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Abstract

Decreased activity of catechol-O-methyltransferase (COMT), an enzyme that metabolizes

catecholamines, contributes to pain in humans and animals. Previously, we demonstrated that

development of COMT-dependent pain is mediated by both β2- and β3-adrenergic receptors (β2-

and β3ARs). Here, we investigated molecules downstream of β2-and β3ARs driving pain in

animals with decreased COMT activity. Based on evidence linking their role in pain and synthesis

downstream of β2- and β3AR stimulation, we hypothesized that nitric oxide (NO) and pro-

inflammatory cytokines drive COMT-dependent pain. To test this, we measured plasma NO

derivatives and cytokines in rats receiving the COMT inhibitor OR486 in the presence or absence

of the β2AR antagonist ICI118,551 + β3AR antagonist SR59320A. We also assessed if the NO

synthase inhibitor L-NG-nitroarginine methyl ester (L-NAME) and cytokine neutralizing

antibodies block the development of COMT-dependent pain. Results showed that animals

receiving OR486 exhibited higher levels of NO derivatives, tumor necrosis factor α (TNFα),

interleukin-1β (IL-1β), interleukin-6 (IL-6), and chemokine (C-C motif) ligand 2 (CCL2) in a β2-

and β3AR-dependent manner. Additionally, inhibition of NO synthases and neutralization of the

innate immunity cytokines TNFα, IL-1β, and IL-6 blocked the development of COMT-dependent

pain. Finally, we found that NO influences TNFα, IL-1β, IL-6 and CCL2 levels, while TNFα and

IL-6 influence NO levels. Altogether, these results demonstrate that β2- and β3ARs contribute to

COMT-dependent pain, at least partly, by increasing NO and cytokines. Furthermore, they

identify β2- and β3ARs, NO, and pro-inflammatory cytokines as potential therapeutic targets for

pain patients with abnormalities in COMT physiology.
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1. Introduction

A growing literature demonstrates that catecholamines and pathways regulating their

bioavailability influence pain. Patients with chronic pain conditions including fibromyalgia

and temporomandibular disorders (TMD) exhibit increased levels of the catecholamines

epinephrine and norepinephrine [19,46,70,79] and decreased levels of the enzyme catechol-

O-methyltransferase (COMT) [16,26,81], which metabolizes epinephrine and

norepinephrine [50]. Consistent with these findings, animal studies show that epinephrine

administration [11,37,38] or COMT inhibition [34,53] increases mechanical and thermal

hyperalgesia. Pharmacologic studies reveal that COMT-dependent pain, defined as increased

pain following COMT inhibition, is mediated via β2- and β3-adrenergic receptors (β2- and

β3ARs). Antagonism of both β2- and β3ARs are required to completely block acute COMT-

dependent pain, as antagonism of either β2- or β3ARs alone only produces a partial blockade

[53].

β2ARs and β3ARs are G-protein coupled receptors expressed in peripheral, spinal, and

supraspinal sites involved in pain transmission. Stimulation of β2- or β3ARs on peripheral

afferents sensitizes nociceptors [2,37] and produces allodynia [35] through activating

intracellular kinases. Additionally, stimulation of β2- or β3ARs indirectly enhance pain

transmission through the release of pro-inflammatory molecules including nitric oxide and

cytokines [1,7,21-23,28,49,75,77].

Nitric oxide (NO) is a gaseous molecule whose production by NO synthases can be induced

by stimulation of β2ARs on endothelial cells, smooth muscle, sympathetic afferent neurons,

and macrophages [1,21,28] or stimulation of β3ARs on adipocytes and fibroblasts [7,23].

Following release, NO lowers nociceptor firing thresholds [3,5] to enhance experimental

inflammatory and neuropathic pain [29,41,59]. Furthermore, NO can stimulate release of

additional molecules involved in nociception, including pro-inflammatory cytokines [9,29].

Pro-inflammatory cytokines linked to pain include tumor necrosis factor α(TNFα),

interleukin-1β (IL-1β), interleukin-6 (IL-6), and chemokine (C-C motif) ligand 2 (CCL2,

MCP-1). β2- and β3AR stimulation promotes the production and release of TNFα, IL-1β,

IL-6, and CCL2 [22,49,63,75,77], which act to lower nociceptor firing thresholds and

enhance pain [4,14,57,58][33,73].

