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Abstract

The asymmetric total syntheses of the α-benzylidene-γ-butyrolactone natural products 

megacerotonic acid and shimobashiric acid A have been accomplished in nine and 11 steps, 

respectively, from simple, commercially available starting materials. The key step for each 

synthesis is the (arene)RuCl(monosulfonamide)-catalyzed dynamic kinetic resolution-asymmetric 

transfer hydrogenation (DKR-ATH) of racemic α,δ-diketo-β-aryl esters to establish the absolute 

stereochemistry. Intramolecular diastereoselective Dieckmann cyclization forms the lactone core, 

and ketone reduction/alcohol elimination installs the α-arylidene.

Natural products containing an α-benzylidene-γ-butyrolactone1 elicit a wide variety of 

biological responses, including antiviral,2 anticancer,3 antifungal,4 and anti-inflammatory 

activities.5 To date, megacerotonic acid6 1a and shimobashiric acid A7 1b are the only 

known members of this natural product class that contain both C3-aryl and C4-carboxylic 

acid substituents (Scheme 1).8 A racemic total synthesis of megacerotonic acid has been 

reported,9 but its biological activity has not been investigated. The purpose of this 

communication is to report the first asymmetric total syntheses of megacerotonic acid and 

shimobashiric acid A via a route that should be amenable to the preparation of unnatural 

congeners.

Megacerotonic acid was isolated by Takeda and co-workers from Megaceros f lagellaris in 

1990, and no investigation of its biological activity data has been reported to date.6 At the 
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time of its isolation, megacerotonic acid was the only known γ-butyrolactone natural 

product to contain the C2-arylidene-C3-aryl-C4-carboxylic acid substitution pattern. Papin 

and coworkers9 carried out a racemic synthesis, unambiguously establishing its structure. 

The only other natural γ-butyrolactone known with this substituent array, shimobashiric acid 

A, was isolated by Murata and co-workers in 2012 from Keiskea japonica after its extracts 

showed hyaluronidase inhibitory activity.7 Although a number of other natural products 

isolated from these extracts showed biological activity, the isolation of 1b in a small 

quantity (1.2 mg) precluded the investigation of its biological activity.

Our laboratory recently reported facile access to enantioenriched γ-butyrolactones 

containing the required C3-aryl and C4-carboxylate functionality,10 potentially providing 

rapid entry to structures 1a and 1b. Approaching the retrosynthetic analysis of these natural 

products (Scheme 1), we envisioned Heck coupling of α-methylene lactone 2 with the 

appropriate haloarene (Ar2−X), allowing late-stage installation of a variety of benzylidene 

substituents and providing a modular approach to this class of natural products. Synthetic 

access to 2 would be achieved by a known three-step procedure utilizing ruthenium 

catalyzed dynamic kinetic resolution asymmetric transfer hydrogenation (DKR-ATH) of 

racemic β-aryl-α-keto esters followed by in situ diastereoselective lactonization.10 Racemic 

β-aryl-α-keto esters 3 can be prepared in a single step using a previously reported glyoxylate 

Stetter addition.

Initial investigation into this proposed synthetic pathway focused on the optimization of a 

route to 1a as we believed the same pathway would also be applicable to 1b (Scheme 2). 

DKR-ATH of β-aryl-α-keto ester 3 with concomitant lactonization smoothly provided γ-

butyrolactone 4 in high diastereo- and enantioselectivity following a single recrystallization. 

Bromomethylation using dibromomethane followed by LiCl-promoted Krapcho 

dealkoxycarbonylation/elimination11 provided α-methylene lactone 2 for investigation of 

the projected Heck coupling.

Extant methodologies for Heck couplings that deliver exocyclic alkenes are generally 

limited to β-unsubstituted- or β-alkyl-α-methylidene lactones.12 Kim and co-workers 

reported the only example of Heck coupling using β-aryl-α-methylidene lactones, and 

formation of the butenolide was heavily favored over the desired exocyclic alkene.13 In our 

investigations, optimization of this coupling protocol provided arylidene 6a in only 19% 

yield (Scheme 3).14 Additionally, methylidene 2 was unreactive toward cross-metathesis 

with styrenes.15

Consequently, we turned our attention to an alternative route from lactone 4, which would 

allow late stage installation of different benzylidene substituents (Scheme 4). Krapcho 

dealkoxycarbonylation of lactone 4 provided lactone 7 in good yield.16 Aldol reaction of 

lactone 7 with p-anisaldehyde followed by acid catalyzed elimination provided 6a.17

