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Summary

Acute tail pinch induces distinct changes in limbic catecholamine neurotransmission, which may 

promote the physiological and behavioral responses necessary for survival.
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1. Introduction

The motivational, hedonic and associative aspects of pain are encoded by the brain’s limbic 

system, a heterogeneous collection of structures positioned at the interface of the hindbrain 

and cortex. Limbic function is supported by catecholamine innervation from the 

dopaminergic cells of the ventral tegmental area (VTA) and periaqueductal gray (PAG) [24; 

54], as well as the noradrenergic cells of the locus coeruleus (LC), nucleus of the solitary 

tract (NST, A2) and A1 group [20; 41]. Indeed, a number of animal studies have 

demonstrated that these cells respond to noxious stimuli [8; 23; 59]. The modulatory actions 

of catecholamine neurotransmission are moreover implicated in the physiological and 

behavioral reactions to pain [3; 46], and are associated with disorders often comorbid with 

pain dysregulation such as drug addiction and depression [13; 18; 64].
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Measuring the neurochemical changes induced by acute pain is challenging due to the 

temporo-spatial dynamics of rapid neurotransmitter release. Unsurprisingly, past studies 

have produced controversial results [2; 4; 27; 45]. In vivo fast-scan cyclic voltammetry 

(FSCV) at carbon-fiber microelectrodes can capture real-time changes in extracellular 

catecholamines within the substructures of the brain [43; 50]. Recently we employed this 

methodology in anesthetized animals to observe striatal dopamine responses during a 

noxious 3 s tail-pinch [10]. We found that tail-pinch elevated extracellular dopamine 

throughout the nucleus accumbens (NAc), a VTA-innervated limbic structure involved in 

motivational salience and reward processing. The temporal aspects of this response, 

however, were subregion-dependent. Dopamine increased during the stimulation in the NAc 

core but only at the stimulus termination in the NAc shell, demonstrating that accumbal 

dopamine release differentially encodes information regarding the presence and cessation of 

a noxious stimulus.

Interestingly, we failed to identify a striatal region where dopamine activity decreased with 

tail-pinch. This is unexpected as electrophysiological recordings have identified a subset of 

VTA dopamine neurons that are inhibited by pain [8; 59; 65]. The absence of this response 

pattern in our previous data prompted this reinvestigation of the NAc shell, where no 

discernable dopamine change was observed during the tail-pinch. We furthermore extend 

our study to consider norepinephrine responses in the ventral bed nucleus of the stria 

terminalis (vBNST), a spatially contiguous limbic structure. Norepinephrine release in this 

region, arising primarily from NST and A1 cell groups, is involved in the affective 

component of pain and facilitates stress responses through upregulation of HPA axis activity 

[15; 19; 20].

Using pharmacological agents to enhance catecholamine signaling, we found that tail-pinch 

has diverse effects on dopamine concentrations in the NAc shell and that, in most locations, 

dopamine release is inhibited during the noxious stimulus. In the vBNST norepinephrine 

release increased with tail-pinch but, unlike dopamine responses in the NAc shell, did not 

respond to the termination of the stimulus in a time-locked manner. These results 

demonstrate that dopamine in the NAc shell and norepinephrine in the vBNST process 

noxious stimulation via disparate, and in the case of dopamine in the NAc shell non-

uniform, signaling patterns. The integration of these responses may act to initiate survival 

behaviors.

2. Materials and Methods

2.1. Animals

Male Sprague-Dawley rats (300 – 400 g, Charles River Laboratories, Wilmington, MA) 

were used for these studies. Animals were housed in a controlled humidity and temperature 

environment with a 12:12 hour light:dark cycle. Food and water were available ad libitum. 

Experiments were conducted between 9:00 am and 5:00 pm. All procedures for handling 

and caring for the laboratory animals were in accordance with the NIH Guide for Care and 

Use of Laboratory Animals and were approved by the Institutional Animal Care and Use 

Committee of the University of North Carolina and Wake Forest University.
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2.2. Surgery

Animals were maintained at a body temperature of 37°C with a heating pad (Harvard 