Of note, NO and cytokines influence one another's release. NO drives the production and

release of cytokines including TNFα and IL-1β [9,13,32,83], while cytokines upregulate NO

synthase expression and promote NO release [25,42,74,78]. This positive feedback loop may

contribute to the development and/or maintenance of pain [13]. While NO and cytokines are

released following β2- and β3AR stimulation and linked with pain, their role in COMT-

dependent pain has not been established.

To investigate the role of NO and cytokines in COMT-dependent pain mediated by β2- and

β3ARs, we measured plasma NO and cytokines following administration of a COMT

inhibitor in the presence or absence of β2- and β3AR antagonists. Additionally, we measured

mechanical and thermal pain sensitivity following COMT inhibition in the presence or
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absence of a NO synthase inhibitor or TNFα, IL-1β, IL-6, or CCL2 neutralizing antibodies.

Results demonstrate that (1) COMT-dependent pain is accompanied by increases in

peripheral NO derivatives and cytokines mediated by β2- and β3ARs, (2) inhibition of NO

synthesis and neutralization of the innate immunity cytokines TNFα, IL-1β, IL-6 block

COMT-dependent pain, and (3) NO and cytokines potentiate one another's biosynthesis: NO

promotes TNFα, IL-1β, IL-6, and CCL2 release while TNFα and IL-6 promote NO release.

2. Materials and Methods

2.1 Subjects

Adult male Sprague Dawley rats (Charles River Laboratories, Raleigh, NC) were used in all

experiments. Rats weighed between 215-265 g for β2- and β3AR antagonism and NO

synthase inhibition experiments and between 315-360 g for cytokine neutralization

experiments.

2.2 Drugs and chemicals

As described in Nackley et al., 2007 [53], OR486 was dissolved in DMSO and diluted in

0.9% saline (3:2). ICI18551, SR59230A, and L-NAME were dissolved in DMSO and 0.9%

saline (1:4). Functional grade antibodies against tumor necrosis factor α (α-TNFα),

interleukin-1 (α-IL-1β), interleukin-6 (α-IL-6), chemokine (C-C motif) ligand 2 (α-CCL2)

or IgG control were dissolved in 0.9% saline. OR486, ICI118,551, and SR59230A were

purchased from Tocris (Ellisville, MO). L-NAME was purchased from Sigma-Aldrich (St.

Louis, MO). Neutralizing antibodies against TNFα, IL-1β, CCL2 and Armenian hamster

IgG controls were purchased from eBiosciences (San Diego, CA), while the antibody

against IL-6 (polyclonal goat IgG) was purchased from R&D Systems (Minneapolis, MN).

2.3 General Experimental Conditions

Animals were handled and habituated for 4 days prior to testing day. On testing day, animals

were habituated to the environment for 10-15 minutes and then stable baseline responses to

mechanical or thermal stimuli were established in separate groups of rats. Following

baseline testing, animals were randomly assigned to drug treatment group and behavior was

reassessed. Responses to mechanical stimuli were reassessed at 30, 75 and 120 minutes

following OR486 and responses to thermal heat were reassessed at 120 minutes following

OR486. Experimenter was blinded to drug treatment group.

We first sought to determine if COMT-dependent pain is accompanied by increases in NO

and cytokines and if this was mediated by β2- and β3ARs. Separate groups of animals

received intraperitoneal (i.p.) ICI118,551 (0.5mg/kg) together with SR59230A (5.0mg/kg)

or vehicle 30 minutes before i.p. OR486 (30 mg/kg) or vehicle.

We then sought to elucidate the role of NO and cytokines in driving COMT-dependent pain.

To determine if NO production was required for the development of COMT-dependent pain,

separate groups of animals received i.p L-NAME (30 mg/kg) or vehicle 30 min before i.p.