This modified route provided key intermediate 6a in a disappointing three step overall yield 

of 20%; however, the viability of alcohol elimination prompted us to consider a new 

retrosynthetic analysis for alcohol 8a (Scheme 5). In this proposed sequence, access to 8a 
would be provided by reduction of β-keto lactone 9, which would arise from (4 + 1)-
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annulation between a synthetic equivalent of 10 and a phosgene surrogate (11). DKR-ATH 

of α,δ-diketo-β-aryl ester 12 would establish the absolute stereochemistry.10

α,δ-Diketo-β-aryl ester 12a was prepared via N-heterocyclic carbene-catalyzed Stetter 

reaction of ethyl glyoxylate with enone 13a10 and was directly submitted to (arene)RuCl-

(monosulfonamide) catalyzed DKR-ATH, providing alcohol 14a in excellent yield with high 

diastereo- and enantioselectivity (Scheme 6A).10 Installation of the requisite activated 

carbonyl functionality was achieved with 1,1′-carbonyldiimidazole to give tricarbonyl 

15a.18 Selective enolate formation with potassium bis(trimethylsilyl)amide (KHMDS) led to 

a diastereoselective Dieckmann cyclization that delivered 9a. A subsequent ketone reduction 

to alcohol 8a was achieved with Pd/C and H2.19 Dehydration to enone 6a (Scheme 6B) was 

promoted by polymer supported perfluorosulfonic acid (Nafion SAC-13). In our hands, the 

reported ester epimerization and hydrolysis9 of 6a using lithium methoxide/methanol 

resulted in a number of undesired byproducts. Switching to sodium tert-butoxide in tert-

amyl alcohol smoothly provided acid 16a as a 14:1 mixture of chromatographically 

inseparable diastereomers. Boron tribromide-mediated demethylation and purification by 

reverse phase HPLC completed the first asymmetric total synthesis of megacerotonic acid 

1a in nine steps and 11% overall yield from commercially available materials.

The route to 1b was identical to 1a through the synthesis of alcohol 8b (Scheme 6A). When 

8b was submitted to the elimination conditions optimized for 8a (Scheme 6B), enone 6b was 

not formed, and only partial Boc deprotection was observed, even at elevated temperatures 

(100 °C). We sought a solution to this problem that would obviate the necessity of electron 

rich arenes and found that the Burgess reagent met this need, providing enone 6b as well as 

less electron rich α-benzylidene-γ-butyrolactones 6c and 6d, prepared via the same synthetic 

route (Scheme 7).20

tert-Butoxycarbonyl removal, epimerization at C4, and hydrolysis provided 16b in good 

overall yield as a 14:1 mixture of chromatographically inseparable diastereomers. Acetal 

deprotection and purification by reverse phase HPLC provided shimobashiric acid A 1b in 

11 steps and 5% overall yield from commercially available material.21

In conclusion, we have reported the first asymmetric total syntheses of structurally unique 

α-benzylidene-γ-butyrolactones megacerotonic acid and shimobashiric acid A via a route 

amenable to the synthesis of analogues. This route utilized DKR-ATH to establish the 

absolute stereochemistry in excellent enantio- and diastereoselectivity, and 

diastereoselective Dieckmann cyclization formed the lactone core in high overall yield. 

Selective ketone reduction and subsequent elimination formed the α-benzylidene with 

excellent E:Z selectivity. Epimerization at C4, hydrolysis, and phenol deprotection 

concluded the first asymmetric total syntheses of megacerotonic acid and shimobashiric acid 

A. Screening of the synthesized natural products and analogues thereof for relevant 

biological activity is currently underway and will be reported in due course.
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Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Retrosynthetic Analysis
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Scheme 2. 
Preliminary Route
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Scheme 3. 
Access to 6a via Heck Coupling
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Scheme 4. 
Krapcho Dealkoxycarbonylation/Aldol/Elimination Sequence
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Scheme 5. 
Revised Retrosynthetic Analysis
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Scheme 6. 
Synthetic Route to Megacerotonic Acid and Shimobashiric Acid A
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Scheme 7. 
Eliminations with the Burgess Reagent
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