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BACKGROUND—Studies of the relationship between ultrasound images from preterm newborns
and developmental delay most often are based on small samples defined by birth weight and exclude
infants not testable with standardized assessments.

METHODS—We evaluated associations between ultrasound-defined lesions of the brain and
developmental delays at 24 months’ corrected age in 1017 children born before the 28th
postmenstrual week. Brain ultrasound scans were read for concordance on 4 lesions: intraventricular
hemorrhage, moderate/severe ventriculomegaly, white matter echodense/hyperechoic lesions, and
white matter echodense/hypoechoic lesions and 2 diagnoses–periventricular leukomalacia and
periventricular hemorrhagic infarction. Certified examiners, who were not aware of the infants’
ultrasound findings, administered the Bayley Scales of Infant Development-Second Edition.
Children with an impairment (eg., blindness) that precluded testing with the Bayley Scales and those
for whom >2 test items were omitted were classified using the Vineland Adaptive Behavior Scales
Motor Skills Domain instead of the Psychomotor Development Index and the Adaptive Behavior
Composite instead of the Mental Development Index.

RESULTS—Fully 26% of all of the children had delayed mental development (ie, Mental
Development Index < 70), and 31% had delayed psychomotor development (ie, Psychomotor
Development Index < 70). Ultrasound abnormalities were more strongly associated with low
Psychomotor Development Index than with low Mental Development Index. Children without
cranial ultrasound abnormality had the lowest probability (23% and 26%) of delayed mental or
psychomotor development. Moderate/severe ventriculomegaly was associated with a more than
fourfold increase in the risk of psychomotor delay and an almost threefold increase in the risk of
mental delay. Echolucency was the next best predictor of delayed mental and psychomotor
development. The probability of low scores varied with the number of zones involved and with the
location of echolucency. At particularly high risk were infants with bilateral cerebellar hemorrhage,
co-occurring ventriculomegaly and echolucency bilateral echolucency, or echolucency located
posteriorly.

CONCLUSIONS—Focal white matter damage, as characterized by echolucent/hypoechoic lesion,
and diffuse damage, as suggested by late ventriculomegaly, are associated with delayed mental and
psychomotor development.

Keywords
prematurity; cognitive development; intraventricular hemorrhage; periventricular leukomalacia;
neonatal follow-up; Bayley Scales of Infant Development

Cranial ultrasonography is widely used to identify neonates at increased risk for
neurodevelopmental impairment.1–3 Attempts to summarize studies of the predictive value of
cranial ultrasound abnormalities are made difficult by inconsistent approaches to classifying
abnormalities.4 However, in low birth weight5–8 and preterm newborns,9–13 cranial ultrasound
abnormalities indicative of white matter damage4 are the strongest predictors of cerebral palsy
and developmental delay. The purpose of this study was to describe relationships between
cranial ultrasound abnormalities and delayed development at 2 years of age in a large cohort
of extremely premature infants. Elsewhere we report on relationships between ultrasound
abnormalities and cerebral palsy.14

METHODS
The Extremely Low Gestational Age Newborns Study

The Extremely Low Gestational Age Newborns (ELGAN) study was designed to identify
characteristics and exposures that increase the risk of structural and functional neurologic
disorders in extremely low gestational age newborns. During the years 2002–2004, women
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delivering before 28 weeks’ gestation at 1 of 14 participating institutions in 11 cities in 5 states
were asked to enroll in the study. At each site, the study protocol was approved by an
institutional review board.

Mothers were approached for consent before or shortly after delivery, depending on clinical
circumstance and institutional preference. A total of 1249 mothers of 1506 infants consented.
Approximately 260 women were missed or did not agree to participate.

