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Abstract

Background—Percent body fat equations are usually developed in specific populations and have

low generalizability.

Objectives—To use a nationally representative sample of the American youth population (8–17

years old) from the 1999–2004 NHANES data to develop gender-specific percent body fat

equations.

Methods—Percent body fat equations were developed for girls and boys using information on

weight, height, waist circumference, triceps skinfolds, age, race/ethnicity, and menses status

compared to dual-emission X-ray absorptiometry (DXA). Terms were selected using forward and

backward selection in regression models and in a 2/3 development sample and were cross-

validated in the remaining sample. Final coefficients were estimated in the full sample.

Results—Final equations included 10 terms in girls and 8 terms in boys including interactions

with age and race/ethnicity. In the cross-validation sample the adjusted R2 was 0.818 and the root

mean squared error (RMSE) was 2.758 in girls. Comparable estimates in boys were 0.893 and

2.525. Systematic bias was not detected in the estimates by race/ethnicity or by BMI categories.
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Conclusion—Gender-specific percent body fat equations were developed in youth with a strong

potential for generalizability and utilization by other investigators studying adiposity-related

issues in youth.
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Introduction

Obesity is a condition in which excess adipose tissue has accumulated to the extent that it

has adverse effects on health1. Although the classic definition of obesity emphasizes

adiposity, in practice body mass index (BMI) is the measure most often used to characterize

obesity. BMI was constructed with the intention to provide an index of weight independent

of height, but it is sometimes viewed as a simple prediction equation for percentage body

fat. Nevertheless, since BMI does not distinguish fat from lean tissue, some misdiagnosis of

obesity is inevitable. Factors that influence body composition in ways not detected by BMI

include gender, puberty, age, race/ethnicity, and physical activity2–3.

As an alternative to methods that require relatively expensive equipment, trained technicians

and high subject burden and cooperation, investigators often measure percent body fat using

equations that are derived from more field-friendly assessments such as height, weight,

skinfold thickness, bioelectric impedance and/or circumferences. Nevertheless, identifying

an age, gender and race/ethnicity appropriate equation is often challenging4–34. Most body

composition equations to date have been derived from a convenience or purposive sample

with investigators intentionally recruiting such that a range of body sizes was studied.

Internal validity (an equation that performed well in those subjects being studied) is the

focus rather than external validity (an equation with high generalizability), which impedes

researchers from using these equations for other study populations. We know of only one

study that has developed an equation using a sample representative of the United States35.

That study concentrated on testing mathematical functions of height, weight and BMI (such

as the square root) and did not use either circumferences or skinfolds.

The objective of this study was to use extant data from a nationally representative sample to

derive and validate gender-specific percent body fat equations that are composed of

demographic and anthropometric variables and can be applied to youth (8–17 years old).

This age range was selected in order to develop equations for use in the Childhood Obesity

Prevention and Treatment Research (COPTR) Consortium field centers at Case Western

Reserve University and Stanford University. Our goal was to produce precise, accurate and

unbiased percent body fat equations that use the variables collected by the COPTR

investigators (gender, age, height, weight, triceps skinfold, waist circumference and menses

in girls).
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METHODS

The NHANES uses a complex multistage probability design to provide a representative

sample of US non-institutionalized children and adults36. NHANES oversampled African

Americans, Mexican Americans, low income Whites (beginning in 2000), adolescents aged

12–19 and adults aged 60+ years. Data for this study were from the 1999- 2004 NHANES.

Race and ethnicity were self-reported and categorized as non-Hispanic Whites, non-

Hispanic Blacks, Mexican Americans, other Hispanics and other race/ethnicities. The other

race/ethnicities group includes other non-Hispanic race groups and non-Hispanic multiracial

groups. Maturation status (e.g. Tanner stages) was not collected in the 1999–2004

NHANES. Girls over 12 years of age were asked the age when their first menstrual period

occurred. Using this information, we created a dichotomous variable indicating presence or

absence of menarche.

Weight, height, waist circumference and triceps skinfolds were measured using standardized

procedures in the mobile examination centers36. For all anthropometrics, two trained and

certified staff members performed and recorded the measurements. Weight was measured to

the nearest 0.1 kilogram in an examination gown without shoes. Standing height (without

shoes) was measured to the nearest 0.1 centimeter using a stadiometer with a fixed vertical

backboard and adjustable head piece. Waist was measured just above the iliac crest to the

nearest 0.1 centimeter and triceps skinfolds were measured to the nearest 0.1 millimeter

using Holtain skinfold calipers.

