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Synopsis

Oral tolerance is an active process of local and systemic immune unresponsiveness to orally 

ingested antigens such as food. The gut immune system must balance responses to commensal 

bacteria (microbiome), innocuous antigens and pathogens. While it is clear that specialized 

populations immune cells and lymph nodes create a unique environment in the gut, there remains 

evidence to suggest that systemic effector sites are also critical to establishing and maintaining 

oral tolerance.
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Introduction

Oral tolerance is the active process by which the immune system does not respond to an 

orally administered antigen. The number of studies addressing oral tolerance in humans is 

surprisingly limited despite the extensive literature from murine models. In fact, animal 

models have largely been used to study both the mechanism of sensitization to food as well 

as the resulting allergic response from consuming a food allergen. Most available animal 

models of food allergy require an artificial sensitization method and may provide only 

limited insight into the sensitization phase of human food allergic disease. Thus, food 

allergy researchers have sought to develop an animal model that more closely mimics the 

sensitization of humans to food antigens. Until such a model, there may not be specific 

answers to the precise mechanisms that result in establishing oral tolerance or that lead to a 

break in tolerance. This review will provide an overview of some available animal models, 

comment on other disease states and relevant models as well as comment on possible future 

directions.
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Role of the gut immune system

The gut-associated lymphoid tissue (GALT) is the largest immune system in the body 1. 

Approximately 30 kg of food proteins reach the human intestine during a year, and 130–190 

g of these proteins are absorbed daily in the gut 2. The microbiota in the intestine is an 

additional major source of natural antigenic stimulation with a perhaps under-appreciated 

number of bacteria colonizing the human intestinal mucosa (~ 1012 microorganisms / g of 

stool) 3. The physiologic role of the GALT is the ingestion of dietary antigens in a manner 

that does not result in untoward immune reactions and protection of the organism from 

pathogens. This represents a careful balancing act as the mucosal barriers are thin and 

vulnerable to pathogenic infection. It should be noted that tolerance to food protein affects 

local and systemic immune responses, whereas tolerance to gut bacteria in the colon does 

not attenuate systemic responses. Despite these distinct and active processes, the GALT is 

primarily a tolerogenic environment.

The features of the gut immune system that are important participants in creating the 

tolerogenic environment have been studied and discussed 4. Briefly, the inductive sites for 

immune responses in the gut are Peyer’s patches and mesenteric lymph nodes (MLNs). 

MLNs develop distinct from Peyer’s patches and peripheral lymph nodes and serve as a 

crossroads between the peripheral and mucosal recirculation pathways. To induce a mucosal 

immune response, an antigen must gain access to antigen-presenting cells by penetrating the 

mucus layer and then the intestinal epithelial cell barrier. Dendritic cells (DCs) themselves 

sample luminal contents by extending their processes through the epithelium without 

disruption of tight junctions 5,6. Another important component of the GALT are 

intraepithelial lymphocytes (IELs), which serve to regulate intestinal homeostasis, maintain 

epithelial barrier function, respond to infection and regulate adaptive and innate immune 

responses 7. The majority of IELs are CD8+ T cells, which express αβ or γδ T cell receptors 

(TCRs). Of note, it has been reported that depletion of γδ T cells impairs induction of oral 

tolerance 8. Thus, the combination of commensals, T cells, and DCs set up a tolerogenic 

environment in the gut6,9,10. Major factors that condition the gut to be a tolerogenic 

environment are interleukin-10 (IL-10), retinoic acid, and transforming growth factor-β 

(TGF-β), which serves as a switch factor for IgA, the predominant immunoglobulin of the 

gut 11.

Regulatory T cells

It is now recognized that there are multiple mechanisms of oral tolerance, and one of the 

prime determinants is the dose of antigen fed 4,12–19. Low doses favor the induction of 

regulatory T cell (Tregs), whereas higher doses favor the induction of anergy or deletion 20. 