Cranial Ultrasound Scans
Routine scans were performed by technicians at all of the hospitals using digitized high-
frequency transducers (7.5 and 10.0 MHz). Ultrasound studies always included 6 standard
paracoronal views and 5 parasagittal views through the anterior fontanel.15

Of 1506 infants enrolled, 1445 had ≥1 set of protocol ultrasound scans, and 895 had all 3 of
the sets. Protocol 1 scans were obtained between the first and fourth day (n = 1123); protocol
2 scans, between the fifth and 14th day (n = 1302); and protocol 3 scans, between the 15th day
and the 40th week postmenstrual age (n = 1268). In this article we refer to protocol 1 and 2
scans as “early” and protocol 3 scans as “late.”

Previously we have described efforts taken in the ELGAN study to enhance the reliability of
ultrasound readings.16 Before patient enrollment, sonologists created a manual and data
collection form and conducted reliability training exercises. During the study, each set of scans
was first read by 1 study sonologist at the institution of the infant’s birth. Digital images were
then sent to a sonologist at another study institution for a second reading. When the 2 readers
differed in their recognition of intraventricular hemorrhage (IVH), ventriculomegaly,
echodensity, and echolucency, films were sent to a third (tie-breaking) reader who did not know
what the initial readers reported.

Definitions of Ultrasound Abnormalities
Germinal matrix hemorrhage (GMH) was defined as blood localized to the subependymal
region and IVH as blood within the ventricles. IVH excluded hemorrhage localized to the
subependymal region. Ventriculomegaly, categorized as mild, moderate, and severe, was
defined visually with a template on the data collection form.16 Our emphasis was on moderate/
severe ventriculomegaly, which was diagnosed if a lateral ventricle was at least moderately
enlarged in any of 4 sections (frontal horn, body, and occipital horn).

Developmental Assessment at 24 Months
Families were invited to bring their child for developmental assessment close to the time when
he or she would attain 24 months’ corrected age. This assessment included the Bayley Scales
of Infant Development-Second Edition (BSID-II), a neurologic examination, and, when
necessary, an interview of the parent using the Vineland Adaptive Behavior Scales.17 Fully
77% were assessed within the range of 23.5 to 27.9 months; of the others, approximately half
were assessed before 23.5 months and approximately half after 27.9 months. In this article, the
terms “delayed mental development” and “delayed psychomotor development” refer,
respectively, to a Mental Developmental Index (MDI) of <70 and Psychomotor Developmental
Index (PDI) of <70.18

Bayley Scales of Infant Development-Second Edition
Certified examiners administered and scored the BSID-II.18 All of the examiners had previous
experience with the BSID-II and attended a 1-day workshop at which the published guidelines
for test administration and videotaped examinations were viewed and discussed. Examiners
were aware of infants’ enrollment in the ELGAN study but were not informed of any specifics
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of the child’s medical history. Before testing, examiners were told the child’s corrected age;
after testing they were told the birth date so that unadjusted BSID-II scores could be assigned.

When a child’s impairment(s) precluded administration of the BSID-II or >2 items were
omitted or judged to be “unscoreable,” the child was classified as not testable on that scale.
Children considered nontestable with the BSID-II were assessed with the Vineland Adaptive
Behavior Scales (VABS). Those with VABS Adaptive Behavior Composite (ABC) <70 were
combined with infants with an MDI of <70; those with ABC ≥70 were combined with infants
whose MDI was ≥70. Among infants nontestable with the BSID-II motor scale, those with a
VABS motor skills domain score <70 were combined with infants whose PDI was <70; those
with a score ≥70 were combined with infants with a PDI of ≥70.

Data Analysis
For each ultrasound lesion, we computed the proportion of children who had an MDI or PDI
of <70. To describe the strength of association between ultrasound lesions and developmental
delay, we calculated risk ratios (RRs) and 95% confidence intervals (CIs) and adjusted for
gestational age, antenatal glucocorticoid exposure, and medical care insurance at the time of
the examination (private versus public), a surrogate for socioeconomic status.