DXA measurements were obtained on participants 8 years of age or older using a Hologic

QDR-4500A fan-beam densitometer (Hologic, Inc., Bedford, Massachusetts). Details of the

DXA procedures are described in technical documents37. The DXA data were adjusted as

described by Schoeller et al.38. Participants were excluded from DXA measurement if

pregnant, had a self-reported history of radiographic contrast material use in past 7 days or

participation in nuclear medicine studies in the past 3 days, had amputations other than

fingers and toes, weighted over 300 pounds or had a height over 6’5”. Pregnancy tests were

performed for all females 12 to 59 years of age and menstruating 8 to 11 year olds.

Unresolved IRB issues concerning the reporting of pregnancy test results to minors resulted

in no DXA data in females 8 to 17 years of age in 1999. Since NHANES data were weighted

by two-year increments, there are no DXA data available for girls 8–17 years from the

1999–2000 survey. We used the 4-year (2001–2004) and 6-year (1999–2004) sampling

weights in females and males, respectively.

Analytic sample

There are 7,730 children 8 –17 years old in the 1999–2004 NHANES datasets. We excluded

children who had missing height, weight, waist circumference or triceps skinfolds (n=614),

had an anthropometric flag (e.g. non-standard clothing, not standing straight) (n=28), had

biologically implausible values for height, weight or BMI (n=49), were missing all

measured DXA data (n=1,599), had given birth in the last year or were breastfeeding

(n=13), and were missing menarche status (girls only) (n=53). The full analytic sample

included 5,374 children (3,334 boys and 2,040 girls)
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Analysis plan

Our goal was to produce equations that maximized the percent of variance explained (R2

and adjusted R2) while minimizing the root mean squared error (RMSE) and the bias (mean

signed difference, MSD). Age, race/ethnicity, menarche status (girls only), weight, waist,

height, and triceps were our base variables. These variables were selected because they were

measured by the COPTR investigators and are correlated with percent body fat. Here we

distinguish variables (e.g. race/ethnicity, weight) from terms (e.g. squared terms, interaction

terms). We selected the terms to study based on our review of terms used in published

equations4–33 and our own exploratory analyses. We tested a total of 76 terms in girls and 65

terms in boys. These terms included squared terms, height as a reciprocal and 2-way

interactions of age, age squared, race/ethnicity and menses with the anthropometric

variables.

The following steps outline our approach:

Step 1. Create a development and cross-validation dataset

We used the PROC SURVEYSELECT Procedure in SAS (SAS/STAT® 9.2 User’s Guide,

2011) to create the development dataset containing a random sample of 2/3 of the children.

The remaining 1/3 of the children constituted the cross-validation dataset. All analyses were

stratified by gender and all continuous variables were centered on the mean prior to analysis

to improve the interpretability and decrease multi-colinearity39–40. Race/ethnicity was a

categorical variable with non-Hispanic Whites as the referent.

Step 2. Generate models in development dataset

We started with a base model (age, race/ethnicity, menarche status (girls only), weight,

waist, height, and triceps), and then used PROC SURVEYREG with the appropriate sample

weights to determine which additional terms to add to the model using forward selection to

best estimate percent body fat measured by DXA. Because of the large sample size several

terms were significant (p<0.05) even though their addition to the model only changed the

adjusted R2 negligibly. We did not use p-values to determine which variables to select, but

instead we used a criterion that an equation must increase the adjusted R2 over a simpler

equation by at least 0.005 or decrease RMSE by at least 0.025 in order for the change to be

judged non-trivial. We used the same criteria to confirm the models using backward

selection. This created our models including the base terms plus selected terms. We also

tested three additional models: 1) BMI only; 2) BMI z-score only and 3) base terms only.

Step 3. Evaluate models in the cross-validation datasets

The intercept and coefficients for all of the terms in each model from the development

dataset were used to calculate the predicted percent body fat in the cross-validation dataset.

Gender-specific univariate regression models were run using the estimated percent body fat

as the only independent variable and DXA as the dependent variable. R2, RMSE and MSD

were calculated. Since there was only one independent term in these models adjusted R2 was

not calculated. MSD were calculated overall and by race/ethnicity and weight status groups.
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as the predicted percent body fat from an equation minus the percent body fat measured by

DXA.