Apparatus, Holliston, MA) during surgical procedures, which have been described 

previously [38; 41]. Briefly, animals were anesthetized with urethane (1.5 g/kg, i.p.), 

immobilized in a stereotaxic frame (David Kopf Instruments, Tujunga, CA) and their dorsal 

skulls exposed. Hole were drilled using coordinates relative to bregma obtained from the 

atlas of Paxinos and Watson [44]. Placement of the carbon-fiber microelectrode targeted 

either the NAc shell (anteroposterior [AP] +1.8 mm, mediolateral [ML] +0.8 mm) or the 

vBNST (AP 0.0 mm, ML +1.2 mm). In every animal, a bipolar, stainless-steel electrode (0.2 

mm in diameter, Plastics One, Roanoke, VA) was lowered into the VTA/ventral 

noradrenergic bundle (VNB, AP −5.2 mm, ML +1.2 mm, dorsoventral [DV] −8.0 to −9.0 

mm). Electrical stimulation (24–60 biphasic pulses, 300 µA, 2 ms/phase, 60 Hz) of these 

coordinates, which was applied via a pair of optically-isolated stimulators (NL 800A, 

Neurolog, Digitimer Ltd, Hertfordshire, UK) in this study, activates both the noradrenergic 

axons coursing through the VNB as well as the dopaminergic cell bodies of the VTA [42]. 

In the hemisphere contralateral to the carbon-fiber and stimulating electrodes a Ag/AgCl 

reference electrode was implanted and secured to the skull with a jeweler’s screw.

2.3. Voltammetric procedures

Fast-scan cyclic voltammetry was computer-controlled as described in detail previously 

[25]. A triangular scan (−0.4 to +1.3 V, 400V/s) was applied to a glass-sealed carbon-fiber 

microelectrode (75−100 µm exposed tip length, 7 µm diameter, T-650; Amoco, Greenville, 

SC) [11] every 100 ms to electrochemically detect catecholamine changes. All electrodes 

were preconditioned with the waveform (15 min at 60 Hz, 15 min at 10 Hz) before 

voltammetric measurements commenced. Background-subtracted cyclic voltammograms 

were obtained by digitally-subtracting voltammograms collected during stimulation from 

those collected during baseline recording. Voltammetric responses were viewed as color 

plots with the abscissa as voltage, the ordinate as acquisition time, and the current encoded 

in color [34]. Currents were converted to concentration based on averaged in vitro 

calibration factors (6.9 ± 0.3 pA/(µM·µm2 for dopamine, 4.5 ± 0.2 pA/(µM·µm2) for 

norepinephrine) obtained from a separate set of electrodes previously used in vivo.

2.4. Chemicals and drugs

All chemicals and drugs were obtained from Sigma-Aldrich (St. Louis, MO, USA) and were 

used without further purification. Calibration of the carbon-fiber microelectrodes with pH, 

dopamine, and norepinephrine were made after in vivo recordings in a buffer (pH 7.4 

containing 15 mM Tris, 140 mM NaCl, 3.25 mM KCl, 1.2 mM CaCl2, 1.25 mM NaH2PO4, 

1.2 mM MgCl2, and 2.0 mM Na2SO4 in double distilled water (Mega Pure System, Corning 

Glasswork, Corning, NY). Desipramine-HCl, raclopride-HCl, and idazoxan-HCl were 

dissolved in sterile saline. GBR 12909 was dissolved in water and diluted in saline. Injected 

volumes were ~ 0.6 mL and were given intraperitoneally (i.p.).
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2.5 Noxious Stimulation

As in our previous study [10], tail pinch was conducted with soft rubber gloves to avoid 

tissue damage and electrical noise artifacts. During each stimulus, the tail of the rat was 

pressed between the thumb and the index finger for 3 s with maximal pressure (P) of 3.12 ± 

0.62 MPa. P was calculated by measuring the contact area between the fingers and the tail of 

the rat and by a measurement of the applied force using a Pasco CI-6537 Force Sensor 

(Roseville, CA).

2.6 Histology

At the end of the experiment, rats were euthanized with an overdose of urethane (2.0 g/kg) 

and electrode placements were verified by electrolytic lesions made by applying constant 

current (20 µA for 10 s) to the carbon-fiber microelectrodes [41]. Brains were removed and 

stored in 10 % formalin solution for at least a week before being coronally sectioned into 50 

m thick slices on a cryostat. The sections were then mounted on slides and examined under a 

light microscope to verify carbon-fiber placements within the NAc shell or vBNST.