RESULTS
Figure 1 depicts the study sample. Of the 257 deaths, 235 deaths occurred in the NICU.
Comparing the 1017 infants who survived to 24 months’ adjusted age and were assessed for
mental and motor development with the 181 infants who survived but did not undergo a
complete developmental assessment, the latter had mothers who were younger, less well
educated, less likely to be married, less likely to support themselves via their own employment,
and more likely to have Medicaid or other public insurance, but the 2 groups did not differ with
regard to gender, plurality, gestational age, birth weight, birth weight z score, Score for
Neonatal Acute Physiology II, or the frequency of ultrasound lesions.

Infants Not Testable With the BSID-II
The VABS ABC was obtained for 26 of 33 children who were nontestable with the BSID-II
mental scale, and 23 had ABC <70. The VABS motor skills domain score was obtained for 32
of 38 children nontestable with the BSID-II motor scale, and 27 had a motor skills domain <70.
Based on either the BSID-II or the VABS, 26% of study infants (n = 269) had delayed mental
development, and 31% (n = 314) had delayed psychomotor development.

Overview
Among children whose scans showed IVH, only 32% had no other ultrasound abnormality
(Table 1). Fully 42% had ventriculomegaly, 43% had a white matter echodensity, and 20%
had a white matter echolucency. Thus, the findings presented here should be seen as conveying
overlapping information. Among the 716 study children who had no ultrasound abnormality,
23% had delayed mental development, and 26% had delayed psychomotor development.
Ultrasound abnormalities were more strongly associated with delayed psychomotor
development than delayed mental development. The finding of ventriculomegaly and the
diagnosis of periventricular hemorrhagic infarction (PVHI) were associated with a doubling
of the risk of delayed mental development; other abnormalities were associated with more
modest increases in risk. Ventriculomegaly, echolucency, and diagnoses of cystic
periventricular leukomalacia (PVL) or PVHI were associated with the highest risks (57%–
60%) of delayed psychomotor development. Depending on the presence of other ultrasound
abnormalities, between 80% and 100% of children who had both ventriculomegaly and
echolucency had delayed psychomotor development.
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Hemorrhage
Unilateral GMH predicted delayed mental development as well as bilateral GMH, and better
than unilateral IVH (Table 2). Generally, blood in the germinal matrix or any ventricle predicted
delayed psychomotor development better than it predicted delayed mental development.
Children who had bilateral cerebellar hemorrhages were at highest risk of developmental
delays.

Early and Late Moderate/Severe Ventriculomegaly
Almost all of the children with ventriculomegaly had diffuse ventriculomegaly (Table 3).
Consequently, enlargement of a particular area of the ventricle did not convey appreciably
more predictive information about MDI or PDI scores than any other area. Except in the case
of unilateral ventriculomegaly as a predictor of an MDI of <70, risks of developmental delays
were higher among children with late, as compared with early, ventriculomegaly. However,
rates of these delays were similar for children with bilateral, as compared with unilateral,
ventriculomegaly.

Laterality of Echodense and Echolucent Lesions
Unilateral echodensity did as well as bilateral echodensity and unilateral echolucency in
predicting developmental delays but not as well as bilateral echolucency (Table 4). Among
infants with unilateral echodensity, those with right-sided echodensity more often had delayed
mental development, whereas, among infants with unilateral echolucency, those with left-sided
echolucency more often had delayed psychomotor development.

Extent of Echodensity and Echolucency Lesions
The risks of delayed mental or psychomotor developments increased as the numbers of zones
with unilateral echodensity increased; similarly, the risk of delayed mental development
increased as the number of zones with bilateral echolucency increased (data not shown). No
trends were apparent for the relationship between the number of zones of bilateral echodensity
or unilateral echolucency and delayed development.

Location of Echodensity and Echolucency Lesions
Risks of delayed mental and psychomotor development were higher when echolucency was
found in posterior zones as compared with anterior zones (Table 5 and Fig 2). The 16 children
who had an echolucency in the parietal-occipital white matter seen high on the “over-the-top”
view were at very high risk of delayed psychomotor (88%) and mental development (75%).
Infants with echolucency in the 3 zones located closest to the motor cortex did not have a higher
rate of delayed psychomotor development than infants with echolucency confined to other
zones. An echolucency in the paraventricular white matter seen on the “trigone” view also
conveyed high risks of delayed psychomotor development.