Step 4. Obtain and examine final equations in full dataset

To estimate the coefficients with greater precision, we ran the models by gender in the full

dataset and calculated the same parameters shown in step 3. As a final check, an

independent programmer calculated percent body fat for 200 randomly chosen girls and

boys in a Microsoft Excel spreadsheet using our final formula and compared results to those

predicted by our SAS program and the observed DXA values.

RESULTS

Table 1 shows descriptive information on the girls and boys included in the analytic sample.

The majority of the sample was non-Hispanic White. Girls had a lower mean weight and

height, and higher percent body fat from DXA compared to boys. Over half of the girls had

reached menarche.

The forward and backward selection procedures added 3 terms for girls and 2 terms for

boys. In girls, the base plus selected terms model included triceps squared, menses * triceps

interaction and menses * triceps square interaction in addition to age, race/ethnicity, weight,

height, waist, triceps and menses. In boys, the base plus selected terms model also included

triceps squared and an age * weight interaction. In both genders, triceps skinfold explained

more variance than any other anthropometric variable. Table 2 shows evidence that the

adjusted R2 and RMSE for BMI and BMI Z-score were inferior to the other models tested

for the prediction of percent body fat. Although the difference was not substantial, the

addition of selected terms to the base model improved performance. The overall MSD was

not different from zero in all the models tested, and the base plus selected terms model had

the tightest confidence intervals around the MSD.

Figures 1 and 2 show the MSDs by race/ethnicity for the base terms model and the base plus

selected terms model in the cross-validation. Results for the base plus selected terms are also

shown in the full dataset using coefficients calculated using the full dataset rather than the

development data set (final equation). We elected not to show the results for the other

Hispanic and other race/ethnic groups due small sample sizes and wide confidence intervals.

In girls (Figure 1), the MSDs were small (all less than half a body fat percentage point) and

not statistically significant, indicating little systematic bias by race/ethnicity. Similar results

were seen for non-Hispanic White, non-Hispanic Black and Mexican American boys (Figure

2). None of the prediction equation results were significantly different from zero. As

expected, confidence intervals were narrower when the full dataset was used.

Across weight status groups (Figures 3 and 4) the prediction equations tended to slightly

overestimate percent body fat in normal weight girls and boys and underestimate in

overweight and obese girls and boys. These differences were small and not statistically

significant for the base plus selected terms model. The base model underestimated percent

body fat by −0.567 percentage points in overweight girls (p=0.061) and −1.025 in

overweight boys (p=0.003). We do not show the underweight group as the confidence
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intervals were very wide, likely due to small sample sizes (n = 16 in girls and 42 in boys in

the cross-validation dataset). The large confidence intervals for MSD did include zero for

underweight boys but not underweight girls.

Table 3 shows the final (base plus selected terms from the full dataset) percent body fat

equations and the corresponding R2, adjusted R2, and RMSE in girls and boys in the full

dataset. Overall, the final equations performed better in boys than girls. In girls, the base

plus selected terms had a R2 of 0.829 and slightly underestimated percent body fat overall,

although not significantly (MSD: −0.013, 95% CI: −0.227, 0.201). In boys, the R2 was 0.888

and the MSD was 0.000 (95% CI: −0.187, 0.187).

In additional work (data not shown) we used forward and backward selection to choose

terms without forcing the base variables. Those models included only 5 terms in both girls

(triceps, triceps squared, waist, race/ethnicity, and height) and boys (triceps, triceps squared,

waist, age and weight). In the cross-validation dataset the adjusted R2 and RMSE estimates

were comparable to those of the base plus selected terms model shown in Table 2, but the

bias associated with race/ethnicity was larger and for some points statistically significant.

We also explored the use of lower limits for term selection into models (R2 > 0.001 instead

of 0.005 or RMSE > 0.01 instead of 0.025). This resulted in many more terms in the

prediction equations (28 in girls and 29 in boys), but only trivial effects on the R2, RMSE

and MSD compared to the base plus selected terms models.

