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Abstract

A method for the asymmetric synthesis of enantioenriched anti-α-hydroxy-β-amino acid
derivatives by enantioconvergent reduction of the corresponding racemic α-keto esters is
presented. The requisite α-keto esters are prepared via Mannich addition of ethyl diazoacetate to
imines followed by oxidation of the diazo group with Oxone®. Implementation of a recently-
developed dynamic kinetic resolution of β-substituted-α-keto esters via Ru(II)-catalyzed
asymmetric transfer hydrogenation provides the title motif in routinely high diastereo- and
enantioselectivity.

The presence of α-hydroxy-β-amino acids in high value compounds is well-documented1

and as a consequence, methods that provide access to this structural motif are in continual
demand. Numerous methods of accessing enantioenriched forms of these products have
been reported. Included among them are transformations that use alkene derivatives such as
nucleophilic addition to chiral epoxides,2 oxyaminations of alkenes using Sharpless
conditions,3 and asymmetric hydrosilylation of α-acetoxy-β-enamino esters.4 In addition, a
number of methods exist to access such substrates from non-alkene starting materials. These
include oxidation and subsequent reduction of chiral β-amino-α-diazo esters,5 asymmetric
Henry reactions with subsequent nitro-group reduction,6 asymmetric “glycolate” Mannich
reactions,7 β-amination of α-keto esters,8 among others.9

In assessing various methods, we noticed that few methods provided products with easily
manipulated protecting groups while simultaneously setting both stereocenters in a single
transformation. We believed that these synthetic issues might be addressable using
chemistry previously developed in our laboratories. Herein we describe the application of a
recently discovered ruthenium catalyzed dynamic kinetic resolution-asymmetric transfer
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hydrogenation (DKR-ATH) that provides facile access to enantioenriched β-amino-α-
hydroxy esters.

Our group has shown that various β-substituted-α-keto esters are reduced with high
stereoselectivity under DKR-ATH conditions.10 These examples provided the basis of a
hypothesis that β-amino-α-hydroxy-esters could be accessed from racemic β-amino-α-keto
esters via dynamic kinetic resolution (Scheme 1). Such reactions are well-established for the
isomeric α-amino-β-keto esters and in fact comprise prototypical examples of DKR,11 but
extensions to the β-amino-α-keto esters remain limited to enzymatic catalysis.12

In principle, the most atom-efficient route towards the requisite β-amino-α-keto esters would
be to use a glyoxylate aza-benzoin reaction mediated by an N-heterocyclic carbene (NHC)
catalyst. This umpolung reactivity has precedent,13 but it has not been demonstrated using
glyoxylate as the nucleophile. Starting from readily accessed amido-sulfones 114 and using
the triazolium carbene derived from 2,15 we observed Mannich addition of ethyl glyoxylate
into in situ formed imines (Scheme 2). The requisite carbamates 3a and 3b were obtained in
low and variable yields.16

Although inefficient at the present level of optimization, this method provided us with
sufficient amounts of material with which to examine the DKR-ATH for proof of concept.
Guided by our previous work,10 we began by screening catalyst complexes 5–7 which arise
from diarylethylene diamine monosulfonamide ligands and [RuCl2(p-cymene)]2.17 The use
of complex 5 afforded complete anti diastereoselection18 but moderate enantioselectivity,
necessitating a switch to ligands 6 and 7, both of which bear a terphenyl sulfonamide.
Complex 6 provided high stereoselectivity for both Cbz- and Boc-protected amines with
Cbz providing slightly higher enantioselectivity (Table 1, entries 2 and 3). When the solvent
was changed from DMSO to DMF, an increase in selectivity for the Boc protected substrate
was observed (entry 4).

Searching for higher selectivity, we switched to ligand 7, which provided 4a in 99:1 er
(Table 1, entry 5). We tested this same catalyst at 0 °C in an attempt to improve the yield by
subverting retro-Mannich reactivity,19 but this change resulted in decreased yield. The brief
optimization study revealed that high levels of enantioselectivity can be obtained with two
convenient carbamate protecting groups through judicious selection of catalyst. Due to the
superior enantioselection provided by the Boc-protected amine, it was selected as the
protecting group for further studies.