RRs and Test Characteristics
The highest RR for delayed mental development was associated with ventriculomegaly (RR:
2.70 [95% CI: 1.70–4.10]), followed by PVHI (RR: 1.90 [95% CI: 1.05–2.40]).
Ventriculomegaly had the highest RR for delayed psychomotor development (RR: 4.40 [95%
CI: 2.90–6.90]), followed by PVHI (RR: 3.90 [95% CI: 2.20–7.10]), echolucency (RR: 3.70
[95% CI: 2.30–6.10]), and cystic PVL (RR: 3.60 [95% CI: 2.20–7.10]). The predictive value
of an ultrasound with ventriculomegaly or echolucency was 45% to 61%, which corresponds
with likelihood ratios of 2.0 to 2.5. Because the sensitivity of these findings was low, the
negative likelihood ratio for the absence of ventriculomegaly and echolucency is only slightly
<1 (Tables 6 and 7).
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DISCUSSION
We evaluated the relationship between neonatal cranial ultrasound findings and standardized
developmental assessments in extremely low gestational age neonates. As have others, we
found that cranial ultrasound abnormalities are more strongly associated with delayed
development of skills assessed with the PDI than those assessed with the MDI5,19–21 and that
ventriculomegaly and echolucency are the ultrasound findings associated most strongly with
delayed infant development.9,22 Among ultrasound diagnoses, cystic PVL and PVHI are
associated most strongly with developmental delay,5,12,13 although bilateral cerebellar
hemorrhage, found in 1% of our cohort, may be comparably predictive of adverse outcome.
The lower predictive value of echodensity is to be expected, because the reliability of cranial
ultrasound interpretations used in our study was lower for echodensity (κ = 0.3), as compared
with IVH, ventriculomegaly, and echolucency (κ > 0.6).16 The frequency of an MDI of <70
described here (26%) is similar to that observed in a cohort born at 23 to 27 weeks,23 and the
rate that we observed among infants without ultrasound abnormalities (23%) is similar to that
of a cohort with a birth weight of 401 to 1000 g.24

We found evidence that the risk of developmental delay varies with laterality, location, and
extent of white matter abnormalities. For example, bilateral echolucency was associated more
strongly with delayed development than unilateral echolucency.3,25,26 Unexpected are our
findings that unilateral ventriculomegaly is as strongly associated with low PDI as is bilateral
ventriculomegaly and that unilateral echodensity is as strongly associated with low BSID-II
scores as is bilateral echodensity.

Others have found that ultrasound abnormalities are associated with a twofold to fourfold
increase in the risk of low BSID-II scores5 and mental retardation.27 These include the findings
of ventriculomegaly and echolucency, which most often are seen after the initial scan9,10,28,
29; the diagnosis of PVHI, which often is present on scans performed in the first weeks of
life30–32; and cystic PVL, which typically is not present until several weeks after birth.9,28,29

In the only study we found that assessed whether the hemispheric side of white matter lesions
influences developmental outcome, intelligence quotients were higher and visual motor
integration was better at 8 years of age among children born preterm who had right-sided
cerebral lesions as compared with those with left-sided lesions.25 In the current study, infants
with right-sided echolucency had better scores for PDI, but those with right-sided echodensity
had worse scores for MDI. Most likely these right-left differences are because of random
variation.

In this study, unilateral ventriculomegaly seen on early ultrasound (ie, the first 14 days) was
more predictive of low BSID-II than was bilateral ventriculomegaly. In contrast, fetuses with
unilateral33 or bilateral ventriculomegaly34 typically have normal developmental outcome.