OR486 (30 mg/kg) or vehicle. L-NAME dosage was based on that used in Kuboyama et al.,

2011 [41]. To determine if cytokine action was required for the development of COMT-
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dependent pain, separate groups of animals received intravenous (i.v.) α-TNFα (75 ug), α-

IL-1β (75 ug), α-IL-6 (75 ug), α-CCL2 (75 ug) or IgG control (75 ug) dissolved in 250 μL

0.9% saline 2h prior to i.p. OR486 (30 mg/kg) or vehicle. Dosages of neutralizing antibody

were determined by two sources: previous reports using neutralizing antibodies and the

effective neutralizing dose that would neutralize cytokines at the average dosages we

observed at 180 minutes following OR486 administration [8,47]. We chose to administer the

antibodies by i.v. injection to optimize the circulation of the antibody in a relatively short

amount of time.

Finally, we sought to establish if NO and cytokines influenced one another's biosynthesis.

To determine if NO synthesis was required for cytokine release, plasma collected from

animals in the L-NAME experiments was measured for levels of TNFα, IL-1β, IL-6 and

CCL2. To determine if cytokine action was required for NO release, plasma from animals

receiving neutralizing antibodies against TNFα, IL-1β, IL-6, and CCL2 was measured for

levels of total nitrite (nitrite and nitrate).

2.4 Assessment of Mechanical Allodynia and Mechanical Hyperalgesia

Paw withdrawal threshold was measured using the von Frey up-down method, as described

in Nackley et al., 2007 and below. Nine calibrated von Frey monofilaments (bending forces

of 0.40, 0.68, 1.1, 2.1, 3.4, 5.7, 8.4, 13.2, and 25.0 g; Stoelting) with equal logarithmic

spacing between filaments were applied to the plantar surface of the hind paw. A series of

six applications of monofilaments with varying gram forces was applied for 3 s to the

plantar surface of the hindpaw. Testing began with the middle filament in the series (3.4 g).

If the response included the withdrawal of the hindpaw, an incrementally lower filament was

applied. In the absence of a paw withdrawal, an incrementally higher filament was applied.

These data were entered into Paw Flick module within the National Instruments LabVIEW

2.0 (Austin, TX) software. A logarithmic algorithm accounted for the order and number of

withdrawal responses as well as the gram force of the final filament to calculate mechanical

threshold, the gram force that would elicit paw withdrawal in 50% of trials (10 [Xf+kδ]/

10,000, where Xf = value (in log units) of the final von Frey hair used; k = tabular value of

positive and negative responses, and δ = mean difference (in log units) between stimuli).

Mechanical allodynia was defined as a heightened response to a normally innocuous

stimulus and was determined as a significant decrease in paw withdrawal threshold from

baseline.

After determining paw withdrawal threshold, paw withdrawal frequency to a noxious von

Frey monofilament was assessed. The highest gram force filament (25.0 g) was applied to

the hind paw 10 times. Stimulus was applied for 1s followed by a 1s interval without a

stimulus. The number of paw withdrawals was recorded for each hindpaw. Mechanical

hyperalgesia was defined as an increase in the number of paw withdrawals to a noxious

mechanical stimulus from baseline.

2.5 Assessment of Thermal Hyperalgesia

Thermal hyperalgesia was measured using the radiant method by applying radiant heat to the

hind paw as described in Hargreaves et al., 1988 [27]. Animals were placed in individual
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Plexiglass chambers and habituated for approximately 10 minutes. Following habituation, a

radiant beam of light was applied to the plantar surface of the rat hind paw through a glass

floor heated to 30°C. Latencies of paw withdrawal from the heat stimulus were recorded in

duplicate. If the second paw withdrawal latency was not within ±4 seconds of the first

withdrawal latency, then a third measure was recorded. The two latencies closest in value

were averaged and included in the analysis. Thermal hyperalgesia was defined as a decrease

in paw withdrawal latency to a noxious thermal stimulus compared to baseline.

2.6 Tissue Collection

Following behavioral testing, animals were euthanized by injection of 0.5 mL Fatal-Plus

(Vortech Pharmaceuticals, Dearborn, MI). Arterial blood was collected and placed in EDTA

plasma tubes, then centrifuged for 15 minutes at 15,000 × g. Following collection, plasma

was stored at −80°C.