2.7 Data analysis

Catecholamine concentration changes in response to tail pinch were quantified using a 

locally-written principal component regression algorithm [28]. A residual analysis procedure 

was used to validate the predicted concentrations, and any trials containing uncharacteristic 

variance larger than 95% of the noise of the training set were discarded. All data were 

background subtracted from the time point of lowest concentration in the 5 s prior to tail 

pinch. Data within this 5 s time window were subsequently averaged to determine baseline 

concentrations and noise levels. A shorter, 1 s time frame was used as baseline for post-drug 

analysis in NAc experiments due to the presence dopamine transients (see section 3.2). In 

every experiment, peak catecholamine concentration changes were determined relative to 

baseline values for the period during and 5 s after noxious stimulation. Responses were 

considered significant if their magnitudes were larger than 3 times the standard deviation of 

the noise (S/N ≥ 3). Mean values were compared in GraphPad Software version 4.0 (San 

Diego, CA, USA) by using the two-tailed Student’s t-test to calculate the level of 

significance. Analysis employing Fisher’s exact test was conducted through GraphPad’s 

QuickCalc website [1]. P < 0.05 was regarded as statistically significant. Data are 

represented as mean ± S.E.M. and ‘n’ values indicating the number of rats.

2.8 Experimental overview

At the beginning of each experiment a fresh carbon-fiber microelectrode was lowered into 

the NAc shell (DV −5.8 to −7.4 mm) or the vBNST (DV −7.2 to −7.7 mm). After waveform 

preconditioning (see section 2.2), extracellular catecholamine changes were monitored 

voltammetrically during application of a 3 s tail pinch. Reactions such as ear or whisker 

twitches to the tail pinch were tested to ensure the animals were fully anesthetized before 

these measurements commenced. For dopamine experiments, the effects of noxious 

stimulation were assessed at different depths of the NAc shell by lowering the carbon-fiber 

microelectrode in 0.2 – 0.3 mm increments and repeating the tail-pinch procedure. For 

norepinephrine experiments, voltammetric measurements were confined to a single location 
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per animal given the limited depth range (~500 µm) of the vBNST. In both NAc and 

vBNST, tail pinch was repeated 3 – 6 times (each referred to as a ‘trial’) for each recording 

depth with a 2–3 minute rest period between noxious stimulations.

In some animals selective autoreceptor and transporter blockers (Rac+GBR for dopamine 

experiments, IDA+DMI for norepinephrine experiments) were administered as separate i.p. 

injections (5 min apart) after control responses were recorded. Catecholamine responses to 

tail pinch were again assessed after sufficient time had passed for the drugs to exert their 

maximum effects (20–80 min for Rac+GBR, 30–40 min for IDA+DMI) [4; 38]. Control and 

drug response magnitudes were only recorded at the depth in which the electrode was 

positioned when the drugs were administered. Subsequently, the effects of the drugs on tail-

pinch were qualitatively examined as the electrode was raised in 0.2–0.3 µm increments in 

the NAc shell, but for only one depth of the vBNST.

At the end of each experiment catecholamine release was mapped for recording regions 

through electrical stimulation. The site of recording was lesioned before the animal was 

sacrificed and its brain fixed for histology (see section 2.6).

3. Results

3.1. Rapid extracellular dopamine changes in the NAc shell elicited by tail pinch

A fresh carbon-fiber microelectrode was lowered through the NAc shell to evaluate changes 

in extracellular dopamine concentration in response to the noxious stimuli (tail pinch). 

Figure 1A (left panel) shows the coronal plane in which measurements were made (AP ~ 

+2.0 mm) in the NAc shell with the approximate electrode track marked by the solid line. 

Our previous study showed that maximal dopamine release is not observed until the 

electrode is positioned within the depths of the NAc shell (− 6.0 mm to − 7.0 mm below the 

skull) [38]. Recording location was verified by electrolytic lesion at the end of the 

experiment (Fig. 1A, dashed white circle). Only dopamine signals recorded in the NAc shell 

were used in this study. To characterize the distribution of dopamine release sites in the NAc 

shell, dopamine release evoked by a bipolar electrical stimulation (60Hz, 24 pulses, 300 µA) 

of the VTA and the VNB was measured at different depths with fast-scan cyclic 

voltammetry.

Once the electrode was positioned in the NAc shell, changes in extracellular dopamine 

concentration in response to tail pinch were measured at multiple recording depths (Fig. 1B, 

single animal data). The time course of dopamine concentration changes was obtained from 

the oxidation peak of the voltammograms (~ +0.65 V). The dopamine responses to tail-pinch 

were much smaller than the concentration changes that occurred with electrical stimulation. 

At each recording depth tail pinch (at t = 0, 3 s duration, denoted as red bar) was repeated at 

least 3 times. In the example animal extracellular dopamine levels rapidly decreased on 

average during the tail pinch (t = 0 to 3 s). Once the stimulus ceased dopamine 

concentrations returned or, in some locations, spiked above pre-stimulus basal levels (t = 3 

s). Apparent variation in the initial time of a dopamine response is most likely due to human 

error as the tail pinch was administered manually. At the end of each experiment electrical 

stimulation of the VTA was used to confirm dopamine release in each location. Tail pinch 
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data are only presented for depths that exhibited dopamine release with electrical 

stimulation.