These mechanisms are not exclusive, especially at higher doses. One of the major 

mechanisms of oral tolerance is the induction of Treg cells, a process that is related to the 

gut DCs and linked to both TGF-β and retinoic acid 10,17,21. Specifically, it has been shown 

that mucosal DCs induce forkhead box P3 (Foxp3) Tregs via the production of TGF-β but 

that concomitant retinoic acid signaling boosted this process 22. In fact, all major classes of 

Tregs can be induced or activated by oral (mucosal) antigen 23–27. Even CD8+ Tregs have 

been shown to play a role in oral tolerance 28,29. Interestingly, CD8+ T cells have been 
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shown to recall a tolerant or hyporesponsive phenotype following immune stimulation, 

suggesting that epigenetic mechanisms are in place to maintain tolerance 30. As future work 

progresses, it remains to be elucidated whether similar mechanisms may account for failure 

of programmed reactive cells to maintain hyporesponsiveness following oral 

immunotherapy.

Anergy

T cell unresponsiveness or anergy is one of the primary mechanisms by which tolerance is 

maintained in self-reactive lymphocytes and anergy is induced in high-dose oral tolerance. 

The upregulation of anergy-associated genes is largely nuclear factor of activated T cells 

(NFAT) dependent 31. Orally tolerized T cells can form conjugates with APCs but they are 

defective in immunologic synapse formation 32. Similarly, T cells made anergic in vivo 

following oral antigen can inhibit the migration of responsive T cells in an antigen-

independent fashion, indicating that hyporesponsive T cells have broad tolerogenic 

signals 33. Using a murine model to examine the role of the thymus in high-dose oral 

tolerance, researchers found that thymectomized animals were not protected from auto-

immune disease 34. The thymus was actually found to be an important site for the 

development of CD4+CD25+ Tregs after oral antigen 34. In fact, clonal deletion was found 

in the periphery but not the thymus – suggesting that high-dose oral tolerance not only 

induces deletion but may lead to CD4+CD25+ Tregs that resemble natural Foxp3+ Tregs 34. 

These observations are in keeping with results from high-dose oral immunotherapy studies 

which have reported increased CD4+CD25+Foxp3+ Tregs in subjects with clinical 

hyporesponsiveness 35.

Lessons learned from oral anti-CD3

The investigation of oral tolerance has classically involved the administration of oral antigen 

followed by challenge with same/similar antigen (albeit usually in an adjuvant) to 

demonstrate antigen-specific tolerance. One interesting experimental system that has been 

used to study T-cell function in oral tolerance is the use of TCR transgenic mice in which all 

T cells have a common TCR. Using such mice, Dr. Weiner and colleagues have investigated 

how oral administration of an antigen affected specific T-cell subsets. These investigators 

showed a dose-dependent induction of Tregs to the fed antigen 36. In similar mice that have 

OVA specific TCR, high-dose oral administration of OVA led to deletion of Treg subsets 37.

In order to translate these findings to humans, it first had to be known whether it was 

possible to trigger the TCR in wildtype mice in the gut and induce Tregs without using 

cognate antigen. Prior work had established that anti-CD3 binds to the ε chain of the TCR 

and, given intravenously, deletes T cells and has been shown to be an effective treatment for 

type 1 diabetes in the non-obese diabetic mouse 38. It was hypothesized that oral 

administration of anti-CD3 monoclonal antibody would replace the use of a cognate antigen 

to trigger the TCR and lead to induction of Tregs when given orally. Using an autoimmune 

encephalitis murine model, they found that oral anti-CD3 suppressed both clinical and 

pathologic features of the disease 39. Notably, there was a dose effect observed with disease 

suppression by oral anti-CD3 seen at lower, but not higher doses 39. The scientists suggested 
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these findings were consistent with the classic paradigm of oral tolerance: induction of Tregs 

is seen at lower but not higher doses 19,20,37. Potentially important for all researchers 

interested in oral tolerance, it demonstrated that induction of Tregs by oral anti-CD3 was not 

simply related to administering large amounts of antibody to overwhelm breakdown in the 

gut 39. Also of significance was the finding that the Fc portion of anti-CD3 was not required, 

as anti-CD3 Fab’2 fragment was active orally and induced Tregs 39. The effects of these and 

similar experiments raise the question whether it is more advantageous to induce antigen-

specific versus antigen non-specific Tregs for the treatment of relevant diseases – an issue 

being addressed in ongoing trials in humans 17.

