 199 (19) 1.09 (0.87–1.37) .45
Death 162 (16) 161 (16) 0.99 (0.78–1.26) .95
Strictures 25 (2) 40 (4) 1.60 (0.97–2.64) .07

Surgical NEC, N = 706
Death or strictures 182 (52) 158 (45) 0.77 (0.57–1.03) .08
Death 176 (50) 146 (41) 0.71 (0.52–0.95) .02
Strictures 6 (2) 13 (4) 2.40 (0.85–6.81) .10

a Four infants were diagnosed with strictures before death.
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of strictures in the nonanaerobic
treatment group was a function of the
death of infants with the most severe
cases of NEC, which precluded the
occurrence of strictures. Strictures
may also be directly related to
a specific drug such as clindamycin,
although the biological mechanism is
unknown. Moreover, other than the
study from Faix et al,20 we found no
report in the literature linking
clindamycin (or any antibiotics) to
intestinal strictures. The fact that we
observed similar results when we
limited our analysis to infants treated
with clindamycin compared with
infants with no anaerobic treatment
suggests that clindamycin may drive
this effect, but the number of infants
receiving each anaerobic
antimicrobial therapy was insufficient
to compare outcomes for each
individual therapy.

The differential effect of anaerobic
antimicrobial therapy on mortality in
medical and surgical NEC that we
observed suggests that anaerobic
bacteria play a more prominent role
in the disease process of infants with
surgical NEC. A wide range of
pathogens are associated with NEC.15

Several case series of infants with
NEC have reported the presence of
anaerobic bacteria, including
Clostridium perfringens and
Bacteroides fragilis, in the blood or
peritoneal fluid.17,19,32–36 A study
including 25 infants with NEC
showed that infants who had
Clostridium spp. recovered from
peritoneal fluid had more severe
disease with more extensive
pneumatosis intestinalis, higher
incidence of portal venous gas, and
more extensive gangrene.33 Although

the exact relationship between
anaerobic bacteria and the
pathophysiology of NEC has not been
established, our findings suggest they
are contributing to the disease
process, especially in infants
presenting with surgical NEC.

Anaerobic antimicrobial use
changed dramatically over the study
period (Fig 2); clindamycin use
decreased, whereas metronidazole
and piperacillin–tazobactam use
increased. Factors that led to these
findings might include safety
concerns linking clindamycin to
intestinal stricture in the
literature,20 increasing clindamycin
resistance in anaerobic bacteria such
as B fragilis,37 and growing clinical
experience with other therapeutic
options. Our data do not provide
sufficient information on specific
agents for us to conclude which
anaerobic antimicrobial should be
preferred for empirical therapy. This
question may be answered by an
ongoing phase II/III clinical trial in
infants with complicated intra-
abdominal infection
(NCT01994993).

This study is the largest evaluation of
antibiotic treatment in VLBW infants
with NEC. Strengths of this report
include its large sample size,
representing a large number of
NICUs. However, despite our large
cohort, matching resulted in the
exclusion of nearly 60% of the sample
population, which might have
resulted in loss of power to detect
differences between the 2 treatment
groups. As a secondary analysis,
a multivariable logistic regression
without matching yielded similar
results, but differences between

groups (lower mortality and more
strictures in the anaerobic
antimicrobial therapy group) were
statistically significant. Nevertheless,
we believe matching based on PS
provides more robust results by
limiting the analysis to a cohort of
infants who had similar conditional
probabilities of receiving anaerobic
antimicrobial therapy, given their
clinical characteristics.38 Our study
is limited by its cohort design and
lack of randomization; therefore,
we could not completely avoid the
risk of unobserved confounders. For
example, documentation of clinical
signs is lacking. There are also
limitations surrounding diagnosis
definitions. The diagnosis was not
based on standardized criteria but
was assigned by the treating
physician. Another limitation is the
potential overlap of spontaneous
intestinal perforation and NEC
diagnosis in the data set. Although
these 2 conditions represent
separate diagnoses in the data
set, differentiating spontaneous
intestinal perforation from NEC
is difficult clinically, and the
diagnosis is often not confirmed
until laparotomy. Despite these
limitations, this large observational
study based on electronic medical
records is an efficient way to
compare treatment strategies in
infants with NEC. A randomized
controlled trial is unlikely because
a sample size of .7000 VLBW
infants would be necessary to detect
a difference of 3% in outcomes if
the incidence of such outcomes was
30% in the susceptible population
(power of 80%; .05 2-sided
significance level).

Our study demonstrates differential
effects of empirical anaerobic
antimicrobial therapy in infants with
medical compared with surgical NEC.
Infants with surgical NEC treated
with anaerobic antimicrobial therapy
had lower mortality. For infants with
medical NEC, there was no survival
benefit associated with anaerobic
antimicrobial therapy.

TABLE 3 Outcomes and Clindamycin Therapy

Outcomes No Anaerobic Antimicrobial
Therapy, n (%)

Clindamycin, n (%) OR (95% CI) P

Overall, N = 1922a

Death or strictures 291 (30) 279 (29) 0.94 (0.76–1.15) .53
Death 267 (28) 242 (25) 0.87 (0.70–1.07) .18
Strictures 27 (3) 42 (4) 1.56 (0.96–2.52) .07

a Eight infants were diagnosed with strictures before death.
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