Three distinct response types (Fig. 2) occurred with tail pinch among locations in the NAc 

shell, in which dopamine concentrations either decreased during the tail pinch (monophasic 

decrease), transiently increased at the cessation of the stimulation (monophasic increase), or 

exhibited both of these components (biphasic). The features of these responses could be 

observed in many (Fig. 2A) but not all (Fig. 2B) trials conducted at a single recording depth 

as the magnitudes of the dopamine changes were often close to or under the signal-to-noise 

threshold (S/N ≥ 3). However, the dopamine response pattern for a single recording location 

became more evident when data over several trials was averaged (Fig. 2C). It is important to 

note that many recording sites in the NAc shell exhibited no measurable dopamine response 

to tail pinch even though release could be evoked by electrical stimulation. This is likely due 

in part to the sedative effects of urethane anesthesia. In fact, significant dopamine responses 

to tail pinch were only found for half of the recording locations within the NAc shell under 

control conditions (n = 7 animals, summarized in Table 1).

3.2. Effects of dopamine autoreceptor and transporter inhibition on tail-pinch induced 
responses in the NAc shell

Effects of the selective dopamine uptake inhibitor GBR 12909 (GBR, 15 mg/kg) and the D2 

autoreceptor antagonist raclopride (Rac, 2 mg/kg) on dopamine signaling to tail pinch were 

investigated. Figure 3 shows dopamine responses to tail pinch before (control) and after 

drug administration (Rac+GBR) for different recording locations in the NAc shell. Under 

each dopamine concentration profile, voltammetric data is shown in a false-color plot. The 

oxidation and reduction potentials for dopamine are indicated by dashed and solid white 

lines, respectively. The time course of dopamine concentration changes was obtained from 

the oxidation peak (~ +0.65 V) of the voltammograms.

Administration of Rac and GBR had two major effects. First, the combined administration 

of these drugs induced spontaneous dopamine transients (clearly seen in Fig. 3A), consistent 

with previous studies in the NAc shell of anesthetized animals [38; 42]. Secondly, D2/DAT 

inhibition enhanced dopamine overflow dynamics, significantly increasing the number of 

sites with detectable (S/N ≥3) responses to tail pinch (two-tailed Fisher’s exact test, P < 

0.001, Table 1). This enhancement additionally revealed biphasic dopamine signaling at 

many sites that appeared to respond monophasically under pre-drug conditions.

In the first animal of Figure 3 (A and B), dopamine responses were not evident during 

control recordings. However, with the signal gain provided by D2/DAT inhibition, a 

measurable dopamine response became apparent after drugs in the second (Fig. 3B) of the 

two sites shown. In these particular examples the length of noxious stimulation was 

increased from 3 to 10 s. As in other animals, the dopamine response remained time-locked 

to the duration of the stimulus even with extended stimulation.

In the second of the two animals shown, changes in dopamine concentration during tail 

pinch were small, but measurable before drug administration (Fig. 3C and D, left panels). In 

this animal, extracellular dopamine levels monophasically decreased to the stimulus at one 
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location (Fig. 3C) and changed in a biphasic manner at another (Fig. 3D). Once dopamine 

transients were induced through autoreceptor and transporter inhibition, these dopamine 

responses became pronounced (Fig. 3 C and D, right panels). Overall pre-drug dopamine 

responses to tail pinch (Fig. 3E, Δ[DA] = − 46.9 ± 3.9 nM during stimulus; Δ[DA] = 63.1 ± 

7.0 nM post stimulus, n = 7) were significantly enhanced after dopamine drug administration 

(Rac + GBR: Δ[DA] = − 89.4 ± 12.9 nM during stimulus, P < 0.05 ; Δ[DA] = 630 ± 145 

nM, P < 0.01 post-stimulus, n = 7).

3.3. Rapid extracellular norepinephrine changes in the vBNST elicited by tail pinch

A second set of experiments was conducted to investigate extracellular norepinephrine 

concentration changes in the vBNST in response to noxious stimulation. Figure 4A displays 

the electrode tract (left) for norepinephrine measurements in vBNST (shaded red), and a 

histological image of the vBNST (right) with the recording site marked by electrolytic lesion 

indicated by the dashed white circle. Only signals that were verified by histology to be 

recorded in the vBNST were used in this study (n = 7). Within the vBNST (DV ~ 7.3 mm – 

7.7 mm from the skull) electrically-stimulated norepinephrine release reached a maximum at 

a depth of ~7.5 mm as described previously [26; 41]. Figure 4B displays norepinephrine 

release evoked by electrical stimulation and tail pinch (left and right panels respectively, 

denoted by red bar) at different depths in the vBNST. As norepinephrine release is confined 

to a narrow range of depths in the vBNST [41; 43], data from only one recording depth was 

obtained for each animal.

