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Abstract

Aerobic hydroperoxidation of Meldrum’s acid derivatives via a Cu(II)-catalyzed process is
presented. The mild reaction conditions are tolerant to pendant unsaturation allowing the
formation of endoperoxides via electrophilic activation. Cleavage of the O–O bond provides 1,n-
diols with differentiation of the hydroxy groups.

Enolate oxidation is an important tool in organic synthesis for the preparation of various α-
functionalized carbonyl compounds.1 This reaction is often achieved through the application
of oxygen-based electrophiles such as oxaziridines, dioxiranes, and diacyl peroxides
(Scheme 1a); these reagents are useful for the installation of a hydroxyl group or hydroxyl
surrogate but their atom economy is relatively poor.2 In the rarer cases where
hydroperoxides are generated during the course of enolate functionalization (often as ROH/
RO2H mixtures), it is common practice to reduce the mixture to the hydroxylation (ROH)
product upon workup. This reductive workup in essence squanders one oxidation level
conferred by the oxidant. By contrast, an enolate oxidation that preserved the elevated
product oxidation state could in principle be used to functionalize remote sites (Scheme 1b),
so long as the distal functionality was compatible with the oxidation conditions. Initially
providing an endoperoxide (3), hydrogenolysis of the O–O bond would provide formal
dihydroxylation products (4) in a redox economical manner.3 Moreover, a catalytic enolate
oxidation reaction that used O2 would carry the inherent advantages of complete atom
economy and the use of a green oxidant. At issue in translating this construct to practice is
(1) the development of a mild, functional group-tolerant enolate oxidation using O2, and (2)
the development of tools for remote functionalization using the hydroperoxide products. The
purpose of this communication is to report efforts to this end in the form of an efficient,
operationally simple method for the catalytic aerobic hydroperoxidation of Meldrum’s acid4
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derivatives and the application of the products in intramolecular πC≡C and πC=C oxidation,
including the first Au(I) catalyzed hydroperoxide/alkyne cyclization.

The projected intervention of intermediates such as 3 in this strategy is significant since
cyclic peroxides are prevalent in a number of natural products exhibiting antimalarial
(artemisinin and its derivatives) and anticancer (plakinic acids) activity.5,6,7 With this
knowledge and the findings that structurally simpler cyclic peroxides can still exhibit useful
biological activity,8 the short and efficient synthesis of new cyclic peroxides has become a
topic of increased effort.9 Thus, the value of endoperoxides 3 is twofold as they are both
biologically relevant and potential precursors to ubiquitous 1,n-diols 4.

A common strategy for the synthesis of endoperoxides is the cyclization of hydroperoxides
onto pendant alkenes. This cyclization has been accomplished by peroxy radical
cyclization,10 attack onto in situ formed halonium or mercuronium ions,11 conjugate
addition into electron deficient alkenes,12 or olefin activation by electrophilic transition
metal catalysis.13 Endoperoxides provide access to 1,n-diols via O–O bond cleavage by
thiourea/MeOH14 or metal-catalyzed hydrogenolysis.15 The latter case is especially
attractive from a green chemistry perspective16 since the overall sequence could in principle
provide formal dihydroxylation with O2 as the oxidant and H2 as the reductant.

Our point of departure for this study was to examine oxygenation of β-dicarbonyls with the
expectation that the appreciable C–H acidity could translate to relatively mild activation
conditions. Extant methods for hydroperoxidation of β-dicarbonyls are scant and often
suffer from harsh conditions and/or mixtures of hydroperoxide and alcohol. The use of
photosensitized 1O2 allows the formal addition of O2 into an active methine,17 and
endoperoxidic hemiketals were formed in modest yield in the Ce(III) catalyzed peroxidation/
cyclization of β-dicarbonyls with styrenes.18 The foremost methods for hydroperoxidation
of active C–H bonds utilize aerobic oxidation of dimedone derivatives19 or employ Mn(III)/
O2 to peroxidize 1,2- diphenylpyrazolidine-3,5-diones and barbituric acid derivatives.20 The
aerobic oxidation conditions are quite specific to dimedone derivatives21 and Mn(III) is
wellknown to give electrophilic radical intermediates with β-dicarbonyls, rendering this
method incompatible with pendant unsaturation due to competitive cyclization.22 A method
compatible with unsaturation is highly desirable as the heightened oxidation state gained by
hydroperoxidation can be effectively utilized. The use of substituted Meldrum’s acids as
flexible starting materials for C–H hydroperoxidation was attractive since asymmetric
syntheses of these compounds have been developed to a high level of sophistication,
simplicity, and scalability.23,24

Reports on Cu(II)-catalyzed aerobic activation of β- dicarbonyls prompted us to examine
these reaction conditions.25 Isopropyl Meldrum’s acid 5a was exposed to Cu(II)/air (55 psig;
standard Fisher-Porter bottle) in acetonitrile at ambient temperature. The oxidative cleavage
product 6 might nominally be expected based on precedent, but the reduced electrophilicity
of the ester carbonyl led instead to a mixture of hydroperoxide 7a and alcohol 8 (Scheme 2).
Reducing the temperature to 0 °C minimized or eliminated reduction to alcohol 8 while still
providing good conversion to the hydroperoxide. Operational simplicity was further
achieved without detriment to yield by using a balloon of O2, eliminating the need for a
pressure vessel.26