2.7 Measurement of NO Derivatives

To measure nitrite, NO in blood plasma was assessed using the Griess Reaction (Promega,

Madison, WI). To measure total nitrite (nitrite and nitrate), NO in blood plasma was

assessed by kit from R&D Systems (Minneapolis, MN).

2.8 Measurement of Cytokines

To determine if COMT inhibition raised TNFα plasma levels downstream of β2- and β3AR

stimulation, plasma TNFα was measured by the UNC Proteomics/Immunotechnologies

Core using ELISA kits from Biosource (Camarillo, CA). To determine if COMT inhibition

raised TNFα plasma levels downstream of NO production, plasma TNFα was measured by

chemiluminescent ELISA (Life Technologies Carlsbad, CA) due to discontinuation of

aforementioned Biosource kit. IL-1β was measured by the UNC Cytokine Analysis Facility

using the Luminex Rat Cytokine Multiplex Array from R&D Systems (Minneapolis, MN).

IL-6 and CCL2 were measured by ELISA (eBioscience, San Diego, CA; R&D Systems,

Minneapolis, MN, respectively). Selected ELISAs and multiplex were based upon minimum

assay range and analyte sensitivity. All plasma samples were diluted at 2×.

2.9 Statistical Analysis

All behavioral data were analyzed using a t-test to verify that there were no significant

differences in baseline values. Baseline mechanical allodynia values did differ in two groups

and were normalized using the following formula: D= (Average baseline for all groups) –

(average baseline for specific group). Value, D, was then added to each animal's threshold

value at all time points. Mechanical allodynia and hyperalgesia data were analyzed by two-

way analysis of variance (ANOVA). Thermal hyperalgesia and molecular data were

analyzed using a one-way ANOVA. Post-hoc comparisons were performed using the

Bonferroni test and were corrected for multiple testing. P< 0.05 was considered to be

statistically significant.
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3. Results

3.1 COMT inhibition results in increased pain sensitivity and production of pro-
inflammatory mediators via β2- and β3ARs

To recapitulate our lab's previous results demonstrating that acute COMT-dependent pain is

mediated by both β2- and β3ARs, we measured pain behavior in animals receiving the β2AR

antagonist ICI118,551 together with the β3AR antagonist SR59320A prior to the COMT

inhibitor OR486. As expected, animals receiving OR486 exhibited mechanical allodynia

(F3,137=9.223, P < 0.0001; Fig. 2A), mechanical hyperalgesia (F3,139= 11.45, P < 0.0001;

Fig. 2B) and thermal hyperalgesia (F3, 54=5.336, P < 0.003; Fig. 2C) compared to those

receiving vehicle. COMT-dependent increases in pain sensitivity were observed 30 to 120

min following drug administration and were completely blocked by co-administration of β2-

and β3AR antagonists.

Following the conclusion of behavioral experiments, blood plasma was collected to measure

circulating levels of NO derivatives, TNFα, IL-1β, IL-6, and CCL2. Animals receiving

OR486 exhibited increased levels of nitrite (F3, 23= 3.929, P <0.03; Fig. 2D), TNFα

(F2,18=5.663, P<0.02; Fig. 2E), IL-1β (F3,27=3.428, P<0.04; Fig. 2F), IL-6 (F3,19=1.354,

P=0.2; Fig. 2G), and CCL2 (F3,27=3.569, P <0.03; Fig. 2H). COMT-dependent increases in

nitrite and cytokines were completely blocked by co-administration of ICI118,551 and

SR59320A.

3.2 NO synthase inhibition and cytokine neutralization prevent COMT-dependent pain

As NO and cytokines are released following stimulation of β2- and β3ARs and have been

implicated in the development of pain in other models, we sought to determine their role in

the development of acute COMT-dependent pain. To first evaluate the contribution of NO

synthesis, we measured pain behavior in separate groups of animals that received the NO

synthase inhibitor L-NAME or vehicle 30 min prior to OR486. Administration of L-NAME

prior to OR486 blocked the development of mechanical allodynia (F3,138=5.195, P<0.003;

Fig. 3A), mechanical hyperalgesia (F3,138=5.195, P<0.003; Fig. 3B), and thermal

hyperalgesia (F3,54=6.337, P<0.001; Fig. 3C). Therefore, NO production by NO synthases is

required for the development of COMT-dependent increases in mechanical and thermal

pain.