In contrast to dopamine trials in the NAc shell, norepinephrine concentrations in the vBNST 

consistently increased during tail pinch and remained elevated briefly even after the stimulus 

ended (Fig. 4C, Table 1). Again, apparent variation in the initial time of norepinephrine 

response is due to the fact that the tail pinch was administered manually. Similar to 

dopamine in the NAc shell, the norepinephrine changes observed during tail pinch were 

smaller than that elicited by the electrical stimulation (Fig. 4B and C), but were still 

detectable in single trial data (Fig. 5A). The magnitude of individual responses did not 

significantly change after multiple noxious stimulations (Fig. 5B). Clearer norepinephrine 

responses were found after data was averaged for multiple trials at a single location (Fig. 

5C).

3.4. Effects of norepinephrine autoreceptor and transporter inhibition on tail-pinch 
induced responses in the vBNST

As in dopamine experiments, the effects of the selective norepinephrine uptake inhibitor, 

desipramine (15 mg/kg), and α2 receptor antagonist, idazoxan (5 mg/kg), on norepinephrine 

transmission in response to tail pinch were investigated. Pre- and post-drug norepinephrine 

concentration changes are shown for two animals in Figure 6. Under each norepinephrine 

concentration profile, data is shown in a false-color plot of voltammetric current. The time 

course of norepinephrine concentration changes was obtained from oxidation potential of 

norepinephrine denoted on the color plots by the dashed white lines. For some anesthetized 

animals prominent pH shifts coincided with changes in norepinephrine concentration in the 

vBNST (Fig. 6B, pH features indicated by yellow dashed lines) [56]. Concentration data for 

Park et al. Page 7

Pain. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



such trials were obtained through the use of principle component analysis (see, Data 
Analysis).

Unlike dopamine, the combined effects of autoreceptor/transporter inhibition do not induce 

transient norepinephrine release [42], but did significantly increase the magnitude and 

duration of extracellular norepinephrine elevation with tail pinch in this study. 

Norepinephrine transmission continued to display the same response pattern to the tail pinch 

even after norepinephrine drug administration (Fig. 6C, Predrug Δ[NE] = 47.1 ± 3.8 nM, n = 

7), Post IDA +DMI Δ[NE] = 119.8 ± 17 nM, P < 0.01, n = 7).

4. Discussion

Tail pinch is a classic noxious stimulus, which may result in pain depending on its intensity 

[20]. In rodents this mild stressor generates a state of arousal that can facilitate motivated 

behaviors such as feeding, copulation and maternal behaviors [5; 29; 55]. In anesthetized 

animals where affective and cognitive aspects of pain are dampened, noxious sensory input 

can still evoke measurable alterations in the neurons underling these behaviors, including 

those of the central catecholamine systems [8; 23].

Here we investigated the effects of a brief tail-pinch on catecholamine neurotransmission in 

two limbic terminal regions of the anesthetized rat brain, the NAc shell and the vBNST. 

Using FSCV and pharmacological agents to enhance release dynamics, we report new 

features in dopamine transmission for the NAc shell during tail pinch and, moreover, find 

that norepinephrine transmission in the BNST is oppositely regulated by noxious 

stimulation. While some intertrial variation was apparent at each recording site, neither 

dopamine nor norepinephrine responses showed sensitization over repeated stimulations.

4.1. Tail-pinch induced dopamine transmission in the NAc shell

As an important limbic-motor interface, the NAc has received considerable attention 

regarding its role during appetitive behaviors, where dopamine overflow increases during 

the presentation, seeking and anticipation of food reward, drugs of abuse, and intracranial 

self-stimulation [39; 47; 51]. While not as extensively characterized, accumbal dopamine 

also responds to various states of aversion [7; 36; 43; 51], and can inhibit pain [3; 58; 63]. In 

contrast to the general excitation of dopamine neurons by reward, electrophysiological 

recordings have established that the effects of noxious stimuli on VTA dopamine neurons 

are variable. Subpopulations of VTA dopamine neurons are excited, inhibited or unaffected 

by noxious stimuli such as electrical foot-shock and tail-pinch [8; 31; 59; 65]. Another 

subset of dopamine neurons exhibits a transient surge of activity at the offset of aversive 

stimuli [8; 62].