Site of tolerance to oral antigens: Gut vs Systemic

One of the characteristic features of oral tolerance to soluble antigens is that it can involve 

the entire animal 16. This is difficult to explain, however, as current thought focuses on 

anatomical compartmentalization within the mucosal immune system. In other words, 

antigen uptake and recognition is believed to be restricted to the GALT, MLNs, DCs and 

intestinal epithelial cells (discussed above), therefore limiting the effects to the intestinal 

mucosa. A possible explanation, and one that our lab and others are examining, is that orally 

administered antigens may disseminate systemically via blood and/or lymph 40–43. In fact, 

earlier studies suggest that food protein can be detected in the blood of mice and humans 

soon after eating 40,43. Furthermore, serum from protein-fed mice can induce antigen-

specific tolerance in naive recipients, indicating the presence of “tolerogenic material” 44. 

This raises the important question of how and where an absorbed antigen can contribute to 

establishing oral tolerance.

One potential site is the liver. Administration of antigen directly into the portal vein, which 

drains blood from the intestine to the liver, is well known to induce antigen-specific 

tolerance 45. Conversely, directing blood flow away from the liver by portocaval shunting 

prevents the induction of oral tolerance 46,47. Liver has several features that could serve to 

promote tolerance (Table I). Antigen reaching beyond the liver into peripheral lymph nodes 

and spleen might be expected to induce tolerance in these sites, as it will be presented by 

resident DCs in the absence of co-stimulation, leading to the induction of anergy or Tregs 16.

There is certainly evidence to the contrary, in that systemic dissemination of fed antigen is 

not important for oral tolerance. For example, transport of antigen from the lamina propria 

into the MLNs by CD103+ DCs was found to be crucial for inducing the systemic effects of 

oral tolerance 48. Moreover, the chemokine receptor CCR7 is required for continual 

migration of DCs into draining lymph nodes and genetic deficiency in CCR7 prevented the 

recognition of fed antigen by T cells in the MLNs and impaired the induction of oral 

tolerance 49,50. Other reports have also focused on MLNs having a central role in oral 

tolerance induction 50,51. At this time it is unclear why there appears to be discordant 

findings about the relative roles of intestinal anatomic compartmentalization (e.g., GALT, 

MLNs) vs. more widespread dissemination of antigen (e.g., to the liver). Possible reasons 

for the discrepant results include 1) the concentration of antigen reaching the circulation, 2) 

nature of the antigen, 3) dose of antigen ingested, and 4) the microbiome of the 

animals 19,48,50.
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Conclusion

Despite the extensive literature on the effectiveness of oral tolerance to treat diseases in 

animals this approach has yet to successfully translate to clinical treatment of IgE-mediated 

food allergy or even food hypersensitivity. With the advent of technologies such as mass 

cytometry and single-cell gene expression profiling applied to food allergy, we can only 

expect to reach a better understanding of cellular processes regulating oral tolerance. In the 

coming years, it will likely be time for the next phase of human studies of mucosal 

tolerance. The establishment of immunologic markers will provide the basis for dosing and 

measuring the effect of clinical trials. While one of the major goals of future immunotherapy 

might be to induce Tregs, food allergy researchers must also be cognizant of the role of IgE-

producing cells and their location yet, to date, there are no specific methods to do this in 

vivo. The challenge is ours, therefore, to design or utilize clinical syndromes that can 

elucidate unknown aspects of oral tolerance and, specifically, breaks in tolerance that 

manifest as food allergy.

Abbreviations

DC dendritic cell

Foxp3 forkhead box P3

GALT gut-associated lymphoid tissue

IEL intraepithelial lymphocyte

MLN mesenteric lymph node

TCR T cell receptor

TGF-β transforming growth factor-β

Treg regulatory T cell
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Key points

• The gut has adapted a unique set of immune cells and sites to respond to 

antigens appropriately

• Numerous characteristics of antigens are important for the induction of oral 

tolerance

• Use of the oral route to establish tolerance holds promise for food-based 

antigens as well as other disease states
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Table I

Characteristics of hepatic function and structure that may favor tolerance

Liver endothelial cells sample circulating antigen and act as APCs that lead to tolerance 45

Kupffer cells and conventional dendritic cells favor tolerance during antigen presentation 45

Plasmacytoid dendritic cells are abundant in the liver and support systemic tolerance 21
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