DISCUSSION

We successfully created equations for the prediction of percent body fat that produced an

adjusted R2 > 0.83 and used variables that are feasible to measure in the field. The final

equations performed better in boys than in girls, despite the inclusion of a puberty-related

variable in girls, but not boys. We have no ready explanation for this difference. Both

equations far outperformed BMI as an indicator of percent body fat for which the R2 was

only 0.62 in girls and 0.35 in boys. The addition of terms using pre-determined criteria of R2

and RMSE resulted in an equation that provided a less biased estimate in overweight boys

(and to a lesser degree, also in overweight girls) compared to the base model.

Our analyses showed that triceps skinfold added more to the predictive ability of the

equations than the more commonly measured variables weight and height. Triceps skinfold

alone, with no other variables in the model, resulted in an R2 for percent body fat of 0.73 for

boys (RMSE= 4.06) and 0.71 for girls (RMSE=3.58). Thus, this skinfold measurement alone

performed better than BMI alone (see Table 2), even though skinfold measurements are

known to be prone to larger measurement errors than height and weight41. For comparison,

waist alone only reached an R2 of 0.34 (RMSE= 6.39) in boys and an R2 of 0.58 (RMSE=

4.31) in girls. Other studies in children have also shown that skinfolds make an important

contribution to the prediction of percent body fat3, 16, 42–44. Freedman et al. showed that the

addition of triceps skinfolds to a model that included BMI z-score increased the R2 value by

0.07 or more and decreased prediction errors by 20–30% in 5–18 year old children

compared to DXA measurements16. Given the large number of participants and the

resources of NHANES, it is likely that anthropometrics were obtained by technicians who
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were more experienced than those used in many other studies. However, the Pathways42 and

Trial of Activity in Adolescent Girls (TAAG)3 studies cited above used local, trained and

certified staff43–44 temporarily assigned to the study to obtain skinfold measurements

(communication from Coordinating Center Principal Investigator, coauthor JS). Thus, in

community research settings it is feasible to train technicians to collect skinfolds that add

importantly to the prediction of percent body fat, and their contribution to validity appears to

more than compensate for lower levels of repeatability41. In some clinical settings obtaining

reliable measurements may be more problematic as periodic training and certification of

data collectors and on-going quality control may be needed to insure high quality.

A judgment that is fundamental to the selection of an appropriate prediction equation is the

level of accuracy and precision needed in order for it to successfully substitute for

measurements obtained using more direct, but more difficult methods. Results from

observational studies in children indicate that physical activity is associated with percent

body fat calculated from prediction equations, but not with BMI. In the Pathways trial44,

higher levels of accelerometry-measured physical activity in 2nd grade normal weight

American Indian elementary school children were associated with lower levels of calculated

percent body fat in 5th grade, but there was no association with BMI42. In children who were

overweight and obese in 2nd grade, physical activity was positively associated with BMI (the

opposite of the expected direction). In TAAG43 accelerometry-measured minutes of

moderate to vigorous physical activity in 6th grade girls was associated with lower percent

body fat in 8th grade, but again there was no association with BMI. In the Pathways study

investigators measured percent body fat using prediction equations that included

demographic and anthropometric variables and BIA19. The TAAG prediction equation did

not include BIA25. R2 values when compared to a criterion measure of percent body fat were

0.843 in Pathways and 0.88 in TAAG; levels similar to those found here (0.829 in girls and

0.888 in boys).

The randomized controlled trial literature in children has shown that some interventions

aiming at increasing physical activity had no effect on BMI, but showed a meaningful

impact on percent body fat45. A study by Pudar et al.46 examined the impact of a school-

based multidimensional lifestyle intervention in predominantly migrant preschool children

living in Switzerland. They found no difference in BMI between the control and intervention

groups (−0.07 kg/m2, −0.19 to 0.06; p=0.31), but the intervention group had a lower percent

body fat (−1.1%, −2.0 to −0.2; p=0.02). In this research percent body fat was measured

using a prediction equation that included BIA measurements29. Given these consistent

findings across observational studies and randomized trials, a calculated percent body fat

may prove useful for detection of effects associated with physical activity.