These diverse firing patterns are thought to be due to a functional separation of VTA 

dopamine neurons into populations that encode motivational salience versus motivational 

value [9; 33]. Dopamine neurons associated with motivational salience increase firing to 

signify the relative importance of a stimulus, while the activity of dopamine neurons 

relaying motivational value directly correlates to the hedonic aspects of a stimulus. Though 

it is often difficult to discriminate between these two signaling modalities during reward—
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where salience and value are weighted similarly—aversive stimuli are both salient and of 

negative valence, and therefore affect the activities of these neuronal populations inversely.

This dichotomy in motivational processing is maintained in the NAc, where the NAc core is 

more associated with salience and attentional-orientation while the NAc shell mediates 

valuation of external stimuli to drive approach-avoidance behaviors [9; 52]. Supporting this 

idea, we previously found regional differences in accumbal dopamine transmission to acute 

tail pinch [10]. During the tail pinch, a salient noxious event, dopamine increased in the 

NAc core. At the cessation of the tail pinch, which unarguably has rewarding attributes [57], 

dopamine transiently increased in the NAc shell.

Oddly, we did not observe a response during the tail-pinch in the NAc shell, where one 

would expect the aversiveness of the stimulus to be signaled by decreased dopamine release. 

Here we proposed that the absence of this response in our past study was due to an 

insufficient limit of detection. To increase signal strength, we pharmacologically blocked the 

D2 autoreceptor and the dopamine transporter (DAT) respectively with raclopride and 

GBR12909. These drugs act to increase the amount and duration of dopamine release that 

occurs with neuronal activation. In combination they also cause high-frequency dopamine 

transients within the NAc of anesthetized animals [38; 61], which provided background 

activity to clearly resolve decreases in release. Consistent with our theory, more response 

sites were found after drugs; however it is unclear whether D2/DAT inhibition simply 

amplified control signaling to detectable levels or altered the activity of nonresponsive 

dopamine neurons.

Regardless, this investigation found that tail pinch does suppress dopamine transmission in 

the shell, but not at all locations. Variability in tail-pinch induced dopamine signaling in the 

shell was not evident in our previous study as data was averaged across depths for each 

animal. Within this accumbal region, dopamine either decreased at the onset of the noxious 

stimulus or increased at the stimulus offset, and, at some locations, exhibited both of these 

responses. Other locations, however, showed no discernible dopamine change to tail-pinch 

even after pharmacological manipulation. The type of response observed was unlikely due to 

differences in synaptic proximity as all of the locations reported here exhibited similar 

electrically-stimulated dopamine release and drug-induced transient activity.

Together three distinct release patterns were identified, corresponding to the activities 

reported for VTA dopamine neurons during noxious stimulation [8; 59]. Our data suggests 

that the NAc shell is innervated by VTA dopamine neurons that differentially encode 

noxious input, in contrast to the NAc core where dopamine uniformly increased during tail 

pinch. Variation in dopamine signaling is not unexpected for this region given that 

appetitive and aversive processing are believed to be confined to subdomains of the NAc 

shell [48]. The temporo-spatial aspects of these responses may underlie the controversial 

results observed in past studies.

4.2 Tail-pinch induced norepinephrine transmission in the vBNST

The BNST, a major limbic target of the central norepinephrine system, integrates 

descending cortico-limbic and ascending sensory information to modulate HPA axis activity 
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and, in turn, glucocorticoid secretion in response to stress [17]. In general norepinephrine 

transmission is considered a major component of the central stress response, where it acts to 

heighten arousal and behavioral responsivity [6; 35]. Norepinephrine in the BNST, which is 

densely concentrated in the ventral region, specifically acts to facilitate HPA axis output 

during negative emotional states [19].

The noradrenergic innervation of the BNST originates principally from the NST and A1 cell 

groups, though a small contribution does arise from the LC through the dorsal noradrenergic 

bundle [20; 30]. The medullar (NST and A1) populations are positioned to relay sensory, 

visceral, cardiorespiratory and nociceptive information between the peripheral and central 

nervous systems [46; 49]. Studies have found a role for the NST in the baroreflex to noxious 

thermal stimulation [22] and in the tonic control of nociceptive thresholds [32]. 

Furthermore, medullar catecholamine neurons are activated by visceral pain [21]. The LC, a 

dense pontine population of norepinephrine neurons, is also excited by a wide-range of 

sensory stimuli including those that present physical or psychological threat including 

nociception [12; 53], and in the case of persistent pain provides feedback inhibition [46].