To next evaluate the individual contributions of TNFα, IL-1β, IL-6, and CCL2 to acute

COMT-dependent pain, we measured pain behavior in separate groups of animals receiving

neutralizing antibodies against TNFα, IL-1β, IL-6, and CCL2 or control IgG prior to OR486.

Results show that neutralization of the innate immunity cytokines (TNFα, IL-1β, and IL-6),

but not CCL2, prevented OR486-dependent increases in mechanical and thermal pain.

Administration of α-TNFα (F3,84=10.71, P<0.0001; Fig. 4A), α-IL-1β (F3,83=19.34,

P<0.0001; Fig. 4D), and α-IL-6 (F3,87=10.96, P<0.0001; Fig. 4G) blocked mechanical

allodynia. Additionally, pretreatment with α-TNFα (F3,89=30.95, P<0.0001; Fig. 3B), α-

IL-1β (F3,89=29.72, P<0.0001; Fig. 4E), and α-IL-6 (F3,93=23.33, P<0.0001; Fig. 4H)

blocked mechanical hyperalgesia. Finally, α-TNFα (F3,47=5.312, P<0.004; Fig. 4C), α-

IL-1β (α-IL-1β : F3,49=5.639, P<0.002; Fig. 4F), and α-IL-6 (F3,48=3.339, P<0.003; Fig. 4I)
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blocked thermal hyperalgesia at 120 min. However, α-CCL2 was not effective at blocking

mechanical allodynia (Fig. 4J), mechanical hyperalgesia (Fig. 4K) or thermal hyperalgesia

(Fig. 4L). Therefore, the innate immunity cytokines TNFα, IL-1β, and IL-6 are required for

the development of COMT-dependent pain.

3.4 Interplay between NO and cytokine protein expression in COMT-dependent pain

We then sought to determine if these pro-inflammatory molecules could influence the

synthesis and release of one another downstream of β2- and β3AR stimulation. Blood plasma

was collected from animals that received L-NAME or cytokine neutralizing antibodies prior

to OR486 and peripheral levels of NO derivatives and cytokines were measured. In NO

inhibition experiments, levels of TNFα, IL-1β, IL-6, and CCL2 were elevated in animals

receiving vehicle prior to OR486. Pre-administration of L-NAME blocked OR486-mediated

increases in TNFα (F3,39=0.2989, P<0.83; Fig. 5A), IL-1β(F3,27=3.255, P<0.04; Fig. 5B),

IL-6 (F3,18=1.354, P<0.3; Fig. 5C), and CCL2 (F3,27=2.761, P=0.06; Fig. 5D).

In cytokine neutralization experiments, total nitrite (nitrite + nitrate) concentrations in blood

plasma were elevated in animals receiving control IgG prior to OR486. Pre-administration

of α-TNFα (F3,21=3.230, P<0.05; Fig. 6A) or α-IL-6 (F3,22=3.772, P<0.03; Fig. 6C) prior to

OR486 blocked elevations in total nitrite. However, pre-administration of α -Il-1β (Fig. 6B)

or α- CCL2 (Fig. 6D) failed to block OR486-mediated increases in total nitrite levels. Thus,

NO and cytokines drive one another's biosynthesis.

4. Discussion

Our laboratory previously demonstrated that COMT inhibition produces remarkable

increases in mechanical and thermal pain sensitivity through stimulation of both β2- and β3

ARs [53]. However, the molecular mechanisms whereby these receptors drive COMT-

dependent pain have remained unknown. Here, we identify NO, TNFα, IL-1β, and IL-6 as

molecules downstream of β2- and β3AR stimulation that are critical for the development of

pain associated with decreased COMT activity. Furthermore, we demonstrate that NO and

cytokines act in a positive feedback loop to induce one another's biosynthesis.