The stronger association between cranial ultrasound abnormalities and a PDI of <70, as
compared with an MDI of <70, might relate, in part, to the greater contribution of
periventricular brain structures, such as corticospinal tracts, to functions assessed with the PDI,
such as perceptual-motor integration, sensory integration, and quality of movement.18 On the
other hand, substantial white matter is located in associative areas, which influence cognitive
abilities, such as those assessed with the MDI (eg, memory, problem-solving skills, and
language development). In addition, children who have early imaging evidence of
periventricular white matter damage also have reduced cortical volume.35 This has been
attributed to damage to myelin-producing cells36 and neurons, which migrate to the cortex
through injured white matter.37 Such damage might be more diffuse and widespread with
ventriculomegaly and more focal with echolucency.
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The importance of the cerebellum in cognitive development is supported by studies correlating
cerebellar size and scores on cognitive testing38 and studies of developmental outcome after
cerebellar hemorrhage.39,40 After the advent of neonatal intensive care, cerebellar hemorrhage
was described in autopsy studies of preterm infants.41 After ultrasound imaging improved, this
lesion could be identified in surviving infants.39,40 As have others,42 we found that ~3 of every
4 infants with cerebellar hemorrhage had delayed psychomotor development and that more
than half had delayed mental development.

If ultrasound detected all, or most, white matter damage, we would expect the risk of low BSID-
II scores to be higher with bilateral, as compared with unilateral, ventriculomegaly and with
bilateral, as compared with unilateral, echodensity; but we observed neither. In addition, the
risk of low BSID-II scores did not increase in a graded fashion with an increasing extent of
unilateral echolucency. Finally, as reported by others,24 we found that approximately one
quarter of extremely premature infants with normal ultrasounds have BSID-II scores <70.

The most parsimonious explanation for these findings is that ultrasound detects only a fraction
of the total white matter damage. Support for this hypothesis, referred to as the “tip-of-the-
iceberg” hypothesis,36 comes from studies correlating ultrasound findings with either MRI43,
44 or postmortem examination.45 In addition, ~50% of infants who develop cerebral palsy have
ultrasound abnormality.7,46,47 A likely explanation for our finding that echodensity and
echolucency were found predominantly in zones located superior to the lateral ventricles and
were infrequently seen in zones closest to the temporal lobes and zones closest to the occipital
lobes is better visualization of the superior aspects of the brain when using an ultrasound
through the anterior fontanelle.

Perhaps the main limitation of this study was our dependence on ultrasound to identify white
matter damage. Early MRI does a much better job, especially of detecting diffuse white matter
damage.48–50 Thus, the study might have misclassified some scans as not showing white matter
damage, when, indeed, an MRI would have identified white matter damage.

Strengths of this study include the large sample51 based on gestational age rather than birth
weight,52 efforts to minimize interobserver disagreements about ultrasound findings,16 efforts
to standardize the administration of the BSID-II and minimize examiners’ knowledge of the
infants’ clinical histories, and the high proportion of infants with ultrasounds obtained after
the first month of life, when white matter damage may be seen for the first time.9 Finally, to
classify study participants who were not testable with the BSID, we used proxy measures of
developmental status in an effort to decrease bias (ie, “missing clinical data bias”53).

The most important implication of our study is that clinicians can use ultrasound markers of
white matter damage (ventriculomegaly, echodensity, and echolucency4,36,45,54) as predictors
of developmental impairment.13,25,27,55 Children with these markers can be targeted for early
intervention to improve developmental outcome.56,57 This use of ultrasound is part of the basis
for the Practice Parameter for Neuroimaging of the Neonate in 2002,41 which recommends
cranial ultrasound screening for infants born before 30 weeks’ gestation, at 7 to 14 days, and
again at 36 to 40 weeks. In a study of very preterm infants, the sensitivity of major ultrasound
abnormalities (ie, Papile grade III hemorrhage, echodensity, echolucency, and basal ganglia
lesions) for prediction of cerebral palsy was 95% and the specificity was 99%.9 The sensitivity
and specificity are lower for the prediction of other developmental impairments, particularly
nonmotor impairments. In a multicenter study of 2103 infants, the sensitivity, specificity, and
likelihood ratio positive for cystic PVL for identifying infants with a PDI of <70 were,
respectively, 0.30, 0.80, and 6.00,58 as compared with the values reported here for echolucency
(0.14, 0.96, and 3.50). Similar likelihood ratios for the prediction of a PDI of <70 were reported
from studies of an index of chronic physiologic instability59 and the Nursery Neurobiological
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Risk Score.60 Thus, when the clinical goal is prediction of low scores on the BSID-II, other
clinical information may be complementary to,59 or even more valuable than,58 cranial
ultrasonography. Alternative methods, such as MRI48,49 or more frequent scanning with
ultrasound,9 might improve the predictive value of neuroimaging. Nonetheless, the information
provided here can be used cautiously to counsel parents and plan for developmental services
for infants at high risk.