Consistent with electrophysiological work, norepinephrine release within the BNST is 

enhanced by a variety of stressors such as restraint, bitter taste, reward-omission and 

morphine withdraw [37; 39; 43; 60]. Pain can be a particularly potent form of stress and, 

accordingly, somatic and visceral nociception also stimulates BNST norepinephrine release 

[14; 15]. Functionally, increased BNST norepinephrine transmission through β adrenergic 

receptors is associated with the negative affective component of pain and is required for 

pain-induced conditioned-place aversion [16].

Together these reports describe a positive correlation between noradrenergic cell activity 

and states of aversion. Congruently, we found extracellular norepinephrine concentration in 

the vBNST transiently increased to acute tail-pinch (Fig. 5). Though it was not possible to 

map different recording depths within the vBNST due to its size, similar norepinephrine 

responses were observed across all animals. Unlike for dopamine in the NAc, no new 

features in vBNST norepinephrine responses were revealed after pharmacological 

enhancement of norepinephrine release with administration of the α2 autoreceptor 

antagonist idazoxan and the NET inhibitor desipramine.

Interestingly, extracellular norepinephrine remained elevated briefly after the noxious 

stimulation ceased, and the duration of the response became further extended after 

transporter blockade. While few non-voltammetric studies have considered extracellular 

norepinephrine responses to a single, brief noxious stimulation as we have done here, 

microdialysis measurements have recorded basal changes in BNST norepinephrine in awake 

animals lasting minutes to hours beyond the presentation of a stressor [35]. This may 

suggest that BNST norepinephrine plays a limited role in transmitting information regarding 

the temporal aspects of external stimuli, and rather promotes a general change in affective 

state to generate the appropriate coping response to environmental challenge.
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4.3 Conclusion

In summary, we demonstrated that tail pinch, an acute noxious stimulus, triggers transient 

changes in extracellular catecholamine levels in the NAc shell and the vBNST of 

anesthetized rats. Throughout the NAc shell, a region associated with value-driven 

motivational behavior, dopamine transmission was overall attenuated by the stimulation and 

increased by its cessation. In the BNST, a key upstream regulator of adrenal stress hormone 

secretion, tail pinch caused an extended increase in extracellular norepinephrine levels. The 

opposing effects of tail pinch we observed align with the respective roles of accumbal 

dopamine and BNST norepinephrine as reward and stress neurotransmitters. Moreover, the 

temporal differences between their responses are in agreement with the respective 

involvement of these two limbic structures in motor versus hormonal aspects of pain 

processing. Together these data demonstrate that limbic catecholamine systems are 

divergently recruited during a physically threatening stimulation, and may be crucial in the 

expression of pain-related responses.
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Figure 1. 
Anatomical mapping of tail pinch induced and electrically evoked dopamine responses in 

the NAc shell. (A) Solid line in the schematic diagram illustrates the approximate path of the 

carbon-fiber microelectrodes in the NAc shell (left). The coronal section was modified from 

the atlas of Paxinos and Watson [44]. The placement of the carbon-fiber microelectrode tip 

is indicated by the dashed white circle, which provides histological evidence that the 

electrode was positioned in the NAc shell (right). AP, anterior-posterior; AC, anterior 

commissure. (B) Average dopamine concentration changes to tail-pinch as a function of 
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recording depth (n = 3 trials each). The time of tail pinch is indicated by the red bar. The 

dashed lines represent error as S.E.M.
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Figure 2. 
Pre-drug dopamine signaling in the NAc shell in response to tail pinch. Example data are 

shown for the three response types (monophasic decrease, monophasic increase, biphasic), 

representing three separate recording locations. (A) Single trial electrochemical data. The 

white dashed lines in the color plots indicate the potential of dopamine oxidation (~0.65 V). 

Current features at this potential become apparent with the administration of the tail-pinch 

stimulus (time denoted by red bars) and are converted to concentration by a post-calibration 

factor to produce the traces above the color plots. Representative cyclic voltammograms are 

provided for the times marked by the arrows. Negative oxidation currents at + 0.65 V are 

representative of a decrease in dopamine concentrations. (B) Peak dopamine changes by trial 

for the same animals and same recording locations in response to tail pinch. The vertical 

lines through the data points indicate the noise levels (3σ) at the dopamine oxidation 

potential for each trial. (C) Average dopamine concentration changes for the same animals 
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and same recording locations (n = 6 trials each). The time of tail pinch is indicated by the 

red bars. Error bars are S.E.M.
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Figure 3. 
Post-drug dopamine signaling in the NAc shell in response to tail pinch. Changes in 

extracellular dopamine were more clearly observed after administration of the selective 

dopamine drugs, raclopride (Rac, 2 mg/kg) and GBR 12909 (GBR, 15 mg/kg). (A and B) 

Tail-pinch induced dopamine responses for a single animal at two recording depths before 

(left) and after (right) pharmacological manipulation. Electrochemical data is provided in the 

color plots where the potential of dopamine oxidation (~0.65 V) is indicated by the white 

dashed lined and the potential of dopamine reduction (~−0.2 V) is indicated by the solid 

white line. Dopamine concentration changes over time are provided above the color plots. 