To our knowledge, only one other published paper has used DXA percent body fat measures

from the NHANES to explore associations with anthropometric variables. Dugas et al.35

examined non-Hispanic White, non-Hispanic Black and Mexican American adolescents 12

to 20 years of age in the 1999–2004 NHANES. Their primary goal was to investigate

whether percent body fat was equivalent at comparable BMI’s across three race/ethnic

groups of adolescents in the United States. Their main analysis compared the mean percent

fat levels as measured by DXA within the normal weight, overweight and obese BMI
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categories35 in gender-stratified analyses in the 3 ethnic groups studied and found several

ethnic differences. Relevant to the work presented here, they also examined prediction

equations for percent body fat. These analyses were not stratified by gender, but gender was

included as a variable in all models in addition to ethnicity and age. BMI with exponents of

½, −1, and −2 and body weight were explored in selected combinations. The authors

indicated that the model with gender, ethnicity, age, weight and BMI1/2 explained the most

variance (R2 = 0.786). No evidence of potential systematic differences between the observed

and the predicted values from their equation was shown for race/ethnic groups or for weight

status groups.

Differences in body composition between White and African American populations have

been noted for decades47–48. It is well known that at the same BMI African Americans tend

to have more lean mass and skeletal mass than Whites. African Americans with the same

subscapular skinfold as White children have a smaller triceps skinfold. Researchers have

shown that published equations have either underestimated or overestimated percent body

fat in different ethnic groups6, 8, 19, 25–27, 34–35, 48. Our final equations included race/

ethnicity and did not systematically under or over-estimate percent body fat in African

Americans, Mexican Americans or Whites. We tested numerous interactions between race/

ethnicity and our candidate anthropometric variables, but none contributed substantially to

the prediction equations, and, therefore, they were not retained.

Investigators have used several approaches to determine optimal models for the prediction

of percent body fat in children, but details on the criteria used for variable selection are not

always given. As was done here, other investigators have formed models around a base of

preselected variables and then tested the contribution of adding additional terms17, 24. Many

authors use regression analyses (often stepwise) with terms selected either according to p

values5, 9, 11–12, 20, 23, 26, 29, 33 or R2 (or adjusted R2 or r)8, 18. The criterion p value used is

usually provided, but criterion levels for R2 are not stated. Similarly, investigators seek to

minimize RMSE (or SEE) but do not state limits. It is a strength of this work that the steps

used in equation development are clearly articulated and a priori criteria for model selection

are presented.

Our final equations are not very convenient for hand calculations. Nevertheless, they are

simple to implement using a computerized spreadsheet or statistical software. The equations

developed met our goals of providing a means for the COPTR investigators to calculate

percent body fat from a limited number of relatively easily obtained measurements using a

valid equation with relatively low error and bias. Given that the equations were developed in

a sample of boys and girls assembled to be representative of the United States population,

the potential generalizability is strong and we anticipate that these equations will be of use to

other investigators studying adiposity in youth.
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What is already known about the subject

1. It is often not feasible to measure percent body fat using precise methods such

as dual-emission X-ray absorptiometry (DXA).

2. Equations developed to estimate percent body fat in youth using measures that

are feasible to collect in a variety of settings usually have been developed in

focused samples and therefore have low generalizability.

What this study adds

1. First equations developed in a representative sample of American youth that

estimate percent body fat using self-reported demographic variables as well as

measured skinfolds and other anthropometric variables that are feasible to

collect in a variety of settings.

2. Equations were demonstrated to have low levels of bias by BMI category and by

race/ethnicity in non-Hispanic Whites, Mexican Americans and African

Americans.
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Figure 1. GIRLS
Signed mean difference (SMD) and 95% Confidence Intervals for the base model and base

plus selected terms model in the cross validation dataset and base plus selected terms model

in the full dataset by race/ethnicity in girls. The base model included age, race/ethnicity (5

categories), weight, height, waist, triceps and menses. The selected terms are triceps

squared, menses-triceps interaction and menses-triceps squared interaction. The y-axis is the

SMD difference (prediction equation percent body fat minus DXA percent body fat).

Positive values mean that the percent body fat equation overestimated the DXA percent

body fat and negative values indicated that the estimation equation underestimated the DXA

body fat percentage.
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Figure 2. BOYS
Signed mean difference (SMD) and 95% Confidence Intervals for the base model and base

plus selected terms model in the cross validation dataset and base plus selected terms model

in the full dataset by race/ethnicity in boys. The base model included age, race/ethnicity (5

categories), weight, height, waist, and triceps. The selected terms are triceps squared, age-

weight interaction. The y-axis is the SMD difference (prediction equation percent body fat

minus DXA percent body fat). Positive values mean that the percent body fat equation

overestimated the DXA percent body fat and negative values indicated that the estimation

equation underestimated the DXA body fat percentage.
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Figure 3. GIRLS
Signed mean difference (SMD) and 95% Confidence Intervals for the base model and base

plus selected terms model in the cross validation dataset and base plus selected terms model

in the full dataset by weight status in girls. The base model included age, race/ethnicity (5

categories), weight, height, waist, triceps and menses. The selected terms are triceps

squared, menses-triceps interaction and menses-triceps squared interaction. The y-axis is the

SMD difference (prediction equation percent body fat minus DXA percent body fat).