What’s Known on This Subject

In low birth weight and preterm newborns, cranial ultrasound abnormalities indicative of
white matter damage are the strongest predictors of cerebral palsy and developmental
delays.

What This Study Adds

The association of cerebral white matter damage and developmental impairments applies
to extremely low gestational age newborns. The association is stronger for motor, as
compared with mental, development. Cerebellar hemorrhage is strongly associated with
delayed mental and motor development.
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FIGURE 1.
Description of the study sample. HUS indicates cranial ultrasound.
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FIGURE 2.
Percentage of children whose scan had an echolucency in a particular location and who had an
MDI of <70 (black numbers on the left side of the brain) or a PDI of <70 (black numbers on
the right side of the brain) on the BSID-II. The letters inside the shaded boxes indicate the
zones as listed in Table 5.
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TABLE 1

Percentage of Children Who Had the Ultrasound Lesion Listed on the Left Who Had BSID-II Scores of <70

Ultrasound Lesion Percentage With MDI <70 Percentage With PDI <70 n

GMH 33 39 299

IVH 35 43 309

Ventriculomegaly 46 55 100

Echodense lesion 35 49 130

Echolucent lesion 45 61 71

IVH only 31 34 91

Ventriculomegaly only 42 33 12

Echodense lesion only 22 36 45

Echolucent lesion only 33 52 21

No ultrasound lesion 23 26 716

Diagnosis

 Early PVL 31 43 103

 Cystic PVL 40 60 45

 PVHI 44 59 54

N 269 314 1017

The numbers are row percentages with each lesion considered regardless of any other lesion the child might have had and then with each lesion when
no others were present. GMH and IVH include infants with other lesions.
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TABLE 2

Percentage of Infants Whose Scan Had a Hemorrhage (Probable or Definite) in the Location Listed on the Left,
Who Had BSID-II Scores of <70

Hemorrhage Percentage With MDI <70 Percentage With PDI <70 n

Germinal matrix

 Unilateral 34 35 139

 Bilateral 33 43 157

Lateral ventricle

 Unilateral 20 33 79

 Bilateral 40 46 134

Third ventricle 46 54 68

Fourth ventricle 43 47 30

Cerebellar

 Unilateral 0 67 3

 Bilateral 73 73 11

N 269 314 1017

Among children with no ultrasound lesion, 22% had an MDI of <70 and 24% had a PDI of <24%.
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TABLE 3

Percentage of Infants Whose Scan Had Ventriculomegaly (Moderate or Severe) Identified Either on the First or
Second Study (Early Scan) or on the Third Study (Late Scan) Unilaterally or Bilaterally, Who Had BSID-II
Scores of <70

Ventriculomegaly Percentage With MDI <70 Percentage With PDI <70 n

Early

 Unilateral 40 50 10

 Bilateral 38 41 32

 N 267 311 1004

Late

 Unilateral 40 73 15

 Bilateral 56 63 48

 N 260 306 981

Pediatrics. Author manuscript; available in PMC 2010 November 22.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

O’Shea et al. Page 17

TABLE 4

Percentage of Infants With Echodensity or Echolucency Who Had BSID-II Scores of <70

Variable Percentage With MDI <70 Percentage With PDI <70 n

Echodense lesion

 Unilateral 30 41 70

 Right 39 39 36

 Left 21 44 34

 Bilateral 35 46 124

Echolucent lesion

 Unilateral 30 43 44

 Right 28 28 18

 Left 31 54 26

 Bilateral 57 71 23

N 269 314 1017

Pediatrics. Author manuscript; available in PMC 2010 November 22.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