4.1 Role of Nitric Oxide in COMT-dependent Pain

NO is a paracrine signaling molecule produced by three different nitric oxide synthase

isoforms: neuronal NOS (nNOS, NOS1), inducible NOS (iNOS, NOS2), and endothelial

NOS (eNOS, NOS3). While previous studies have linked NO to inflammatory and

neuropathic pain, here we provide the first demonstration that NO contributes to COMT-

dependent pain. Specifically, we found that stimulation of β2- and β3ARs following COMT

inhibition resulted in increased levels of NO derivatives and that inhibition of NO synthesis

with L-NAME prevented the development of COMT-dependent mechanical allodynia,

mechanical hyperalgesia, and thermal hyperalgesia. These findings are in line with results

from clinical and animal studies showing NO is upregulated following injury and

inflammation [9,13,29,41,52,59,66] and that genetic or pharmacologic blockade of NO can

suppress pain in these models [9,29,41,51,59,62].
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NO is able to produce pain through several mechanisms, including the canonical stimulation

of cyclic guanylyl monophosphate (cGMP), which can enhance activity of Ca2+- activated

K+ channels and, thus, the firing rate of nociceptors. NO can also stimulate cyclic adenosine

monophosphate (cAMP)-mediated production of pro-pain prostaglandins (PGE2) that

sensitize primary afferents [3,5]. Furthermore, NO can stimulate cAMP production through

S-nitrosylation of adenylate cyclase and the phosphorylation of cAMP response element

binding (CREB) protein by cGMP. Activation of CREB leads to enhanced expression of

cytokines such as IL-1β and TNFα [9,32,83]. While others have linked NO production with

β2- and β3AR stimulation in the context of inflammation [1,21,28,75], this is the first

demonstration that NO synthesis is critical for COMT-dependent pain and cytokine

production.

4.2 Role of Pro-Inflammatory Cytokines in COMT-dependent Pain

TNFα, IL-1β, and IL-6 are innate immunity cytokines, considered to be the first-responders

to injury or pro-inflammatory events. In an acute setting, these cytokines convey a protective

advantage by promoting wound healing [17]. However, sustained elevations of these

cytokines can promote tissue damage and pain. Here, we found that COMT inhibition led to

the release of TNFα, IL-1β, IL-6, and CCL2 mediated by β2- and β3ARs. We also found that

neutralization of the innate immunity cytokines TNFα, IL-1β and IL-6, but not CCL2,

prevented COMT-dependent mechanical and thermal sensitivity.

Stimulation of β2- and β3ARs located on cells in the periphery and central nervous system

can enhance production of TNFα, IL-1β, IL-6, and CCL2 [30,31,45,54,75,77,82,84], which

can then enhance pain sensitivity. Elevations in these cytokines have been found in local

synovial joint fluid from patients with TMD [40] and in blood from patients with

fibromyalgia and migraine [65,68,80]. Neutralization of TNFα, IL-1β, and IL-6 reduces the

development of allodynia and hyperalgesia in models of neuropathic pain [4,47,57,69],

suggesting that these cytokines are critical for pain.

Cytokines downstream of β2- and β3AR stimulation likely drive COMT-dependent pain

through direct and indirect mechanisms. Previous studies have demonstrated that TNFα,

IL-1β and IL-6 can bind to their respective receptors on nerve terminals to directly sensitize

peripheral nociceptors [4,14,57,58]. TNFα can also drive sensitization of nociceptors

through receptor-independent increases in the production of other pro-inflammatory

cytokines. Cunha and colleagues found that α-TNFα blocked CFA-induced increases in pain

and IL-1β production [12]. They speculated that TNFα acts as the first cytokine in the

cascade to stimulate the sequential release of IL-6, IL-1α, and PGE2.