Positive values mean that the percent body fat equation overestimated the DXA percent

body fat and negative values indicated that the estimation equation underestimated the DXA

body fat percentage.
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Figure 4. BOYS
Signed mean difference (SMD) and 95% Confidence Intervals for the base model and base

plus selected terms model in the cross validation dataset and base plus selected terms model

in the full dataset by weight status groups in boys. The base model included age, race/

ethnicity (5 categories), weight, height, waist, and triceps. The selected terms are triceps

squared, age-weight interaction. The y-axis is the SMD difference (prediction equation

percent body fat minus DXA percent body fat). Positive values mean that the percent body

fat equation overestimated the DXA percent body fat and negative values indicated that the

estimation equation underestimated the DXA body fat percentage.
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Table 1

Descriptive information on analysis sample from the 1999– 2004 NHANES

Girls
(n=2,040)

Boys
(n=3,334)

Mean or % SE Mean or % SE

Age (years) 12.4 0.09 12.4 0.08

Ethnicity (%)

   Non-Hispanic White 63.3 61.1

   Non-Hispanic Black 14.0 14.8

   Mexican American 10.4 11.6

   Other Hispanic 6.7 6.6

   Other 5.7 5.9

Height (cm) 152.9 0.35 157.1 0.51

Weight (kg) 50.5 0.50 53.5 0.53

Triceps skinfold (mm) 17.5 0.25 13.6 0.23

Waist (cm) 74.1 0.50 74.3 0.36

Menstruating (%) 56.7 ---- ----

DXA % body fat 32.27 0.24 25.66 0.27

BMI (kg/m2) 21.18 0.16 20.97 0.13

BMI z-score 0.49 0.04 0.49 0.03

BMI percentile categories (%)

   < 5th %tile 2.9 3.5

   ≥5th to < 85th %tile 64.6 62.6

   ≥85th to < 95th %tile 17.5 16.7

   ≥95th %tile 15.0 17.2
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Table 3

Base plus selected terms percent body fat prediction equation for girls and boys and corresponding model fit

values in the full dataset1

Gender Equation2 R2 Adj R2 RMSE

Girls %BF = 31.836841 - 0.609018 * (menses) + 0.003317 * (age - 161) - 0.975391 * (Race1) + 0.499227 *
(Race2) + 0.602171 * (Race3) + 0.173877 * (Race4) + 0.053756 * (weight - 56) - 18.641446 * (height
– 1.58) + 0.218830 * (waist - 76) + 0.744310 * (triceps - 15) - 0.018648 * (triceps -15)2 – 0.194114 *
(menses) * (triceps-15) + 0.005748 * (menses)*(triceps)2

0.829 0.828 2.744

Boys %BF = 28.009373 - 0.038460 * (age - 161) - 0.425327 * (Race1) + 0.350376 * (Race2) - 0.238080 *
(Race3) - 0.106154 * (Race4) - 0.113560 * (weight - 56) - 10.010607 * (height – 1.58) + 0.353623 *
(waist - 76) + 0.690984 * (triceps - 15) - 0.016657 * (triceps - 15)2 - 0.000852 * (age - 161) * (weight
- 56)

0.888 0.888 2.624

1
Intercept and coefficient values were calculated using the full dataset.

2
Menses = menarche status (girls) is 0 if have not started period and 1 if started periods; Race1 = 1 if non-Hispanic Black and 0 if not non-

Hispanic Black; Race2 = 1 if Mexican American and 0 if not Mexican American; Race3 = 1 if Other Hispanic and 0 if not Other Hispanic; Race4 =
1 if Other non-Hispanic race group including non-Hispanic multiracial and 0 if not other non-Hispanic race group; weight = weight in kilograms;
height = height in meters; waist = waist circumference in centimeters; triceps = triceps skinfolds in millimeters.
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