O’Shea et al. Page 18

TA
B

LE
 5

Pe
rc

en
ta

ge
 o

f I
nf

an
ts

 W
ho

se
 S

ca
n 

H
ad

 a
n 

Ec
ho

de
ns

ity
 o

r E
ch

ol
uc

en
cy

 in
 A

ny
 o

f t
he

 A
nt

er
io

r o
r P

os
te

rio
r Z

on
es

 W
ho

 H
ad

 B
SI

D
-I

I S
co

re
s o

f <
70

L
oc

at
io

n
E

ch
od

en
si

ty
E

ch
ol

uc
en

cy

Pe
rc

en
ta

ge
 W

ith
 M

D
I <

70
Pe

rc
en

ta
ge

 W
ith

 P
D

I <
70

n
Pe

rc
en

ta
ge

 W
ith

 M
D

I <
70

Pe
rc

en
ta

ge
 W

ith
 P

D
I <

70
n

U
ni

la
te

ra
l

 
A

nt
er

io
r

38
46

48
24

42
33

 
Po

st
er

io
r

19
35

31
55

55
11

B
ila

te
ra

l

 
A

nt
er

io
r

35
48

89
56

69
16

 
Po

st
er

io
r

37
45

78
67

83
12

Ea
rly

 
A

nt
er

io
r

36
48

88
15

38
13

 
Po

st
er

io
r

31
38

72
67

67
3

La
te

 
A

nt
er

io
r

38
49

47
41

54
39

 
Po

st
er

io
r

22
39

18
71

82
17

A
nt

er
io

r z
on

es
 a

re
 la

be
le

d 
A

, B
, C

, F
, a

nd
 J 

in
 F

ig
 2

, a
nd

 p
os

te
rio

r z
on

es
 a

re
 la

be
le

d 
G

, K
, N

, P
, a

nd
 R

 in
 F

ig
 2

.

Pediatrics. Author manuscript; available in PMC 2010 November 22.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

O’Shea et al. Page 19

TABLE 6

RRs and 95% CIs for a Bayley Scale Scores of <70, Calculated Separately for MDI and PDI Associated With
Each Ultrasound Lesion or Diagnosis

Variable RR (95% CI) for MDI <70 RR (95% CI) for PDI <70

Ultrasound lesion

 IVH 1.70 (1.20–2.50) 2.10 (1.50–2.90)

 Ventriculomegaly 2.90 (1.80–4.60) 3.60 (2.30–5.60)

 Echodensity 1.70 (1.10–2.60) 2.80 (1.90–4.20)

 Echolucency 2.70 (1.60–4.50) 4.60 (2.70–7.80)

Diagnosis

 Early PVL 1.30 (0.80–2.10) 2.10 (1.40–3.20)

 Cystic PVL 1.90 (0.98–3.50) 4.30 (2.30–8.10)

 PVHI 2.20 (1.20–4.00) 4.00 (2.20–7.00)

The referent group for each ultrasound lesion or diagnosis consists of children who had none of the lesions or diagnoses, whereas children with lesions
and/or diagnoses may have other lesions or diagnoses. The models are adjusted for gestational age (23–24, 25–26, or 27 weeks), receipt of a complete
course of antenatal corticosteroid, cesarean delivery, and Medicaid insurance at 2 years’ corrected age.
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TABLE 7

Measures of the Ability of Head Ultrasound Abnormalities Evident Before Discharge From the NICU to Predict
an MDI or PDI >2 SDs Below the Expected Mean at 24 Months’ Corrected Age

Ultrasound Lesion, Bayley Scale <70 Ventriculomegaly Echolucent Lesion

MDI PDI MDI PDI

Predictive value positive 45 55 45 61

Predictive value negative 76 72 75 71

Sensitivity 17 17 12 14

Specificity 93 94 95 96
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