With proof of concept for the DKR-ATH established, attention returned to improving the
synthesis of the requisite β-amino-α-keto esters. A survey of the literature revealed
conditions reported by Wang and coworkers, which proved effective for generation of β-
sulfonamido-α-keto esters.20 This route employs N-sulfonyl imines in conjunction with
ethyl diazoacetate to achieve a Mannich addition.21 On the basis of precedent, subsequent
oxidation was expected to furnish α-keto esters primed for reduction.5,19 This general
strategy has previously been exploited to access the title compounds via asymmetric
Mannich addition followed by diastereoselective reduction.5 Our hope was to provide a
method in which both stereocenters would be set during the reduction from a racemic
starting material.

The Mannich addition was conducted at room temperature for all aromatic substituted
imines, and at −40 °C for aliphatic substrates to subvert enamine formation. With α-diazo
esters in hand, we then turned to a two-step oxidation-reduction sequence (Figure 1).

We employed previously described conditions for oxidation of α-diazo esters to their
corresponding α-keto esters using commercially available Oxone®.5 The unpurified α-keto
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esters were sufficiently pure to be used directly in the optimized reduction conditions:
exposure of β-amino-α-keto esters (±)-8 to Ru-complex 7 and HCO2H/Et3N provided
products 4a–o (Figure 2).

Our substrate scope sought to probe both electronic and steric controls for this reaction
system. Heteroaromatic (4l–4m) as well as electron-rich (4f–4h) and -poor (4g) aromatic
systems all provide high diastereomeric ratio (dr) and enantioselectivity. Additionally, 4j
showed only reduction of the α-ketone leaving the alkene intact, although the reaction
proceeded with negligible diastereoselectivity. Products 4c–4e showed that while steric
encumbrance does affect the dr, enantioselectivity remains high. In testing 8o for the
application of this method towards aliphatic β-substitution, we observed full reduction of the
ketone, albeit with low stereoselectivity. As was already noted, this reaction is tolerant to
different amine protecting groups (4a and 4b) providing further flexibility in substrate
design. The resultant alcohols are often solids and a single recrystallization could regularly
provide er values above 99.5:0.5 (parenthetical values in Table 3).

To determine the stereochemistry imparted by the DKR-ATH, (+)-4b was independently
synthesized from the known enantioenriched epoxide 9 (Scheme 3A).22 The stereochemistry
was then assigned based on comparison of this product and (−)-4b (prepared by DKR-ATH,
Table 3) using 1H NMR and chiral SFC analysis. Lastly, the utility of Boc and Cbz
protecting groups was demonstrated by the deprotection of 4a under acidic conditions and
4b with trimethylsilyl iodide, both of which result in free amine (−)-10 (Scheme 3B).

Racemic β-amino-α-keto esters can be employed as an entry point for enantiomerically
enriched anti-β-amino-α-hydroxy esters via DKR-ATH. The present work expands the
product types that are accessible using terphenyl-based catalysts 6 and 7, establishes both of
the product’s stereocenters in a single step, and delivers the amine in a conveniently
configured form.
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Figure 1.
Mannich addition of ethyl diazoacetate.a
a) The imine 1 was generated from the corresponding amido sulfone (see the Supporting
Information for details). Isolated yields over the two steps are reported. b) Mannich addition
conducted at −40 °C.

Goodman et al. Page 5

Org Lett. Author manuscript; available in PMC 2014 May 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Substrate scope for the ATH-DKR.
a) Isolated yields are reported. b)Determined by 1H NMR analysis of crude reaction
mixture. c)Determined by chiral HPLC or SFC analysis. d)Recrystallized er values are in
parentheses
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Scheme 1.
Proposed ATH-DKR of β-amino-α-keto esters
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Scheme 2.
Aza-benzoin addition using ethyl glyoxylate
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Scheme 3.
Determination of product stereochemistry.
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