In contrast to the innate immunity cytokines, administration of α-CCL2 did not prevent the

development of COMT-dependent pain. This may be due to one of two possibilities: that

CCL2 is critical for the maintenance versus the development of pain or that higher dosages

of α-CCL2 may reduce COMT-dependent pain and NO release. Previous studies have

shown that CCL2 recruitment of monocytes and neutrophils to the site of injury occurs at

later time points after 2 hours [60]. Furthermore, CCL2 is released from spinal dorsal horn

astrocytes, which are glial cells involved in the maintenance of pain states [24].
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4.3 Interplay between NO and Cytokines in COMT-dependent pain

Mounting evidence suggests that a positive feedback loop exists between NO and cytokines,

such that they can induce one another's biosynthesis. Here, we found that inhibition of NO

synthesis effectively blocked COMT-dependent increases in TNFα, IL-1β, IL-6 and CCL2,

while neutralization of TNFα and IL-6 blocked COMT-dependent increases in the

production of NO derivatives. Disruption of NO, TNFα or IL-6 signaling reduces the pro-

inflammatory feedback mechanism important for COMT-dependent pain. This synergistic

relationship between NO and cytokines has been observed as a key characteristic of

inflammation. NO has long been known to act as a putative molecule dictating macrophage

trafficking [5] and cytokine production and release [9,29,41]. Furthermore, NO can

influence the transcription of cytokines such as TNFα [32] and IL-1β [83]. Cytokines can

also influence NO synthesis, as TNFα, IL-1β and IL-6 have been found to increase NOS

transcription by directly binding to the promoter or by stimulating p38-MAPK [42,48,74].

The collective work from our lab and others demonstrates that NO and cytokines influence

one another's biosynthesis and suggest that it is the ‘net effect’ of these molecules that

ultimately influences pain.

4.4 Potential Site of Action

β2- and β3ARs are expressed on cells in peripheral, spinal, and central sites where they could

potentially mediate pain sensitivity. In the periphery, β2ARs are located on mononuclear

leukocytes [43], adipocytes [39], vascular, uterine, and airway smooth muscle cells [18],

while β3ARs are expressed in brown and white adipose tissue [72]. In the central nervous

system,β2ARs are located on thalamic, cerebellar [55,61], and spinal dorsal horn neurons

[56] as well as glial cells [64,71], while β3ARs are located on dorsal root ganglia (DRG)

[36]. In the present study, we found that COMT-dependent β2- and β3AR stimulation

resulted in the release of pro-inflammatory molecules circulating in the periphery. Another

recent study by our group shows that adrenalectomized rats, lacking peripheral epinephrine,

fail to develop increased mechanical and thermal pain sensitivity following sustained COMT

inhibition, thus providing further evidence for a peripheral contribution of adrenergic

systems to COMT-dependent pain. [10]. Additional work is required to determine the

relative contributions of peripheral, spinal, and supraspinal β2- and β3ARs to COMT-

dependent pain.

4.5 Greater Implications and Clinical Relevance

As observed here, decreased COMT activity enhances pain by increasing the production of

NO and cytokines via β2- and β3ARs. Genetic variants resulting in decreased COMT activity

have been associated with chronic pain conditions such as fibromyalgia [24] and TMD [16],

which are linked to increased levels of catecholamines [19,79] and production of pro-

inflammatory molecules [6,15,44]. Specifically, patients with fibromyalgia [6,44] and TMD

[20,40,67,68] exhibit higher levels of NO derivatives (e.g. nitrite and nitrate) and cytokines

such as TNFα , IL-1β, IL-6, and CCL2. Recent reports suggest that β-adrenergic

mechanisms involved in COMT-dependent pain may overlap with those observed in

complex regional pain syndrome [45], which is also linked to stimulation of βARs and

increased production of pro-inflammatory cytokines. Thus, βAR antagonist therapy used to
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mitigate catecholamine signaling and alleviate pain in patients with fibromyalgia and TMD

[46,70,76,85] may benefit other patient populations suffering from pain conditions of shared

etiology. Future studies will employ a more clinically relevant model of sustained COMT

inhibition to evaluate the efficacy of βAR antagonists in reversing COMT-dependent pain

following its induction.

