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Abstract

The total synthesis of (+)-vigulariol and (−)-sclerophytin A are reported in 15 steps and 16 steps,
respectively, from a known compound. The flexible, readily scalable synthetic strategy allows for
rapid construction of a critical tricyclic intermediate and is demonstrated via the synthesis of these
two marine natural products. A key reaction in this synthetic protocol is a combination Wittig/
intramolecular Diels-Alder cycloaddition.

The marine environment is a proven source of structurally novel and biologically active
natural products. In this context, (+)-vigulariol (1),1 first isolated off the coast of Taiwan
from the sea pen octocoral Vigularia juncea and (−)-sclerophytin A (2)2 (Figure 1), isolated
from the soft coral Sclerophytum capitalis collected in waters near Micronesia, are two
diterpenoids belonging to the eunicellin (or cladiellin) family of C2–C11 cyclized
cembranoid marine natural products. The C2–C11-cyclized cembranoids are related
subclasses of secondary metabolites isolated from corals in the Caribbean and West Pacific
and include the eunicellins, briarellins, asbestinins, and sarcodyctins.3 A proposed
biosynthesis of the C2–C11 cyclized cembranoids is shown in Figure 2.4 Multiple members
of this family of natural products have succumbed to total synthesis over the past several
years.3d

Based upon fish and mollusk lethality assays, the natural role of these metabolites is
suggested to involve predator deterrence.5 Initial investigation into the biological activity of
these compounds has shown that many of these natural products exhibit insect growth
inhibition and in vitro cytotoxic activity against multiple cancer cell lines.1,2a,6 Vigulariol
has promising pharmacological activity, demonstrating cytotoxic activity against the A 549
human lung adenocarcinoma cell culture line with an IC50 of 18.33 µg/mL.1 Sclerophytin A
possesses even more potent cytotoxic activity: 1 ng/mL against the L1210 cell line.2a Due to
the small amounts of material obtained from natural sources, additional biological data, such
as mechanism of action and biological target, is limited for these compounds. A synthetic
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strategy that is amenable to future structure-activity relationship studies and is easily
scalable will enable further investigation into the promising biological activity of these
cembranoid natural products.

Vigulariol and sclerophytin A possess unique molecular architectures and their dense
functionalization provides an intriguing challenge for chemical synthesis. The oxatricyclic
framework of sclerophytin A contains eight stereocenters, six of them contiguous, a
hexahydroisobenzofuran core, and an oxacyclononane ring unit. The tetracyclic framework
of vigulariol contains the traditional tricyclic core seen in the eunicellins, plus an additional
tetrahydrofuran ring system with the ring oxygen bridging C3 and C6 within the
oxacylononane ring. These distinctive structural features have also drawn the interest of
other research groups. There are three reported total syntheses of sclerophytin A,7 where
vigulariol was an intermediate in two of these syntheses. Two additional total syntheses of
vigulariol have been published8 – one of them racemic.8a Several groups have reported
progress towards fragments or analogs of these eunicellins.9

The molecular complexity and cytotoxic activity of these marine metabolites continue to
make them attractive targets for total synthesis. In designing an efficient synthetic route
towards vigulariol and sclerophytin A, a practical method for formation of the nine-
membered ring system must be considered. We have previously disclosed an asymmetric
aldol−ring-closing metathesis strategy for the enantioselective construction of oxygen
heterocycles10 and demonstrated its utility in the total synthesis of multiple medium ring
ether-containing natural products.11

The retrosynthetic strategy for (+)-vigulariol and (−)-sclerophytin A is shown in Scheme 1.
Vigulariol would be fashioned from the functionalized oxatricyclic core 3, following a
nucleophilic ring-opening of an epoxide to form the bridged ether moiety. Ketone 3 could be
elaborated into sclerophytin A following a recently reported three-step procedure.7g

Terminal alkene 4 could be constructed via functional group manipulation from ketone 5,
whose tricyclic core could be established via a stereoselective intramolecular Diels-Alder
cycloaddition of enone 6. Finally, enone 6 would be derived from reported oxonene 7, using
two key Wittig reactions to establish the required Diels-Alder diene.

The synthesis of these two marine metabolites begins with oxonene alcohol 7, previously
prepared in our laboratory in eight steps from (R)-benzylglycidyl ether utilizing the
aformentioned asymmetric glycolate aldolring closing metathesis protocol.11k (Scheme 2)
As shown in the retrosynthetic scheme, an initial objective in the synthesis is to install the
required functionalities for the intramolecular Diels-Alder cylcoaddition. Toward this goal,
alcohol 7 was oxidized to the corresponding aldehyde with Dess-Martin periodinane.12

Aldehyde 8 was treated with the Wittig reagent derived from salt 913 to form the
corresponding enoate (Z:E = 11:1).