With optimized conditions realized,27 a variety of Meldrum’s acids 5a-j were subjected to
the hydroperoxidation (Table 1). The mild reaction conditions proved tolerant to a variety of
potentially vulnerable functional groups including alkenes, terminal and internal alkynes,
arenes, tertiary benzylic C–H bonds, and esters. In most cases, the hydroperoxide products
7a-h were obtained in >90% purity after a simple aqueous work-up. Alkene substrates
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provided modest to good yields of the desired hydroperoxides 7i-j following purification.28

In addition to providing hydroperoxy Meldrum’s acid derivatives in good yield, this
methodology also provided the barbituric acid derivative 9 with pendant unsaturation in
modest yield, a product presumably unattainable in Mn(III)-catalyzed hydroperoxidations.

We next assayed the utility of unsaturated hydroperoxide products in intramolecular
oxidation via endoperoxide formation. Au(I)-catalyzed cycloetherifications have been
reported with a variety of gold catalysts,29 but to the best of our knowledge the
corresponding endoperoxidation is unknown. Alkyl substituted alkynyl hydroperoxides 7e-f
undergo 6-endo cyclization catalyzed by triphenylphosphinegold(I) triflimide30 in MeOH to
give mixed ketal endoperoxides in good yield (Scheme 3).31 Subsequent reductive cleavage
of the O–O bond of 10a followed by hemiketalization of the transient ketone 11 in excellent
yield with 3:1 dr. Ionic hydrogenation32 of 11 affords tetrahydrofuran 12 in a highly
diastereoconvergent process.33

By reversing the order of operations, entirely different products can be accessed from the
same mixed ketal endoperoxide. Ionic hydrogenation of 10a provides endoperoxide 13 in
modest yield with good diastereoselectivity as predicted by standard half-chair analysis of
the intermediate oxocarbenium ion Reductive cleavage of the O–O bond with concomitant
Meldrum’s acid opening and decarboxylation gives the desired 1,4-diol functionality as
lactone 14 in good yield as a single diastereomer, implying that the decarboxylation/
protonation is completely stereoselective.

The complementary 5-exo cyclization mode was realized through the remote oxidation of
alkenyl hydroperoxy Meldrum’s acid derivatives (Scheme 4). Homoallyl-hydroperoxy 7i
cyclized via electrophilic activation of the alkene with 1,3-diiodo-5,5-dimethyl hydantoin
(DIH).34 This process was highly regio- and stereoselective providing the 1,2-dioxolane 15a
with pendant iodide in modest yield. The N,N-dimethylbarbituric acid derivative 9 reacted
analogously giving the endoperoxide 15b in 49% yield.

Metal catalyzed hydrogenolysis or thiourea/MeOH provided smooth O–O bond cleavage of
15a (Scheme 5). Concomitant cyclization/ring opening occurred on the Meldrum’s acid with
complete diastereotopic group discrimination to provide the differentiated 1,3-diol
functionality in the form of lactone 16, conveniently isolated as the dicyclohexylamine salt
in good yield as a single diastereomer. The relative configuration of 16 was determined by
single crystal x-ray diffraction.

In summary, we have developed a simple, mild and efficient catalytic method for the
hydroperoxidation of Meldrum’s acid derivatives including those with unsaturation. The
hydroperoxide products can be used for intramolecular oxidation via electrophilic activation
of the pendant πC≡C and πC=C functionality. Au(I)-catalyzed endoperoxidations of
hydroperoxyalkynes have been reported for the first time. Reductive cleavage of the O–O
bond yields 1,n-diol functionality with convenient differentiation of the alcohols via
lactonization, thereby providing the conceptual blueprint for the development of atom-
efficient O2/H2 dihydroxylations. Current efforts in our laboratory are focused on expanding
this methodology to a wider range of Meldrum’s acid derivatives to provide diverse
endoperoxides and 1,ndiols.
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Refer to Web version on PubMed Central for supplementary material.
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Scheme 1.
Methods of Enolate Oxidation
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Scheme 2.
Cu(II)-Catalyzed Aerobic Oxidation of a Substituted Meldrum’s Acid
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Scheme 3.
Gold(I)-Catalyzed Endoperoxidation of Hydroperoxides and Endoperoxide Reactions
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Scheme 4.
Iodoendoperoxidation of Homoallylhydroperoxy-Meldrum’s Acid and Barbituric Acid
Derivatives
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Scheme 5.
Endoperoxide Cleavage in 1,2-Dioxolane System

Krabbe et al. Page 10

Org Lett. Author manuscript; available in PMC 2013 December 07.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Krabbe et al. Page 11

Table 1

Hydroperoxidation of Meldrum’s Acid Derivatives

product t(h) yield (%)a

R' = CH3 7a 6 >95

  H 7b 6 92

  Ph 7c 2 >95

R' = H 7d 2 80

  CH3 7e 2 78

  C5H11 7f 2 80

  CO2Et 7g 3 >95

  Ph 7h 2 >95

n = 0 7i 4 59b,c

   1 7j 4.5 86b,d

9 8 49b

a
Isolated yield without need for purification (except 7i, 7j, 9).

b
Yield following purification on SiO2.

c
10:1 with alcohol.

d
17:1 with alcohol.
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