5. Conclusions

In conclusion, these findings elucidate the molecules downstream of β2- and β3ARs that

drive acute COMT-dependent pain. Elevated levels of norepinephrine/epinephrine, resulting

from decreased COMT activity, stimulate β2- and β3ARs to promote the release of NO and

the innate immunity cytokines TNFα, IL-1β, and IL-6, which in turn produce heightened

pain sensitivity. The chemokine CCL2 was elevated in COMT-deficient animals, but its

blockade did not prevent the development of acute COMT-dependent pain. Additionally, we

found that NO and innate immunity cytokines function in a positive feedback loop to

strengthen their own biosynthesis. This amplification mechanism may form the basis for the

development of prolonged hypersensitive pain states. Finally, these data suggest that patients

suffering from pain conditions associated with abnormalities in catecholamine signaling

may benefit from therapeutics that selectively regulate the activity of β2- and β3ARs and

downstream effectors.
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Summary Statement

Inhibition of nitric oxide synthesis and neutralization of TNFα, IL-1α, and IL-6 prevent

the development of pain resulting from abnormalities in adrenergic signaling.
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Fig. 1. Timeline of administered treatments used in this study
The COMT inhibitor OR486 or vehicle was administered in the presence or absence of the

β2- and β3-adrenergic receptor antagonists ICI118,551 and SR59320A, the NO synthase

inhibitor L-NAME, or neutralizing antibodies against TNFα, IL-1β , IL-6, or CCL2.
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Fig. 2. COMT inhibition increases pain, NO derivatives, and cytokines via β2,3ARs
Animals receiving OR486 (30 mg/kg) exhibit (A) mechanical allodynia, (B) mechanical

hyperalgesia, and (C) thermal hyperalgesia, as well as increased circulating levels of (D)
nitrite, (E) TNFα, (F) IL-1β, (G) IL-6, and (H) CCL2. COMT-dependent increases in pain,

nitrite, and cytokines were completely blocked by co-administration of ICI118,551 (0.5

mg/kg) and SR59320A (5.0mg/kg). N=6-10 per group. Data are mean ± SEM. *P<0.05,

**P<0.01, ***P<0.001 different from Veh/Veh, #P<0.05 different ICI+SR/Veh and ICI

+SR/OR486.
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Fig. 3. Inhibition of NO synthesis prevents COMT-dependent pain
Administration of the universal nitric oxide synthase inhibitor L-NAME (30 mg/kg) prior to

OR486 (30 mg/kg) normalized (A) mechanical allodynia, (B) mechanical hyperalgesia, and

(C) thermal hyperalgesia. N=8-10 per group. Data are mean ± SEM. *P<0.05, **P<0.01,

***P<0.001 different from Veh/Veh.
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Fig. 4. Neutralization of TNFα, IL-1β, and IL-6, but not CCL2, blocks COMT-dependent pain
Administration of α-TNFα (75 μg), α-IL-1β (75 μg), or α-IL-6 (75 μg) prior to OR486 (30

mg/kg) normalized (A, D, G) mechanical allodynia, (B, E, H) mechanical hyperalgesia, and

(C, F, I) thermal hyperalgesia. (J-L) Administration of α-CCL2 failed to block OR486-

induced increases in mechanical and thermal pain. N=6-8 per group. Data are mean ± SEM.

*P<0.05, **P<0.01, ***P<0.001 different from Control IgG/Veh. #P<0.05 different from

α-TNFα/Veh and α-TNFα/OR486.
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Fig. 5. Inhibition of NO synthesis prevents COMT-dependent increases in cytokines
Administration of the nitric oxide synthase inhibitor L-NAME (30 mg/kg) prior to OR486

(30 mg/kg) blocked increases in circulating levels of (A) TNFα, (B) IL-1β, (C) IL-6, and

(D) CCL2. N=6-10 per group. *P<0.05 different from Veh/Veh.
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Fig. 6. Neutralization of TNFα and IL-6 prevents COMT- dependent increases in NO
OR486-induced increases in total nitrite (nitrite and nitrate) were blocked by pretreatment

with (A) α-TNFα (75 μg) or (C) α-IL-6 (75 μg), but not (B) α-IL-1β (75 μg) or (D) α-CCL2

(75 μg). N=6-8 per group. Data are mean ± SEM. %P<0.05 different from α-TNFα/Veh,

#P< 0.05 different from α-IL-6/Veh and α-IL-6/OR486.
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