The time of tail pinch (10 s duration) is indicated by the red bars. (C and D) Tail-pinch 

induced dopamine responses for a separate animal at two recording depths before (left) and 

after (right) pharmacological manipulation. The time of tail pinch (3 s duration) is indicated 

by the red bars. (E) Average peak dopamine (DA) inhibition responses recorded during (left) 

and excitation responses after (right) tail pinch stimulation under control and post-drug 

conditions. *P<0.05, **P<0.01, paired student’s t-test.
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Figure 4. 
Anatomical mapping of tail pinch induced and electrically evoked norepinephrine responses 

in the vBNST. (A) Solid line in the schematic diagram illustrates the approximate path of the 

carbon-fiber microelectrodes in the vBNST (shaded red, left). The coronal section was taken 

from the atlas of Paxinos and Watson [44]. The placement of the carbon-fiber 

microelectrode tip is indicated by the dotted white circle, which provides histological 

evidence that the electrode was positioned in the vBNST (right). AP, anterior-posterior; AC, 

anterior commissure; CPu, caudate-putamen; vBNST, ventral bed nucleus of the stria 
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terminalis. (B) Mapping of electrically evoked (60 Hz, 60 pulses, ±300 µA) norepinephrine 

release in the vBNST recorded at the depth indicated. The red bars under the current trace 

show the electrical stimulation time. (C) Average norepinephrine concentration changes to 

tail-pinch at the recording depth indicated (n = 3 trials each). The time of tail pinch is 

indicated by the red bar. The dashed lines represent error as S.E.M.
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Figure 5. 
Pre-drug norepinephrine signaling in the vBNST in response to tail pinch. (A) Example 

norepinephrine responses to tail-pinch for two separate animals. Single trial electrochemical 

data is shown. The white dashed lines in the color plots indicate the potential of 

norepinephrine oxidation (~0.7 V). Current features at this potential become apparent with 

the administration of the tail-pinch stimulus (time denoted by red bars) and are converted to 

concentration by a post-calibration factor to produce the traces above the color plots. 

Representative cyclic voltammograms are provided for the times marked by the arrows. (B) 
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Peak norepinephrine changes by trial for the same animals and same recording locations in 

response to tail pinch. The vertical lines through the data points indicate the noise levels (3σ) 

at the norepinephrine oxidation potential for each trial. (C) Average norepinephrine 

concentration changes for the same animals and same recording locations (n = 6 trials each). 

The time of tail pinch is indicated by the red bars. Error bars are S.E.M.
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Figure 6. 
Post-drug norepinephrine signaling in the vBNST in response to tail pinch. Norepinephrine 

signaling patterns were more clearly observed after administration of the selective 

norepinephrine drugs, idazoxan (IDA, 5 mg/kg) and desipramine (DMI, 15 mg/kg). (A and 

B) Tail-pinch induced norepinephrine responses two separate animals before (left) and after 

(right) pharmacological manipulation. Electrochemical data is provided in the color plots 

where the potential of norepinephrine oxidation (~0.65 V) is indicated by the white dashed 

lined. Norepinephrine concentration changes over time are provided above the color plots. 
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The time of tail pinch (3 s duration) is indicated by the red bars. (C) Average peak 

norepinephrine (NE) responses recorded with tail-pinch stimulation under control and post-

drug conditions. **P<0.01, paired student’s t-test.
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Table 1

Distribution of catecholamine responses in the NAc shell (dopamine) and the vBNST (norepinephrine) before 

and after administration of selective autoreceptor and transporter inhibitors.

# of sites (%)

Response Type Control Post-Drug1

Dopamine

No Change 26 (49) 6 (14)§

Monophasic Decrease 12 (23) 16 (36)

Offset Monophasic Increase 10 (19) 11 (25)

Biphasic Decrease-Increase 5 (9) 11 (25)

Norepinephrine

Increase 7 (100) 7 (100)

1
Post-Drug: raclopride (5 mg/kg) and GBR12909 (15 mg/kg) for dopamine, idazoxan (5 mg/kg) and desipramine (15 mg/kg) for norepinephrine.

§
Significantly different from control. Two-tailed Fisher’s exact test, P < 0.001.
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