Initial attempts to directly incorporate the requisite diene functionality employing addition
of α-methoxyallyl phosphorus ylides14 to aldehyde 8 were not successful, so installation of
the diene was instead achieved following a three step sequence. Upon treatment with
DIBAL-H, ester 10 was reduced to the corresponding alcohol, followed by MnO2-mediated
allylic oxidation to the aldehyde and a methylene Wittig olefination to produce diene 11.
The primary TBS ether was selectively removed with ammonium fluoride15 in the presence
of the acid labile enol ether to yield alcohol 12. After exploring numerous oxidation
conditions, the acid-sensitive alcohol 12 was exposed to tetrapropylammonium
perruthenate16 to afford an aldehyde, which was taken onto the next step without further
purification.
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One of the critical synthetic challenges in completing a total synthesis of either sclerophytin
A or vigulariol is constructing the fully substituted tetrahydrofuran core. It was believed that
this could be accomplished using a substrate-directed intramolecular Diels-Alder reaction,
where the diastereoselectivity would be controlled by the oxonene ring. An additional
benefit to this approach is that the cyclohexane ring is established concomitantly. We had
previously validated this IMDA approach to the tetrasubstituted tetrahydrofuran core of the
cembranoids.11j–m A fortuitous result noted during these studies was that upon formation of
the desired (E)-enoate for the Diels-Alder reaction, the cycloaddition proceeded rapidly,
often spontaneously at room temperature. Gratifyingly, upon treatment with
(acetylmethylene)triphenylphosphorane,17 the crude aldehyde underwent an exo-selective
Diels-Alder reaction to result in a single diastereomer (5). The orientation of the C3
hydroxyl group, as well as the size of the protecting group, is critical in influencing the
diastereoselectivity of this key cyclization reaction.

With the tricyclic core now constructed, attention turned to completion of the remaining
functional group transformations on this skeleton (Scheme 3). From ketone 5, an exocyclic
alkene was installed via a methylene Wittig olefination. Simultaneous cleavage of both the
enol ether and the TBS protecting group of enol 13 occured after treatment with aqueous
hydrogen fluoride to yield ketone 4.18 The more reactive exocyclic alkene at C15 was then
carefully hydrogenated using platinum oxide,8a followed by a methylene Wittig olefination
at the C11 ketone to form diene 15. Subsequent Dess-Martin oxidation14 of the C3
secondary alcohol, followed by exposure of the ketone to an excess of methylmagnesium
bromide yielded tertiary alcohol 16 as a single diastereomer.

With interest now focused on the completion of sclerophytin A, efforts were fixed on
installing the required hydroxyl groups at C6 and C7. It was proposed that tertiary alcohol
16 could be converted into sclerophytin A via an epoxidation-ring-opening event or
dihydroxylation strategy. Numerous attempts to prepare 2 via 16 were unsuccessful, even
after protection of the tertiary alcohol. However, when diene 16 was treated with m-CPBA,
regioselective epoxidation resulted to form a mixture of α- and β-epoxides, where only the
α-epoxide was preferentially attacked by the C3 tertiary alcohol to form (+)-vigulariol (1).
The experimental data of synthetic vigulariol were identical to those reported for the natural
product ([α]25

D = +3.1 (c 0.24, CHCl3); [α]27
D lit. = +3.6 (c 0.24, CHCl3).1

Turning attention back to sclerophytin A, we took advantage of the fact that our route
intercepted a common intermediate (ketone 3) in a recently published total synthesis of
sclerophytin A by Morken and co-workers.7g Ketone 3 was treated with m-CPBA and
underwent regioselective epoxidation to form a mixture of epoxides (α- and β-17) (Scheme
4). Upon exposure of the epoxide mixture to aqueous LiOH, only the α-17 epoxide
hydrolyzed to afford hemiketal 18. Conversion of the β-17 epoxide to hemiketal 18 was also
achieved in the same reaction vessel after acidification with KHSO4 and treatment with
Sc(OTf)3. The total synthesis of (−)-sclerophytin A was completed with subjection of 18 to
methylmagnesium bromide to install the tertiary carbinol at C3. The characterization data
was in agreement with those reported for the isolated natural product ([α]20

D = −3.0 (c 0.10,
CHCl3); [α]20

D lit. = − 6.9 (c 0.087, CHCl3).7f

In summary, we have completed an enantioselective total syntheses of (+)-vigulariol in 15
steps and (−)-sclerophytin A in 16 steps from a reported oxonene intermediate. A key step in
our synthetic strategy was the utilization of a Wittig/intramolecular Diels-Alder
cycloaddition to establish the hydroisobenzofuran core of these eunicellin natural products.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(+)-Vigulariol and (−)-sclerophytin A, two members of the eunicellin family of C2–C11
cyclized cembranoid natural products.
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Figure 2.
Proposed biosynthesis of the C2–C11 cyclized cembranoids.
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Scheme 1.
Retrosynthetic analysis of (+)-vigulariol and (−)-sclerophytin A
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Scheme 2.
Syntheis of tricyclic ketone 5
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Scheme 3.
Completion of (+)-vigulariol (1)
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Scheme 4.
Completion of (−)-sclerophytin A
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